Abstract

We propose a design of a retinal-projection-based near-eye display for achieving ultra-large field of view, vision correction, and occlusion. Our solution is highlighted by a contact lens combo, a transparent organic light-emitting diode panel, and a twisted nematic liquid crystal panel. Its design rules are set forth in detail, followed by the results and discussion regarding the field of view, angular resolution, modulation transfer function, contrast ratio, distortion, and simulated imaging.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of retinal projection displays enabling vision correction

Chao Ping Chen, Lei Zhou, Jiahao Ge, Yuhang Wu, Lantian Mi, Yishi Wu, Bing Yu, and Yang Li
Opt. Express 25(23) 28223-28235 (2017)

Design of see-through near-eye display for presbyopia

Yishi Wu, Chao Ping Chen, Lei Zhou, Yang Li, Bing Yu, and Huayi Jin
Opt. Express 25(8) 8937-8949 (2017)

See-through near-eye displays enabling vision correction

Lei Zhou, Chao Ping Chen, Yishi Wu, Zhonglin Zhang, Keyu Wang, Bing Yu, and Yang Li
Opt. Express 25(3) 2130-2142 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Wikipedia, “Augmented reality,” https://en.wikipedia.org/wiki/augmented_reality .
  2. W. Barfield, Fundamentals of Wearable Computers and Augmented Reality 2nd Edition (Chemical Rubber Company, 2015).
  3. H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [Crossref] [PubMed]
  4. Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
    [Crossref] [PubMed]
  5. Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
    [Crossref] [PubMed]
  6. J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).
    [Crossref]
  7. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [Crossref] [PubMed]
  8. R. Zhu, G. Tan, J. Yuan, and S.-T. Wu, “Functional reflective polarizer for augmented reality and color vision deficiency,” Opt. Express 24(5), 5431–5441 (2016).
    [Crossref] [PubMed]
  9. C. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements.,” Appl. Opt. 55(3), A71–A85 (2016).
    [Crossref] [PubMed]
  10. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
    [Crossref]
  11. C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
    [Crossref]
  12. Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium (2004), pp. 310–313.
    [Crossref]
  13. T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
    [Crossref]
  14. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  15. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [Crossref] [PubMed]
  16. Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, “Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements,” Appl. Opt. 52(7), C88–C99 (2013).
    [Crossref] [PubMed]
  17. X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
    [Crossref] [PubMed]
  18. S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
    [Crossref]
  19. M. Sugawara, M. Suzuki, and N. Miyauchi, “Retinal imaging laser eyewear with focus-free and augmented reality,” in SID Display Week (2016), pp. 164–167.
  20. T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12(9), 982–985 (2016).
    [Crossref]
  21. A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
    [Crossref]
  22. R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
    [Crossref]
  23. C. P. Chen, Z. Zhang, and X. Yang, “A head-mounted smart display device for augmented reality,” CN Patent 201610075988.7 (2016).
  24. L. Zhou, C. P. Chen, Y. Wu, K. Wang, and Z. Zhang, “See-through near-eye displays for visual impairment,” in The 23rd International Display Workshops in conjunction with Asia Display (2016), pp. 1114–1115.
  25. L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and Y. Li, “See-through near-eye displays enabling vision correction,” Opt. Express 25(3), 2130–2142 (2017).
    [Crossref] [PubMed]
  26. C. P. Chen, Y. Wu, and L. Zhou, “An optical display device for augmented reality,” CN Patent, 201610112824.7 (2016).
  27. Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Near-eye display for vision correction with large FOV,” in SID Display Week (2017), pp. 767–770.
  28. Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Design of see-through near-eye display for presbyopia,” Opt. Express 25(8), 8937–8949 (2017).
    [Crossref] [PubMed]
  29. C. P. Chen, Y. Wu, L. Zhou, J. Ge, J. Liu, and J. Xu, “A near-eye display integrated with vision correction,” CN Patent, 201710065160.8 (2017).
  30. C. P. Chen, Y. Wu, J. Zhao, Y. Li, and B. Yu, “A retinal-projection-based near-eye display,” CN Patent, 201710751238.1 (2017).
  31. C. P. Chen, L. Zhou, J. Ge, Y. Wu, L. Mi, Y. Wu, B. Yu, and Y. Li, “Design of retinal projection displays enabling vision correction,” Opt. Express 25(23), 28223–28235 (2017).
    [Crossref]
  32. Wikipedia, “Human eye,” https://en.wikipedia.org/wiki/human_eye .
  33. Wikipedia, “Cornea,” https://en.wikipedia.org/wiki/cornea .
  34. F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics 3rd Edition (Addison-Wesley, 2006).
  35. University of Notre Dame, “Physics of the eye,” https://www3.nd.edu/~nsl/Lectures/mphysics .
  36. Wikipedia, “Photoreceptor cell,” https://en.wikipedia.org/wiki/Photoreceptor_cell .
  37. Wikipedia, “Macula of retina,” https://en.wikipedia.org/wiki/Macula_of_retina .
  38. Wikipedia, “Visual acuity,” https://en.wikipedia.org/wiki/Visual_acuity .
  39. I. P. Howard, Perceiving in Depth, Volume 1: Basic Mechanisms (Oxford University, 2012).
  40. Wikipedia, “Surface tension,” https://en.wikipedia.org/wiki/Surface_tension .
  41. V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).
  42. J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).
    [Crossref]
  43. P. Yeh and C. Gu, Optics of Liquid Crystal Displays 2nd Edition (Wiley, 2009).
  44. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design 2nd Edition (McGraw-Hill Education, 2008).
  45. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999).
    [Crossref] [PubMed]
  46. Wikipedia, “Nyquist–Shannon sampling theorem,” https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem .
  47. H. H. Hopkins, “The numerical evaluation of the frequency response of optical systems,” Proc. Phys. Soc. B 70(10), 1002–1005 (1957).
    [Crossref]
  48. Wikipedia, “Spatial frequency,” https://en.wikipedia.org/wiki/Spatial_frequency .
  49. M. Bass, ‎C. DeCusatis,‎ J. Enoch,‎ V. Lakshminarayanan,‎ G. Li,‎ C. MacDonald, V. Mahajan,‎ and E. V. Stryland, Handbook of Optics 3rd Edition Volume III: Vision and Vision Optics (McGraw-Hill Education, 2009).
  50. Wikipedia, “Sunglasses,” https://en.wikipedia.org/wiki/Sunglasses .

2017 (7)

Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref] [PubMed]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and Y. Li, “See-through near-eye displays enabling vision correction,” Opt. Express 25(3), 2130–2142 (2017).
[Crossref] [PubMed]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
[Crossref] [PubMed]

Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Design of see-through near-eye display for presbyopia,” Opt. Express 25(8), 8937–8949 (2017).
[Crossref] [PubMed]

C. P. Chen, L. Zhou, J. Ge, Y. Wu, L. Mi, Y. Wu, B. Yu, and Y. Li, “Design of retinal projection displays enabling vision correction,” Opt. Express 25(23), 28223–28235 (2017).
[Crossref]

2016 (4)

C. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements.,” Appl. Opt. 55(3), A71–A85 (2016).
[Crossref] [PubMed]

R. Zhu, G. Tan, J. Yuan, and S.-T. Wu, “Functional reflective polarizer for augmented reality and color vision deficiency,” Opt. Express 24(5), 5431–5441 (2016).
[Crossref] [PubMed]

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12(9), 982–985 (2016).
[Crossref]

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).
[Crossref]

2015 (1)

2014 (2)

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref] [PubMed]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

2013 (1)

2012 (1)

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

2010 (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

2009 (2)

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[Crossref] [PubMed]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

2006 (1)

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

2003 (1)

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

2000 (1)

J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).
[Crossref]

1999 (1)

1957 (1)

H. H. Hopkins, “The numerical evaluation of the frequency response of optical systems,” Proc. Phys. Soc. B 70(10), 1002–1005 (1957).
[Crossref]

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Amitai, Y.

Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium (2004), pp. 310–313.
[Crossref]

Bang, K.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Bourquin, S.

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12(9), 982–985 (2016).
[Crossref]

Cao, J.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).
[Crossref]

Chen, C. P.

Chen, C.-P.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).
[Crossref]

Chen, H.-S.

Chen, P.-J.

Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref] [PubMed]

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref] [PubMed]

Cheng, D.

Duan, X.

Escudero-Sanz, I.

Ford, J.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Fuchs, H.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Furness, T. A.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Gao, Q.

Ge, J.

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Hendricks, L.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Hong, K.

Hopkins, H. H.

H. H. Hopkins, “The numerical evaluation of the frequency response of optical systems,” Proc. Phys. Soc. B 70(10), 1002–1005 (1957).
[Crossref]

Hu, X.

Hua, H.

Jang, C.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

C. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements.,” Appl. Opt. 55(3), A71–A85 (2016).
[Crossref] [PubMed]

Jeong, J.

Jhun, C.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).
[Crossref]

Jin, G.

Jin, H.

Keller, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Kelly, J. P.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Kilcher, L.

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12(9), 982–985 (2016).
[Crossref]

Kim, J.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Lanman, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Lee, B.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

C. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements.,” Appl. Opt. 55(3), A71–A85 (2016).
[Crossref] [PubMed]

Lee, C.-K.

Lee, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

C. Jang, C.-K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong, and B. Lee, “Recent progress in see-through three-dimensional displays using holographic optical elements.,” Appl. Opt. 55(3), A71–A85 (2016).
[Crossref] [PubMed]

Levola, T.

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

Li, G.

Li, X.

Li, Y.

Liang, X.

Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref] [PubMed]

Lin, Y.-H.

Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref] [PubMed]

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref] [PubMed]

Liu, J.

Liu, P.

Liu, S.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Luebke, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

McQuaide, S. C.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Mi, L.

Moon, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Navarro, R.

North, T.

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12(9), 982–985 (2016).
[Crossref]

O’Brien, T.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Rathinavel, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Rolland, J. P.

J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).
[Crossref]

Rutherford, T.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Schowengerdt, B. T.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Seibel, E. J.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Sprague, R.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Talha, M. M.

Tan, G.

Tremblay, E.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Wagner, M.

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12(9), 982–985 (2016).
[Crossref]

Wang, K.

Wang, Q.

Wang, Y.

Wang, Y.-J.

Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref] [PubMed]

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref] [PubMed]

Wang, Z.-X.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).
[Crossref]

Wei, X.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).
[Crossref]

Wu, S.-T.

Wu, Y.

Xie, J.-W.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).
[Crossref]

Yeom, J.

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Yu, B.

Yuan, J.

Zhang, A.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Zhang, Z.

Zhao, T.

Zhou, J.

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).
[Crossref]

Zhou, L.

Zhu, R.

ACM Trans. Graph. (3)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Appl. Opt. (3)

Chin. Phys. B (1)

J. Cao, J.-W. Xie, X. Wei, J. Zhou, C.-P. Chen, Z.-X. Wang, and C. Jhun, “Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot,” Chin. Phys. B 25(12), 128502 (2016).
[Crossref]

Displays (1)

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

J. Disp. Technol. (1)

T. North, M. Wagner, S. Bourquin, and L. Kilcher, “Compact and high-brightness helmet-mounted head-up display system by retinal laser projection,” J. Disp. Technol. 12(9), 982–985 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (2)

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Opt. Eng. (1)

J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).
[Crossref]

Opt. Express (7)

Proc. Phys. Soc. B (1)

H. H. Hopkins, “The numerical evaluation of the frequency response of optical systems,” Proc. Phys. Soc. B 70(10), 1002–1005 (1957).
[Crossref]

Proc. SPIE (1)

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Sci. Rep. (1)

Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[Crossref] [PubMed]

Other (26)

Wikipedia, “Augmented reality,” https://en.wikipedia.org/wiki/augmented_reality .

W. Barfield, Fundamentals of Wearable Computers and Augmented Reality 2nd Edition (Chemical Rubber Company, 2015).

M. Sugawara, M. Suzuki, and N. Miyauchi, “Retinal imaging laser eyewear with focus-free and augmented reality,” in SID Display Week (2016), pp. 164–167.

Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium (2004), pp. 310–313.
[Crossref]

C. P. Chen, Z. Zhang, and X. Yang, “A head-mounted smart display device for augmented reality,” CN Patent 201610075988.7 (2016).

L. Zhou, C. P. Chen, Y. Wu, K. Wang, and Z. Zhang, “See-through near-eye displays for visual impairment,” in The 23rd International Display Workshops in conjunction with Asia Display (2016), pp. 1114–1115.

C. P. Chen, Y. Wu, and L. Zhou, “An optical display device for augmented reality,” CN Patent, 201610112824.7 (2016).

Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Near-eye display for vision correction with large FOV,” in SID Display Week (2017), pp. 767–770.

Wikipedia, “Human eye,” https://en.wikipedia.org/wiki/human_eye .

Wikipedia, “Cornea,” https://en.wikipedia.org/wiki/cornea .

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics 3rd Edition (Addison-Wesley, 2006).

University of Notre Dame, “Physics of the eye,” https://www3.nd.edu/~nsl/Lectures/mphysics .

Wikipedia, “Photoreceptor cell,” https://en.wikipedia.org/wiki/Photoreceptor_cell .

Wikipedia, “Macula of retina,” https://en.wikipedia.org/wiki/Macula_of_retina .

Wikipedia, “Visual acuity,” https://en.wikipedia.org/wiki/Visual_acuity .

I. P. Howard, Perceiving in Depth, Volume 1: Basic Mechanisms (Oxford University, 2012).

Wikipedia, “Surface tension,” https://en.wikipedia.org/wiki/Surface_tension .

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Wikipedia, “Spatial frequency,” https://en.wikipedia.org/wiki/Spatial_frequency .

M. Bass, ‎C. DeCusatis,‎ J. Enoch,‎ V. Lakshminarayanan,‎ G. Li,‎ C. MacDonald, V. Mahajan,‎ and E. V. Stryland, Handbook of Optics 3rd Edition Volume III: Vision and Vision Optics (McGraw-Hill Education, 2009).

Wikipedia, “Sunglasses,” https://en.wikipedia.org/wiki/Sunglasses .

C. P. Chen, Y. Wu, L. Zhou, J. Ge, J. Liu, and J. Xu, “A near-eye display integrated with vision correction,” CN Patent, 201710065160.8 (2017).

C. P. Chen, Y. Wu, J. Zhao, Y. Li, and B. Yu, “A retinal-projection-based near-eye display,” CN Patent, 201710751238.1 (2017).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays 2nd Edition (Wiley, 2009).

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design 2nd Edition (McGraw-Hill Education, 2008).

Wikipedia, “Nyquist–Shannon sampling theorem,” https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic drawing of the proposed NED, which involves four major components, i.e. an OLED panel, a TN-LC panel, a contact lens combo―including a contact lens, a patterned analyzer, and a microlens―and an eye. L is the diagonal dimension of active area of OLED panel. D is the distance between the OLED panel and eye. Ri is the radius of inner part of patterned analyzer.
Fig. 2
Fig. 2 Simplified eye structure, which is composed of the cornea (anterior and posterior), chambers (anterior and posterior) filled with aqueous humor, pupil, lens (anterior and posterior), vitreous chamber filled with vitreous humor, and retina.
Fig. 3
Fig. 3 Calculated object distance s as a function of the diopter of eye. If the target value of object distance s is set as 3 m, Pe shall be 41.92 m−1. If the target value of object distance s is set as 1.5 cm, Pe shall be 91.50 m−1, which is obviously impractical as Pe usually maximizes at 53 m−1.
Fig. 4
Fig. 4 Optical path diagram for imaging the real image, for which both OLED and TN-LC are turned off.
Fig. 5
Fig. 5 Optical path diagram for imaging the virtual image, for which both OLED and TN-LC are turned on.
Fig. 6
Fig. 6 FOV of virtual image, which is defined as the angular size of OLED. It is apparent that FOVv hinges on the size of OLED and enlarges as the eye gets closer to OLED.
Fig. 7
Fig. 7 Polarization switching of TN-LC panel. In the (a) off-state―null voltage is applied―LC directors at the entrance and exit are perpendicular to one another. Under such configuration, the polarization of emerging light will be rotated by 90° via the optical activity. In the (b) on-state―a voltage is applied―the twist of LC directors is unwound, thereby lifting the optical activity. As a result, the polarization of emerging light will remain intact.
Fig. 8
Fig. 8 Numbering of surfaces. The real and virtual objects are situated at 3 m and 15 mm away from the eye, respectively. Surfaces 1 to 2 (S1 to S2) make up the microlens. Surfaces 2 to 3 (S2 to S3) make up the contact lens. Surfaces 3 to 8 (S3 to S8) make up the eye, of which, S3 is anterior cornea, S4 posterior cornea, S5 pupil, S6 anterior lens, S7 posterior lens, and S8 retina. In calculating the real image, real object and surfaces from S2 to S8 are active. In calculating the virtual image, virtual object and surfaces from S1 to S8 are active.
Fig. 9
Fig. 9 Calculated MTFs of (a) real and (b) virtual images. For the real image, MTFs within the macula are above 0.4 at 6 cycles/mm. For the virtual image, MTFs within the macula are above 0.4 at 20 cycles/mm.
Fig. 10
Fig. 10 Calculated distortions of real and virtual images. For real and virtual images, the distortions are less than 29% and 45%, respectively.
Fig. 11
Fig. 11 (a) Original (photographer: C. P. Chen, location: Flaming Mountains, Turpan, China), (b) real, and (c) virtual images. By comparing the original and simulated images, it can be seen that the real image is inherently distorted at large field angles, while the virtual image turns out to be more blurred and more pronounced in the chromatic aberration.

Tables (5)

Tables Icon

Table 1 Parameters for the contact lens combo

Tables Icon

Table 2 Parameters for OLED panel

Tables Icon

Table 3 Parameters used for the simulation

Tables Icon

Table 4 Parameters for aspherical surfaces

Tables Icon

Table 5 Parameters for calculating FOVs

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

1 s + n 1 s 1 = n 1 1 R 1
n 1 s 1 + n 2 s 2 = n 2 n 1 R 2
n 2 s 2 + n 3 s 3 = n 3 n 2 R 3
n 3 s 3 + n 4 s' = n 4 n 3 R 4
1 s + n 4 s' = n 1 1 R 1 + n 2 n 1 R 2 + n 3 n 2 R 3 + n 4 n 3 R 4 =P
P e = P n 4
s= s' ( P e s ' 1 ) n 4
θ=2 sin 1 ( L m n avg L m 2 +4 L e 2 )=17.9°
P c =( n c 1 )[ 1 R cf 1 R cb ]
s= s' ( P e n 4 + P c ) s ' n 4
P m =( n m 1 )[ 1 R mf 1 R mb ]
s= s' ( P e n 4 + P c + P m ) s ' n 4
FO V r =2 tan 1 tan 2 ( FO V h /2 )+ tan 2 ( FO V v /2 )
FO V v =2 tan 1 ( W 2 + H 2 2D )
d lc = 3 λ 2Δn
A R r = 1 visual acuity
A R v = 60FO V v N = 60FO V v N h 2 + N v 2
CR= 1+MMTF 1MMTF
M= C R o 1 C R o +1

Metrics