Abstract

Prototyping of fiber-coupled integrated photonic devices requires robust and reliable way of docking optical fibers to other structures, often with sub-micron accuracy. We have developed an optical fiber micro-connector 3D-printed with Direct Laser Writing on a planar substrate. The connector provides fiber core precision positioning better than 120 nm and sustains cryogenic cycling without any signs of degradation. It can be fabricated and used on glass and non-transparent substrates, including photonic integrated circuits, semiconductor samples, and microfluidic systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization

Thomas Woggon, Thomas Kleiner, Martin Punke, and Uli Lemmer
Opt. Express 17(4) 2500-2507 (2009)

Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8

Henry E. Williams, Daniel J. Freppon, Stephen M. Kuebler, Raymond C. Rumpf, and Marco A. Melino
Opt. Express 19(23) 22910-22922 (2011)

Direct laser writing for active and passive high-Q polymer microdisks on silicon

Tobias Grossmann, Simone Schleede, Mario Hauser, Torsten Beck, Michael Thiel, Georg von Freymann, Timo Mappes, and Heinz Kalt
Opt. Express 19(12) 11451-11456 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Sasaki, T. Baba, and K. Iga, “Put-in microconnectors for alignment-free coupling of optical fiber arrays,” IEEE Photon. Technol. Lett. 4, 908–911 (1992).
    [Crossref]
  2. H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
    [Crossref]
  3. Y. Aoki, T. Kato, R. J. Mizuno, and K. Iga, “Micro-optical bench for alignment-free optical coupling,” Appl. Opt. 38, 963–965 (1999).
    [Crossref]
  4. R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
    [Crossref]
  5. J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
    [Crossref]
  6. Z. Ling, C. Liu, and K. Lian, “Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips,” Microsyst. Technol. 15, 429–435 (2009).
    [Crossref]
  7. J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
    [Crossref]
  8. TETRA, “Nano 3D printer by TETRA Gesellschaft für Sensorik, Robotik und Automation mbH,” http://www.nano-3d-drucker.de/nano-3d-printer/ (2015).
  9. B. Espinoza, T. Dallakyan, and P. Dinh, “Laser Microfabrication Techniques Move Rapid Prototyping to the Mainstream,” Industrial Photonics 4, 14–17 (2017).
  10. LightFab GmbH, “3D Printer - LightFab,” https://www.lightfab.de/index.php/id-3d_printer_standard.html (2017).
  11. Nanoscribe GmbH, “3D Printing on the Micrometer Scale,” https://www.nanoscribe.de/en/media-press/press-releases/3d-printing-micrometer-scale/ (2013).
  12. M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
    [Crossref] [PubMed]
  13. K. Kurselis, R. Kiyan, V. N. Bagratashvili, V. K. Popov, and B. N. Chichkov, “3D fabrication of all-polymer conductive microstructures by two photon polymerization,” Opt. Express 21, 31029–31035 (2013).
    [Crossref]
  14. T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
    [Crossref]
  15. R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
    [Crossref]
  16. I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
    [Crossref]
  17. H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
    [Crossref]
  18. K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
    [Crossref]
  19. J. S. Oakdale, J. Ye, W. L. Smith, and J. Biener, “Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography,” Opt. Express 24, 27077–27086 (2016).
    [Crossref] [PubMed]
  20. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
    [Crossref]
  21. I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
    [Crossref] [PubMed]
  22. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272, 85–87 (1996).
    [Crossref]
  23. C.-N. Hu, H.-T. Hsieh, and G.-D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polydimethyl-siloxane molds,” J. Micromechanics Microengineering 21, 065013 (2011).
    [Crossref]
  24. X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
    [Crossref]
  25. N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
    [Crossref]
  26. D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
    [Crossref]
  27. H. Tsuchiya, H. Nakagome, N. Shimizu, and S. Ohara, “Double eccentric connectors for optical fibers,” Appl. Opt. 16, 1323–1331 (1977).
    [Crossref] [PubMed]
  28. Y. Ando, “Statistical Analysis of Insertion-Loss Improvement for Optical Connectors Using the Orientation Method for Fiber-Core Offset,” IEEE Photon. Technol. Lett. 3, 939–941 (1991).
    [Crossref]
  29. S. Werzinger and C.-A. Bunge, “Statistical analysis of intrinsic and extrinsic coupling losses for step-index polymer optical fibers,” Opt. Express 23, 22318 (2015).
    [Crossref] [PubMed]
  30. S. Nemoto and T. Makimoto, “Analysis of Splice Loss in Single-Mode Fibers Using a Gaussian Field Approximation,” Opt. Quant. Electron. 11, 447–457 (1979).
    [Crossref]
  31. K. L. Mittal, “Factors Affecting Adhesion of Lithographic Materials,” in “Durability of Macromolecular Materials,”, vol. 95 R. K. Eby, ed. (American Chemical Society, Washington, D.C., 1979), pp. 371–391.
  32. H. Nagata and A. Kawai, “Characteristics of Adhesion between Photoresist and Inorganic Substrate,” Jpn. J. Appl. Phys. 28, 2137 (1989).
    [Crossref]
  33. L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
    [Crossref] [PubMed]
  34. M.-j. Yin, B. Huang, S. Gao, A. P. Zhang, and X. Ye, “Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection,” Biomed. Opt. Express 7, 2067–2077 (2016).
    [Crossref] [PubMed]
  35. M. B. M. Meddens, S. Liu, P. S. Finnegan, T. L. Edwards, C. D. James, and K. A. Lidke, “Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution,” Biomed. Opt. Express 7, 2219–2236 (2016).
    [Crossref] [PubMed]
  36. C. Chakraborty, K. M. Goodfellow, and A. N. Vamivakas, “Localized emission from defects in MoSe2 layers,” Opt. Mater. Express 6, 2081–2087 (2016).
    [Crossref]
  37. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [Crossref] [PubMed]
  38. M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nature Photon. 3, 450 (2009).
    [Crossref]
  39. S. C. Kuhn, A. Knorr, S. Reitzenstein, and M. Richter, “Cavity assisted emission of single, paired and heralded photons from a single quantum dot device,” Opt. Express 24, 25446–25461 (2016).
    [Crossref] [PubMed]

2017 (3)

J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]

B. Espinoza, T. Dallakyan, and P. Dinh, “Laser Microfabrication Techniques Move Rapid Prototyping to the Mainstream,” Industrial Photonics 4, 14–17 (2017).

N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]

2016 (7)

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref] [PubMed]

M.-j. Yin, B. Huang, S. Gao, A. P. Zhang, and X. Ye, “Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection,” Biomed. Opt. Express 7, 2067–2077 (2016).
[Crossref] [PubMed]

M. B. M. Meddens, S. Liu, P. S. Finnegan, T. L. Edwards, C. D. James, and K. A. Lidke, “Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution,” Biomed. Opt. Express 7, 2219–2236 (2016).
[Crossref] [PubMed]

C. Chakraborty, K. M. Goodfellow, and A. N. Vamivakas, “Localized emission from defects in MoSe2 layers,” Opt. Mater. Express 6, 2081–2087 (2016).
[Crossref]

S. C. Kuhn, A. Knorr, S. Reitzenstein, and M. Richter, “Cavity assisted emission of single, paired and heralded photons from a single quantum dot device,” Opt. Express 24, 25446–25461 (2016).
[Crossref] [PubMed]

J. S. Oakdale, J. Ye, W. L. Smith, and J. Biener, “Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography,” Opt. Express 24, 27077–27086 (2016).
[Crossref] [PubMed]

I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref] [PubMed]

2015 (2)

2013 (2)

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref] [PubMed]

K. Kurselis, R. Kiyan, V. N. Bagratashvili, V. K. Popov, and B. N. Chichkov, “3D fabrication of all-polymer conductive microstructures by two photon polymerization,” Opt. Express 21, 31029–31035 (2013).
[Crossref]

2012 (1)

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]

2011 (1)

C.-N. Hu, H.-T. Hsieh, and G.-D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polydimethyl-siloxane molds,” J. Micromechanics Microengineering 21, 065013 (2011).
[Crossref]

2010 (1)

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

2009 (2)

Z. Ling, C. Liu, and K. Lian, “Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips,” Microsyst. Technol. 15, 429–435 (2009).
[Crossref]

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nature Photon. 3, 450 (2009).
[Crossref]

2008 (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

2007 (1)

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]

2006 (2)

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

2004 (1)

J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]

2001 (2)

R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]

1999 (1)

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272, 85–87 (1996).
[Crossref]

1992 (2)

A. Sasaki, T. Baba, and K. Iga, “Put-in microconnectors for alignment-free coupling of optical fiber arrays,” IEEE Photon. Technol. Lett. 4, 908–911 (1992).
[Crossref]

H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]

1991 (1)

Y. Ando, “Statistical Analysis of Insertion-Loss Improvement for Optical Connectors Using the Orientation Method for Fiber-Core Offset,” IEEE Photon. Technol. Lett. 3, 939–941 (1991).
[Crossref]

1989 (1)

H. Nagata and A. Kawai, “Characteristics of Adhesion between Photoresist and Inorganic Substrate,” Jpn. J. Appl. Phys. 28, 2137 (1989).
[Crossref]

1979 (1)

S. Nemoto and T. Makimoto, “Analysis of Splice Loss in Single-Mode Fibers Using a Gaussian Field Approximation,” Opt. Quant. Electron. 11, 447–457 (1979).
[Crossref]

1977 (2)

Altana, M.

N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]

Ando, Y.

Y. Ando, “Statistical Analysis of Insertion-Loss Improvement for Optical Connectors Using the Orientation Method for Fiber-Core Offset,” IEEE Photon. Technol. Lett. 3, 939–941 (1991).
[Crossref]

Aoki, Y.

Arndt, F.

R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]

Baba, T.

A. Sasaki, T. Baba, and K. Iga, “Put-in microconnectors for alignment-free coupling of optical fiber arrays,” IEEE Photon. Technol. Lett. 4, 908–911 (1992).
[Crossref]

Bagratashvili, V. N.

Beccai, L.

I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref] [PubMed]

Bernardeschi, I.

I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref] [PubMed]

Biener, J.

Bunge, C.-A.

Cai, B.

J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]

Chakraborty, C.

Chen, D.

J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]

Chen, J.

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Chichkov, B. N.

K. Kurselis, R. Kiyan, V. N. Bagratashvili, V. K. Popov, and B. N. Chichkov, “3D fabrication of all-polymer conductive microstructures by two photon polymerization,” Opt. Express 21, 31029–31035 (2013).
[Crossref]

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nature Photon. 3, 450 (2009).
[Crossref]

Chidambaram, N.

N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272, 85–87 (1996).
[Crossref]

Cicha, K.

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]

Crameri, N.

J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]

Dallakyan, T.

B. Espinoza, T. Dallakyan, and P. Dinh, “Laser Microfabrication Techniques Move Rapid Prototyping to the Mainstream,” Industrial Photonics 4, 14–17 (2017).

Ding, G.

J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]

Dinh, P.

B. Espinoza, T. Dallakyan, and P. Dinh, “Laser Microfabrication Techniques Move Rapid Prototyping to the Mainstream,” Industrial Photonics 4, 14–17 (2017).

Edwards, C. A.

H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]

Edwards, T. L.

Ergeneman, O.

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref] [PubMed]

Espinoza, B.

B. Espinoza, T. Dallakyan, and P. Dinh, “Laser Microfabrication Techniques Move Rapid Prototyping to the Mainstream,” Industrial Photonics 4, 14–17 (2017).

Fallica, R.

N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]

Farsari, M.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nature Photon. 3, 450 (2009).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Filippeschi, C.

I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref] [PubMed]

Finnegan, P. S.

Fotakis, C.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Gaidukeviciute, A.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

Gao, S.

Giakoumaki, A.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Goodfellow, K. M.

Gray, D.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Haase, A.

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]

Hauffe, R.

R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]

Heller, C.

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]

Hierold, C.

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref] [PubMed]

Hou, Y.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]

Hsieh, H.-T.

C.-N. Hu, H.-T. Hsieh, and G.-D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polydimethyl-siloxane molds,” J. Micromechanics Microengineering 21, 065013 (2011).
[Crossref]

Hu, C.-N.

C.-N. Hu, H.-T. Hsieh, and G.-D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polydimethyl-siloxane molds,” J. Micromechanics Microengineering 21, 065013 (2011).
[Crossref]

Huang, B.

Iga, K.

Y. Aoki, T. Kato, R. J. Mizuno, and K. Iga, “Micro-optical bench for alignment-free optical coupling,” Appl. Opt. 38, 963–965 (1999).
[Crossref]

A. Sasaki, T. Baba, and K. Iga, “Put-in microconnectors for alignment-free coupling of optical fiber arrays,” IEEE Photon. Technol. Lett. 4, 908–911 (1992).
[Crossref]

Infuehr, R.

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]

Ishikawa, A.

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[Crossref]

James, C. D.

Kato, T.

Kawai, A.

H. Nagata and A. Kawai, “Characteristics of Adhesion between Photoresist and Inorganic Substrate,” Jpn. J. Appl. Phys. 28, 2137 (1989).
[Crossref]

Kawata, S.

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[Crossref]

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]

Kirchner, R.

N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]

Kiyan, R.

Knorr, A.

Koch, T.

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272, 85–87 (1996).
[Crossref]

Kremmel, J.

J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]

Kropp, J. R.

R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]

Kuhn, S. C.

Kuna, L.

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]

Kurselis, K.

Lamprecht, T.

J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]

Li, D.

Li, X.

Li, Y.

J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]

Li, Z.

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref] [PubMed]

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]

Lian, K.

Z. Ling, C. Liu, and K. Lian, “Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips,” Microsyst. Technol. 15, 429–435 (2009).
[Crossref]

Lichtenegger, H.

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]

Lidke, K. A.

Lin, J.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]

Ling, Z.

Z. Ling, C. Liu, and K. Lian, “Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips,” Microsyst. Technol. 15, 429–435 (2009).
[Crossref]

Liska, R.

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]

Liu, C.

Z. Ling, C. Liu, and K. Lian, “Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips,” Microsyst. Technol. 15, 429–435 (2009).
[Crossref]

Liu, J.

J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]

Liu, S.

Lu, L.

Luehmann, T.

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref] [PubMed]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Makimoto, T.

S. Nemoto and T. Makimoto, “Analysis of Splice Loss in Single-Mode Fibers Using a Gaussian Field Approximation,” Opt. Quant. Electron. 11, 447–457 (1979).
[Crossref]

Marcuse, D.

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[Crossref]

Mattoli, V.

I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref] [PubMed]

Mazzolai, B.

I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref] [PubMed]

Meddens, M. B. M.

Michler, M.

J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]

Mittal, K. L.

K. L. Mittal, “Factors Affecting Adhesion of Lithographic Materials,” in “Durability of Macromolecular Materials,”, vol. 95 R. K. Eby, ed. (American Chemical Society, Washington, D.C., 1979), pp. 371–391.

Mizuno, R. J.

Moosburger, R.

R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]

Nagata, H.

H. Nagata and A. Kawai, “Characteristics of Adhesion between Photoresist and Inorganic Substrate,” Jpn. J. Appl. Phys. 28, 2137 (1989).
[Crossref]

Nakagome, H.

Nelson, B. J.

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref] [PubMed]

Nemoto, S.

S. Nemoto and T. Makimoto, “Analysis of Splice Loss in Single-Mode Fibers Using a Gaussian Field Approximation,” Opt. Quant. Electron. 11, 447–457 (1979).
[Crossref]

Oakdale, J. S.

Ohara, S.

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Ovsianikov, A.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Petermann, K.

R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]

Peters, C.

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref] [PubMed]

Peyer, K. E.

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref] [PubMed]

Popov, V. K.

Presby, H. M.

H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Pucher, N.

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Reinhardt, C.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

Reitzenstein, S.

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272, 85–87 (1996).
[Crossref]

Richter, M.

Sakellari, I.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Sasaki, A.

A. Sasaki, T. Baba, and K. Iga, “Put-in microconnectors for alignment-free coupling of optical fiber arrays,” IEEE Photon. Technol. Lett. 4, 908–911 (1992).
[Crossref]

Schift, H.

N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]

Schmidt, V.

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]

Shimizu, N.

Siebel, U.

R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]

Siringil, E. C.

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref] [PubMed]

Smith, W. L.

Stampfl, J.

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]

Su, G.-D. J.

C.-N. Hu, H.-T. Hsieh, and G.-D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polydimethyl-siloxane molds,” J. Micromechanics Microengineering 21, 065013 (2011).
[Crossref]

Sun, H.-B.

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]

Suter, M.

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref] [PubMed]

Takada, K.

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]

Tanaka, T.

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[Crossref]

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]

Torgersen, J.

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]

Tricinci, O.

I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref] [PubMed]

Tsuchiya, H.

Vamivakas, A. N.

Vamvakaki, M.

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Wang, M.

Werzinger, S.

Willner, A. E.

H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]

Yang, S.

H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]

Ye, J.

Ye, X.

Yin, M.-j.

Yu, L.

N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]

Zhang, A. P.

Zhang, J.

J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]

Zhang, L.

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref] [PubMed]

Zhao, S.

Zhao, X.

J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]

Zhou, L.

Zhou, X.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]

Zhu, J.

J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]

ACS Appl. Mater. Interfaces (1)

I. Bernardeschi, O. Tricinci, V. Mattoli, C. Filippeschi, B. Mazzolai, and L. Beccai, “Three-Dimensional Soft Material Micropatterning via Direct Laser Lithography of Flexible Molds,” ACS Appl. Mater. Interfaces 8, 25019–25023 (2016).
[Crossref] [PubMed]

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Adv. Mater. Technol. (1)

N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, and H. Schift, “Selective Surface Smoothening of Polymer Microlenses by Depth Confined Softening,” Adv. Mater. Technol. 2, 1700018 (2017).
[Crossref]

AIP Adv. (1)

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A (1)

I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,” Appl. Phys. A 100, 359–364 (2010).
[Crossref]

Appl. Phys. Lett. (2)

H.-B. Sun, T. Tanaka, K. Takada, and S. Kawata, “Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes,” Appl. Phys. Lett. 79, 1411–1413 (2001).
[Crossref]

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006).
[Crossref]

Appl. Surf. Sci. (1)

R. Infuehr, N. Pucher, C. Heller, H. Lichtenegger, R. Liska, V. Schmidt, L. Kuna, A. Haase, and J. Stampfl, “Functional polymers by two-photon 3D lithography,” Appl. Surf. Sci. 254, 836–840 (2007).
[Crossref]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
[Crossref]

Biomed. Microdevices (1)

M. Suter, L. Zhang, E. C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, K. E. Peyer, B. J. Nelson, and C. Hierold, “Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility,” Biomed. Microdevices 15, 997–1003 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

IEEE Photon. Technol. Lett. (2)

Y. Ando, “Statistical Analysis of Insertion-Loss Improvement for Optical Connectors Using the Orientation Method for Fiber-Core Offset,” IEEE Photon. Technol. Lett. 3, 939–941 (1991).
[Crossref]

A. Sasaki, T. Baba, and K. Iga, “Put-in microconnectors for alignment-free coupling of optical fiber arrays,” IEEE Photon. Technol. Lett. 4, 908–911 (1992).
[Crossref]

IEEE Trans. Adv. Packag. (1)

R. Hauffe, U. Siebel, K. Petermann, R. Moosburger, J. R. Kropp, and F. Arndt, “Methods for passive fiber chip coupling of integrated optical devices,” IEEE Trans. Adv. Packag. 24, 450–455 (2001).
[Crossref]

Industrial Photonics (1)

B. Espinoza, T. Dallakyan, and P. Dinh, “Laser Microfabrication Techniques Move Rapid Prototyping to the Mainstream,” Industrial Photonics 4, 14–17 (2017).

J. Appl. Phys. (1)

K. Cicha, T. Koch, J. Torgersen, Z. Li, R. Liska, and J. Stampfl, “Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment,” J. Appl. Phys. 112, 094906 (2012).
[Crossref]

J. Micromechanics Microengineering (1)

C.-N. Hu, H.-T. Hsieh, and G.-D. J. Su, “Fabrication of microlens arrays by a rolling process with soft polydimethyl-siloxane molds,” J. Micromechanics Microengineering 21, 065013 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Nagata and A. Kawai, “Characteristics of Adhesion between Photoresist and Inorganic Substrate,” Jpn. J. Appl. Phys. 28, 2137 (1989).
[Crossref]

Microsyst. Technol. (2)

J. Liu, B. Cai, J. Zhu, D. Chen, Y. Li, J. Zhang, G. Ding, X. Zhao, and C. Yang, “A novel device of passive and fixed alignment of optical fiber,” Microsyst. Technol. 10, 269–271 (2004).
[Crossref]

Z. Ling, C. Liu, and K. Lian, “Design and fabrication of SU-8 micro optic fiber holder with cantilever-type elastic microclips,” Microsyst. Technol. 15, 429–435 (2009).
[Crossref]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Nature Photon. (1)

M. Farsari and B. N. Chichkov, “Two-photon fabrication,” Nature Photon. 3, 450 (2009).
[Crossref]

Opt. Eng. (2)

J. Kremmel, T. Lamprecht, N. Crameri, and M. Michler, “Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides,” Opt. Eng. 56, 026115 (2017).
[Crossref]

H. M. Presby, S. Yang, A. E. Willner, and C. A. Edwards, “Connectorized integrated star couplers on silicon,” Opt. Eng. 31, 1323–1328 (1992).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (1)

Opt. Quant. Electron. (1)

S. Nemoto and T. Makimoto, “Analysis of Splice Loss in Single-Mode Fibers Using a Gaussian Field Approximation,” Opt. Quant. Electron. 11, 447–457 (1979).
[Crossref]

Science (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272, 85–87 (1996).
[Crossref]

Other (4)

K. L. Mittal, “Factors Affecting Adhesion of Lithographic Materials,” in “Durability of Macromolecular Materials,”, vol. 95 R. K. Eby, ed. (American Chemical Society, Washington, D.C., 1979), pp. 371–391.

LightFab GmbH, “3D Printer - LightFab,” https://www.lightfab.de/index.php/id-3d_printer_standard.html (2017).

Nanoscribe GmbH, “3D Printing on the Micrometer Scale,” https://www.nanoscribe.de/en/media-press/press-releases/3d-printing-micrometer-scale/ (2013).

TETRA, “Nano 3D printer by TETRA Gesellschaft für Sensorik, Robotik und Automation mbH,” http://www.nano-3d-drucker.de/nano-3d-printer/ (2015).

Supplementary Material (1)

NameDescription
» Visualization 1       This visualization is a stop motion animation composed of still SEM images. The micro-connector and optical fiber were coated before the docking with ~50 nm layer of gold to minimize accumulation of electric charge. However, some rapid changes of ima

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) SEM image of the DLW 3D-printed optical fiber micro-connector consisting of three flexible pylons, connected to a circular pedestal, standing on a planar substrate surface. (b) Single-mode optical fiber inserted into the connector (for the fiber insertion movie see Visualization 1). The fiber cladding has a diameter of 125 μm. (c) An isometric scheme of the fiber micro-connector. (d) Cross-sectional view of the micro-connector pylon. The docking drogue cone directs the fiber towards the target position. The alignment collar fixes the fiber at the correct position. The thickness of the waist determines the stiffness and thus accuracy of the connector [6,18]. (e) Transmission optical microscope bottom view of the connector with the fiber surface resting on pylons’ base. Light emerging from the core is visible as a spot with a nearly-Gaussian distribution inside the cross-haired circle. Red light is coupled into the fiber cladding to enhance visibility.
Fig. 2
Fig. 2 (a) Relative displacements between the fiber core and the cross-hair mark for 46 measurements (fiber insert-remove cycles). (b, c) Histograms of relative positions for X and Y axis. The data were fitted with Gaussian distribution (black solid line). Full widths at half maximum (FWHM) are equal to (77 ± 14) nm and (114 ± 16) nm for the X and Y axis respectively and are represented by the gray area in the background.
Fig. 3
Fig. 3 Cryogenic cycling of a quantum well sample with an optical fiber attached to the surface after being plugged into the fiber connector. (a) Series of 5 photoluminescence spectra acquired at 4.2 K during repetitive cycling the sample between room temperature and liquid helium. (b) Integrated, normalized photoluminescence intensities of the spectra from (a) having a standard deviation of 1.9 %. (c) Photograph of the sample with an optical fiber glued to the surface (black pyramid). Copper protective housing is attached to a 1.5 m-long metal tube (“cane”), used to immerse the sample in a liquid helium dewar.

Metrics