Abstract

A fiber in-line Mach-Zehnder interferometer based on a pair of femtosecond laser inscribed short sections of waveguide is presented. One short waveguide directs part of the propagating light from the fiber core to the cladding-air interface, and experiences multiple total internal reflections before taking back to the fiber core by the other short waveguide. The device is robust in structure, can be fabricated in a fast way and with a flexible manner, and has the capability of ambient refractive index sensing, which makes it highly desirable for many “lab-in-fiber” applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity

Ying Wang, Minwei Yang, D. N. Wang, Shujing Liu, and Peixiang Lu
J. Opt. Soc. Am. B 27(3) 370-374 (2010)

Fiber inline Mach–Zehnder interferometer based on femtosecond laser inscribed waveguides

W. W. Li, W. P. Chen, D. N. Wang, Z. K. Wang, and Ben Xu
Opt. Lett. 42(21) 4438-4441 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  2. A. Szameit, J. Burghoff, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica,” Opt. Express 14(13), 6055–6062 (2006).
    [Crossref] [PubMed]
  3. M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17(5), 3555–3563 (2009).
    [Crossref] [PubMed]
  4. R. Osellame, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Femtosecond Laser Micromachining: An Enabling Tool for Optofluidics,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, OSA Technical Digest (CD) (Optical Society of America, 2009), paper LMTuC3.
  5. J. R. Grenier, L. A. Fernandes, and P. R. Herman, “Femtosecond laser writing of optical edge filters in fused silica optical waveguides,” Opt. Express 21(4), 4493–4502 (2013).
    [Crossref] [PubMed]
  6. N. Riesen, S. Gross, J. D. Love, and M. J. Withford, “Femtosecond direct-written integrated mode couplers,” Opt. Express 22(24), 29855–29861 (2014).
    [Crossref] [PubMed]
  7. K. K. C. Lee, A. Mariampillai, M. Haque, B. A. Standish, V. X. D. Yang, and P. R. Herman, “Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides,” Opt. Express 21(20), 24076–24086 (2013).
    [Crossref] [PubMed]
  8. C. Waltermann, A. Doering, M. Köhring, M. Angelmahr, and W. Schade, “Cladding waveguide gratings in standard single-mode fiber for 3D shape sensing,” Opt. Lett. 40(13), 3109–3112 (2015).
    [Crossref] [PubMed]
  9. J. R. Grenier, L. A. Fernandes, and P. R. Herman, “Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics,” Opt. Express 23(13), 16760–16771 (2015).
    [Crossref] [PubMed]
  10. C. Lin, C. Liao, J. Wang, J. He, Y. Wang, Z. Li, T. Yang, F. Zhu, K. Yang, Z. Zhang, and Y. Wang, “Fiber surface Bragg grating waveguide for refractive index measurements,” Opt. Lett. 42(9), 1684–1687 (2017).
    [Crossref] [PubMed]
  11. W. W. Li, W. P. Chen, D. N. Wang, Z. K. Wang, and B. Xu, “Fiber inline Mach-Zehnder interferometer based on femtosecond laser inscribed waveguides,” Opt. Lett. 42(21), 4438–4441 (2017).
    [Crossref] [PubMed]
  12. P. Chen, X. Shu, and K. Sugden, “Ultra-compact all-in-fiber-core Mach-Zehnder interferometer,” Opt. Lett. 42(20), 4059–4062 (2017).
    [Crossref] [PubMed]
  13. T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, “Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing,” Opt. Lett. 37(24), 5082–5084 (2012).
    [Crossref] [PubMed]
  14. T. Y. Hu and D. N. Wang, “Optical fiber in-line Mach-Zehnder interferometer based on dual internal mirrors formed by a hollow sphere pair,” Opt. Lett. 38(16), 3036–3039 (2013).
    [Crossref] [PubMed]
  15. Z. Kang, X. Wen, C. Li, J. Sun, J. Wang, and S. Jian, “Up-taper-based Mach-Zehnder interferometer for temperature and strain simultaneous measurement,” Appl. Opt. 53(12), 2691–2695 (2014).
    [Crossref] [PubMed]
  16. W. Talataisong, D. N. Wang, R. Chitaree, C. R. Liao, and C. Wang, “Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing,” Opt. Lett. 40(7), 1220–1222 (2015).
    [Crossref] [PubMed]

2017 (3)

2015 (3)

2014 (2)

2013 (3)

2012 (1)

2009 (1)

2006 (1)

1996 (1)

Angelmahr, M.

Bellini, N.

Burghoff, J.

Cerullo, G.

Chen, P.

Chen, W. P.

Chitaree, R.

Davis, K. M.

Doering, A.

Emons, M.

Fernandes, L. A.

Grenier, J. R.

Gross, S.

Haque, M.

He, J.

Herman, P. R.

Hirao, K.

Hu, T. Y.

Jian, S.

Kang, Z.

Köhring, M.

Lederer, F.

Lee, K. K. C.

Li, C.

Li, W. W.

Li, Z.

Liao, C.

Liao, C. R.

Lin, C.

Love, J. D.

Mariampillai, A.

Miura, K.

Morgner, U.

Nolte, S.

Osellame, R.

Palmer, G.

Pertsch, T.

Pospiech, M.

Riesen, N.

Schade, W.

Shu, X.

Standish, B. A.

Steinmann, A.

Sugden, K.

Sugimoto, N.

Sun, J.

Szameit, A.

Talataisong, W.

Tünnermann, A.

Waltermann, C.

Wang, C.

Wang, D. N.

Wang, J.

Wang, Y.

Wang, Z. K.

Wen, X.

Withford, M. J.

Xu, B.

Yang, K.

Yang, T.

Yang, V. X. D.

Zhang, Z.

Zhu, F.

Appl. Opt. (1)

Opt. Express (6)

Opt. Lett. (8)

C. Lin, C. Liao, J. Wang, J. He, Y. Wang, Z. Li, T. Yang, F. Zhu, K. Yang, Z. Zhang, and Y. Wang, “Fiber surface Bragg grating waveguide for refractive index measurements,” Opt. Lett. 42(9), 1684–1687 (2017).
[Crossref] [PubMed]

W. W. Li, W. P. Chen, D. N. Wang, Z. K. Wang, and B. Xu, “Fiber inline Mach-Zehnder interferometer based on femtosecond laser inscribed waveguides,” Opt. Lett. 42(21), 4438–4441 (2017).
[Crossref] [PubMed]

P. Chen, X. Shu, and K. Sugden, “Ultra-compact all-in-fiber-core Mach-Zehnder interferometer,” Opt. Lett. 42(20), 4059–4062 (2017).
[Crossref] [PubMed]

T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, “Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing,” Opt. Lett. 37(24), 5082–5084 (2012).
[Crossref] [PubMed]

T. Y. Hu and D. N. Wang, “Optical fiber in-line Mach-Zehnder interferometer based on dual internal mirrors formed by a hollow sphere pair,” Opt. Lett. 38(16), 3036–3039 (2013).
[Crossref] [PubMed]

C. Waltermann, A. Doering, M. Köhring, M. Angelmahr, and W. Schade, “Cladding waveguide gratings in standard single-mode fiber for 3D shape sensing,” Opt. Lett. 40(13), 3109–3112 (2015).
[Crossref] [PubMed]

W. Talataisong, D. N. Wang, R. Chitaree, C. R. Liao, and C. Wang, “Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing,” Opt. Lett. 40(7), 1220–1222 (2015).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Other (1)

R. Osellame, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Femtosecond Laser Micromachining: An Enabling Tool for Optofluidics,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, OSA Technical Digest (CD) (Optical Society of America, 2009), paper LMTuC3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the fiber MZI proposed.
Fig. 2
Fig. 2 A pair of short section of waveguides written by femtosecond laser in a single-mode fiber, the picture in the bottom right corner shows a microscope image of the fiber cross section at the position close to the cladding end of the first short section of waveguide when the fiber is illuminated by red light.
Fig. 3
Fig. 3 The microscope image of the in-fiber optical waveguide.
Fig. 4
Fig. 4 Transmission spectrum of the MZI device with different separations between the two section of waveguides.
Fig. 5
Fig. 5 Spatial frequency spectra with different separations between two section of waveguides.
Fig. 6
Fig. 6 Response of the MZI device to strain. (a) Transmission spectra at different strains, the distance between the two short waveguides is 7 mm. (b) Dip wavelength shift versus strain.
Fig. 7
Fig. 7 Response of the MZI device to temperature. (a) Transmission spectra at different temperatures, the distance between the two waveguides is 7 mm. (b) Dip wavelength shift versus temperature.
Fig. 8
Fig. 8 Response of the MZI device to RI. (a) Transmission spectra at different RI values, the distance between the two waveguides is 7-mm. (b) Dip wavelength shift versus RI.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I= I co + I cl +2 I co I cl cos( 2πΔ(nL) λ )
λ dip = 2Δ( nL ) 2m+1
FSR= λ 2 Δ( nL )
λ dip = 2Δ( nL ) 2m+1 20 2m+1 ( n cl z n co x )
δ λ dip = 20 2m+1 [ ( n cl +δn )( z+Δz )( n co +δn )( x+Δx ) ] 20 2m+1 ( n cl z n co x ) 20 2m+1 ( n cl Δz+zδn n co Δxxδn )= 20 2m+1 [ n cl Δx( x z n co n cl )+( zx )δn ]
δ λ dip = 20 2m+1 [ n cl Δx( x z n co n cl )+( zx )δ n T ] 20 2m+1 ( zx )δ n T

Metrics