K. Yatabe, K. Ishikawa, and Y. Oikawa, “Simple, flexible, and accurate phase retrieval method for generalized phase-shifting interferometry,” J. Opt. Soc. Am. A 34(1), 87–96 (2017).

[Crossref]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Fast and accurate phase-unwrapping algorithm based on the transport of intensity equation,” Appl. Opt. 56(25), 7079–7088 (2017).

[Crossref]
[PubMed]

T. Chakraborty and J. C. Petruccelli, “Source diversity for transport of intensity phase imaging,” Opt. Express 25(8), 9122–9137 (2017).

[Crossref]
[PubMed]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).

[Crossref]
[PubMed]

M. Basunia, P. P. Banerjee, U. Abeywickrema, T. C. Poon, and H. Zhang, “Recursive method for phase retrieval using transport of intensity and its applications,” Appl. Opt. 55(33), 9546–9554 (2016).

[Crossref]
[PubMed]

N. Pandey, A. Ghosh, and K. Khare, “Two-dimensional phase unwrapping using the transport of intensity equation,” Appl. Opt. 55(9), 2418–2425 (2016).

[Crossref]
[PubMed]

N. Pandey, A. Ghosh, and K. Khare, “Two-dimensional phase unwrapping using the transport of intensity equation,” Appl. Opt. 55(9), 2418–2425 (2016).

[Crossref]
[PubMed]

P. Soltani, A. Darudi, G. Nehmetallah, A. R. Moradi, and J. Amiri, “Accurate testing of aspheric surfaces using the transport of intensity equation by properly selecting the defocusing distance,” Appl. Opt. 55(35), 10067–10072 (2016).

[Crossref]
[PubMed]

L. Huang, C. Zuo, M. Idir, W. Qu, and A. Asundi, “Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms,” Opt. Lett. 40(9), 1976–1979 (2015).

[Crossref]
[PubMed]

C. Zhang, W. He, J. Wu, and X. Peng, “Optical cryptosystem based on phase-truncated Fresnel diffraction and transport of intensity equation,” Opt. Express 23(7), 8845–8854 (2015).

[Crossref]
[PubMed]

T. Nguyen, G. Nehmetallah, D. Tran, A. Darudi, and P. Soltani, “Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations,” Appl. Opt. 54(35), 10443–10453 (2015).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Multi-filter transport of intensity equation solver with equalized noise sensitivity,” Opt. Express 23(18), 23092–23107 (2015).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers,” Opt. Lett. 39(2), 182–185 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

Y. Zhu, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22(22), 26696–26711 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation,” Opt. Express 22(14), 17172–17186 (2014).

[Crossref]
[PubMed]

A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53(34), J1–J6 (2014).

[Crossref]
[PubMed]

J. Martínez-Carranza, K. Falaggis, and T. Kozacki, “Optimum phase retrieval using the transport of intensity equation,” Proc. SPIE 9132, 91320T (2014).

[Crossref]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function,” Opt. Lett. 39(1), 30–33 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22(8), 9220–9244 (2014).

[Crossref]
[PubMed]

R. Yazdani, M. Hajimahmoodzadeh, and H. R. Fallah, “Application of the transport of intensity equation in determination of nonlinear refractive index,” Appl. Opt. 53(35), 8295–8301 (2014).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

R. Amézquita-Orozco and Y. Mejía-Barbosa, “Gerchberg-Saxton algorithm applied to a translational-variant optical setup,” Opt. Express 21(16), 19128–19134 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, T. Kozacki, and M. Kujawinska, “Effect of imposed boundary conditions on the accuracy of transport of intensity equation based solvers,” Proc. SPIE 8789, 87890N (2013).

[Crossref]

M. Krenkel, M. Bartels, and T. Salditt, “Transport of intensity phase reconstruction to solve the twin image problem in holographic x-ray imaging,” Opt. Express 21(2), 2220–2235 (2013).

[Crossref]
[PubMed]

R. Shomali, A. Darudi, and S. Nasiri, “Application of irradiance transport equation in aspheric surface testing,” Optik (Stuttg.) 123(14), 1282–1286 (2012).

[Crossref]

R. Bie, X.-H. Yuan, M. Zhao, and L. Zhang, “Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression,” Opt. Express 20(7), 8186–8191 (2012).

[Crossref]
[PubMed]

B. Xue, S. Zheng, L. Cui, X. Bai, and F. Zhou, “Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes,” Opt. Express 19(21), 20244–20250 (2011).

[Crossref]
[PubMed]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matterwave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33(5), 411–416 (2002).

[Crossref]
[PubMed]

D. Paganin and K. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998).

[Crossref]

K. Creath, “V Phase-Measurement Interferometry Techniques,” Prog. Opt. 26, 349–393 (1988).

[Crossref]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).

[Crossref]
[PubMed]

L. Huang, C. Zuo, M. Idir, W. Qu, and A. Asundi, “Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms,” Opt. Lett. 40(9), 1976–1979 (2015).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22(8), 9220–9244 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation,” Opt. Express 22(14), 17172–17186 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

W. J. Zhou, X. Guan, F. Liu, Y. Yu, H. Zhang, T. C. Poon, and P. P. Banerjee, “Phase retrieval based on transport of intensity and digital holography,” Appl. Opt. 57(1), A229–A234 (2018).

[Crossref]
[PubMed]

M. Basunia, P. P. Banerjee, U. Abeywickrema, T. C. Poon, and H. Zhang, “Recursive method for phase retrieval using transport of intensity and its applications,” Appl. Opt. 55(33), 9546–9554 (2016).

[Crossref]
[PubMed]

Y. Zhu, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22(22), 26696–26711 (2014).

[Crossref]
[PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]
[PubMed]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

E. Bostan, E. Froustey, B. Rappaz, E. Shaffer, D. Sage, and M. Unser, “Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy,” in Proceedings of 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 3939–3943.

[Crossref]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation,” Opt. Express 22(14), 17172–17186 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22(8), 9220–9244 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

K. Creath, “V Phase-Measurement Interferometry Techniques,” Prog. Opt. 26, 349–393 (1988).

[Crossref]

P. Soltani, A. Darudi, G. Nehmetallah, A. R. Moradi, and J. Amiri, “Accurate testing of aspheric surfaces using the transport of intensity equation by properly selecting the defocusing distance,” Appl. Opt. 55(35), 10067–10072 (2016).

[Crossref]
[PubMed]

T. Nguyen, G. Nehmetallah, D. Tran, A. Darudi, and P. Soltani, “Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations,” Appl. Opt. 54(35), 10443–10453 (2015).

[Crossref]
[PubMed]

R. Shomali, A. Darudi, and S. Nasiri, “Application of irradiance transport equation in aspheric surface testing,” Optik (Stuttg.) 123(14), 1282–1286 (2012).

[Crossref]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33(5), 411–416 (2002).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Fast and accurate phase-unwrapping algorithm based on the transport of intensity equation,” Appl. Opt. 56(25), 7079–7088 (2017).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Multi-filter transport of intensity equation solver with equalized noise sensitivity,” Opt. Express 23(18), 23092–23107 (2015).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers,” Opt. Lett. 39(2), 182–185 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function,” Opt. Lett. 39(1), 30–33 (2014).

[Crossref]
[PubMed]

J. Martínez-Carranza, K. Falaggis, and T. Kozacki, “Optimum phase retrieval using the transport of intensity equation,” Proc. SPIE 9132, 91320T (2014).

[Crossref]

J. Martinez-Carranza, K. Falaggis, T. Kozacki, and M. Kujawinska, “Effect of imposed boundary conditions on the accuracy of transport of intensity equation based solvers,” Proc. SPIE 8789, 87890N (2013).

[Crossref]

E. Bostan, E. Froustey, B. Rappaz, E. Shaffer, D. Sage, and M. Unser, “Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy,” in Proceedings of 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 3939–3943.

[Crossref]

N. Pandey, A. Ghosh, and K. Khare, “Two-dimensional phase unwrapping using the transport of intensity equation,” Appl. Opt. 55(9), 2418–2425 (2016).

[Crossref]
[PubMed]

N. Pandey, A. Ghosh, and K. Khare, “Two-dimensional phase unwrapping using the transport of intensity equation,” Appl. Opt. 55(9), 2418–2425 (2016).

[Crossref]
[PubMed]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matterwave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

L. Huang, C. Zuo, M. Idir, W. Qu, and A. Asundi, “Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms,” Opt. Lett. 40(9), 1976–1979 (2015).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation,” Opt. Express 22(14), 17172–17186 (2014).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

N. Pandey, A. Ghosh, and K. Khare, “Two-dimensional phase unwrapping using the transport of intensity equation,” Appl. Opt. 55(9), 2418–2425 (2016).

[Crossref]
[PubMed]

N. Pandey, A. Ghosh, and K. Khare, “Two-dimensional phase unwrapping using the transport of intensity equation,” Appl. Opt. 55(9), 2418–2425 (2016).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Fast and accurate phase-unwrapping algorithm based on the transport of intensity equation,” Appl. Opt. 56(25), 7079–7088 (2017).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Multi-filter transport of intensity equation solver with equalized noise sensitivity,” Opt. Express 23(18), 23092–23107 (2015).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers,” Opt. Lett. 39(2), 182–185 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function,” Opt. Lett. 39(1), 30–33 (2014).

[Crossref]
[PubMed]

J. Martínez-Carranza, K. Falaggis, and T. Kozacki, “Optimum phase retrieval using the transport of intensity equation,” Proc. SPIE 9132, 91320T (2014).

[Crossref]

J. Martinez-Carranza, K. Falaggis, T. Kozacki, and M. Kujawinska, “Effect of imposed boundary conditions on the accuracy of transport of intensity equation based solvers,” Proc. SPIE 8789, 87890N (2013).

[Crossref]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function,” Opt. Lett. 39(1), 30–33 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, T. Kozacki, and M. Kujawinska, “Effect of imposed boundary conditions on the accuracy of transport of intensity equation based solvers,” Proc. SPIE 8789, 87890N (2013).

[Crossref]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Fast and accurate phase-unwrapping algorithm based on the transport of intensity equation,” Appl. Opt. 56(25), 7079–7088 (2017).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Multi-filter transport of intensity equation solver with equalized noise sensitivity,” Opt. Express 23(18), 23092–23107 (2015).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers,” Opt. Lett. 39(2), 182–185 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, T. Kozacki, and M. Kujawinska, “Effect of imposed boundary conditions on the accuracy of transport of intensity equation based solvers,” Proc. SPIE 8789, 87890N (2013).

[Crossref]

J. Martínez-Carranza, K. Falaggis, and T. Kozacki, “Optimum phase retrieval using the transport of intensity equation,” Proc. SPIE 9132, 91320T (2014).

[Crossref]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

R. Shomali, A. Darudi, and S. Nasiri, “Application of irradiance transport equation in aspheric surface testing,” Optik (Stuttg.) 123(14), 1282–1286 (2012).

[Crossref]

P. Soltani, A. Darudi, G. Nehmetallah, A. R. Moradi, and J. Amiri, “Accurate testing of aspheric surfaces using the transport of intensity equation by properly selecting the defocusing distance,” Appl. Opt. 55(35), 10067–10072 (2016).

[Crossref]
[PubMed]

T. Nguyen, G. Nehmetallah, D. Tran, A. Darudi, and P. Soltani, “Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations,” Appl. Opt. 54(35), 10443–10453 (2015).

[Crossref]
[PubMed]

D. Paganin and K. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998).

[Crossref]

K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 59(1), 1–99 (2010).

[Crossref]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

D. Paganin and K. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998).

[Crossref]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matterwave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

N. Pandey, A. Ghosh, and K. Khare, “Two-dimensional phase unwrapping using the transport of intensity equation,” Appl. Opt. 55(9), 2418–2425 (2016).

[Crossref]
[PubMed]

N. Pandey, A. Ghosh, and K. Khare, “Two-dimensional phase unwrapping using the transport of intensity equation,” Appl. Opt. 55(9), 2418–2425 (2016).

[Crossref]
[PubMed]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matterwave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

W. J. Zhou, X. Guan, F. Liu, Y. Yu, H. Zhang, T. C. Poon, and P. P. Banerjee, “Phase retrieval based on transport of intensity and digital holography,” Appl. Opt. 57(1), A229–A234 (2018).

[Crossref]
[PubMed]

M. Basunia, P. P. Banerjee, U. Abeywickrema, T. C. Poon, and H. Zhang, “Recursive method for phase retrieval using transport of intensity and its applications,” Appl. Opt. 55(33), 9546–9554 (2016).

[Crossref]
[PubMed]

L. Huang, C. Zuo, M. Idir, W. Qu, and A. Asundi, “Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms,” Opt. Lett. 40(9), 1976–1979 (2015).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

E. Bostan, E. Froustey, B. Rappaz, E. Shaffer, D. Sage, and M. Unser, “Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy,” in Proceedings of 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 3939–3943.

[Crossref]

E. Bostan, E. Froustey, B. Rappaz, E. Shaffer, D. Sage, and M. Unser, “Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy,” in Proceedings of 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 3939–3943.

[Crossref]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matterwave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

E. Bostan, E. Froustey, B. Rappaz, E. Shaffer, D. Sage, and M. Unser, “Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy,” in Proceedings of 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 3939–3943.

[Crossref]

A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53(34), J1–J6 (2014).

[Crossref]
[PubMed]

Y. Zhu, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22(22), 26696–26711 (2014).

[Crossref]
[PubMed]

R. Shomali, A. Darudi, and S. Nasiri, “Application of irradiance transport equation in aspheric surface testing,” Optik (Stuttg.) 123(14), 1282–1286 (2012).

[Crossref]

P. Soltani, A. Darudi, G. Nehmetallah, A. R. Moradi, and J. Amiri, “Accurate testing of aspheric surfaces using the transport of intensity equation by properly selecting the defocusing distance,” Appl. Opt. 55(35), 10067–10072 (2016).

[Crossref]
[PubMed]

T. Nguyen, G. Nehmetallah, D. Tran, A. Darudi, and P. Soltani, “Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations,” Appl. Opt. 54(35), 10443–10453 (2015).

[Crossref]
[PubMed]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).

[Crossref]
[PubMed]

Y. Zhu, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22(22), 26696–26711 (2014).

[Crossref]
[PubMed]

A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53(34), J1–J6 (2014).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]
[PubMed]

E. Bostan, E. Froustey, B. Rappaz, E. Shaffer, D. Sage, and M. Unser, “Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy,” in Proceedings of 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 3939–3943.

[Crossref]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33(5), 411–416 (2002).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

Y. Zhu, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22(22), 26696–26711 (2014).

[Crossref]
[PubMed]

A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53(34), J1–J6 (2014).

[Crossref]
[PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]
[PubMed]

W. J. Zhou, X. Guan, F. Liu, Y. Yu, H. Zhang, T. C. Poon, and P. P. Banerjee, “Phase retrieval based on transport of intensity and digital holography,” Appl. Opt. 57(1), A229–A234 (2018).

[Crossref]
[PubMed]

M. Basunia, P. P. Banerjee, U. Abeywickrema, T. C. Poon, and H. Zhang, “Recursive method for phase retrieval using transport of intensity and its applications,” Appl. Opt. 55(33), 9546–9554 (2016).

[Crossref]
[PubMed]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).

[Crossref]
[PubMed]

Y. Zhu, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22(22), 26696–26711 (2014).

[Crossref]
[PubMed]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33(5), 411–416 (2002).

[Crossref]
[PubMed]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).

[Crossref]
[PubMed]

L. Huang, C. Zuo, M. Idir, W. Qu, and A. Asundi, “Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms,” Opt. Lett. 40(9), 1976–1979 (2015).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation,” Opt. Express 22(14), 17172–17186 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22(8), 9220–9244 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

K. A. Nugent, “Coherent methods in the X-ray sciences,” Adv. Phys. 59(1), 1–99 (2010).

[Crossref]

R. Yazdani, M. Hajimahmoodzadeh, and H. R. Fallah, “Application of the transport of intensity equation in determination of nonlinear refractive index,” Appl. Opt. 53(35), 8295–8301 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Fast and accurate phase-unwrapping algorithm based on the transport of intensity equation,” Appl. Opt. 56(25), 7079–7088 (2017).

[Crossref]
[PubMed]

W. J. Zhou, X. Guan, F. Liu, Y. Yu, H. Zhang, T. C. Poon, and P. P. Banerjee, “Phase retrieval based on transport of intensity and digital holography,” Appl. Opt. 57(1), A229–A234 (2018).

[Crossref]
[PubMed]

P. Soltani, A. Darudi, G. Nehmetallah, A. R. Moradi, and J. Amiri, “Accurate testing of aspheric surfaces using the transport of intensity equation by properly selecting the defocusing distance,” Appl. Opt. 55(35), 10067–10072 (2016).

[Crossref]
[PubMed]

M. Basunia, P. P. Banerjee, U. Abeywickrema, T. C. Poon, and H. Zhang, “Recursive method for phase retrieval using transport of intensity and its applications,” Appl. Opt. 55(33), 9546–9554 (2016).

[Crossref]
[PubMed]

N. Pandey, A. Ghosh, and K. Khare, “Two-dimensional phase unwrapping using the transport of intensity equation,” Appl. Opt. 55(9), 2418–2425 (2016).

[Crossref]
[PubMed]

N. Pandey, A. Ghosh, and K. Khare, “Two-dimensional phase unwrapping using the transport of intensity equation,” Appl. Opt. 55(9), 2418–2425 (2016).

[Crossref]
[PubMed]

T. Nguyen, G. Nehmetallah, D. Tran, A. Darudi, and P. Soltani, “Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations,” Appl. Opt. 54(35), 10443–10453 (2015).

[Crossref]
[PubMed]

A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53(34), J1–J6 (2014).

[Crossref]
[PubMed]

M. Soto and E. Acosta, “Improved phase imaging from intensity measurements in multiple planes,” Appl. Opt. 46(33), 7978–7981 (2007).

[Crossref]
[PubMed]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

K. Yatabe, K. Ishikawa, and Y. Oikawa, “Simple, flexible, and accurate phase retrieval method for generalized phase-shifting interferometry,” J. Opt. Soc. Am. A 34(1), 87–96 (2017).

[Crossref]

S. C. Woods and A. H. Greenaway, “Wave-front sensing by use of a Green’s function solution to the intensity transport equation,” J. Opt. Soc. Am. A 20(3), 508–512 (2003).

[Crossref]
[PubMed]

C. Roddier and F. Roddier, “Wavefront reconstruction from defocused images and the testing of ground based optical telescopes,” J. Opt. Soc. Am. A 10(11), 2277–2287 (1993).

[Crossref]

V. V. Volkov, Y. Zhu, and M. De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33(5), 411–416 (2002).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, and A. Asundi, “Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform,” Opt. Express 22(8), 9220–9244 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

M. Krenkel, M. Bartels, and T. Salditt, “Transport of intensity phase reconstruction to solve the twin image problem in holographic x-ray imaging,” Opt. Express 21(2), 2220–2235 (2013).

[Crossref]
[PubMed]

C. Zhang, W. He, J. Wu, and X. Peng, “Optical cryptosystem based on phase-truncated Fresnel diffraction and transport of intensity equation,” Opt. Express 23(7), 8845–8854 (2015).

[Crossref]
[PubMed]

T. Chakraborty and J. C. Petruccelli, “Source diversity for transport of intensity phase imaging,” Opt. Express 25(8), 9122–9137 (2017).

[Crossref]
[PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]
[PubMed]

B. Xue, S. Zheng, L. Cui, X. Bai, and F. Zhou, “Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes,” Opt. Express 19(21), 20244–20250 (2011).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

Y. Zhu, A. Shanker, L. Tian, L. Waller, and G. Barbastathis, “Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation,” Opt. Express 22(22), 26696–26711 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation,” Opt. Express 22(14), 17172–17186 (2014).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

C. Dorrer and J. D. Zuegel, “Optical testing using the transport-of-intensity equation,” Opt. Express 15(12), 7165–7175 (2007).

[Crossref]
[PubMed]

R. Amézquita-Orozco and Y. Mejía-Barbosa, “Gerchberg-Saxton algorithm applied to a translational-variant optical setup,” Opt. Express 21(16), 19128–19134 (2013).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Multi-filter transport of intensity equation solver with equalized noise sensitivity,” Opt. Express 23(18), 23092–23107 (2015).

[Crossref]
[PubMed]

R. Bie, X.-H. Yuan, M. Zhao, and L. Zhang, “Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression,” Opt. Express 20(7), 8186–8191 (2012).

[Crossref]
[PubMed]

M. Soto, E. Acosta, and S. Ríos, “Performance analysis of curvature sensors: optimum positioning of the measurement planes,” Opt. Express 11(20), 2577–2588 (2003).

[Crossref]
[PubMed]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function,” Opt. Lett. 39(1), 30–33 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers,” Opt. Lett. 39(2), 182–185 (2014).

[Crossref]
[PubMed]

L. Huang, C. Zuo, M. Idir, W. Qu, and A. Asundi, “Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms,” Opt. Lett. 40(9), 1976–1979 (2015).

[Crossref]
[PubMed]

R. Shomali, A. Darudi, and S. Nasiri, “Application of irradiance transport equation in aspheric surface testing,” Optik (Stuttg.) 123(14), 1282–1286 (2012).

[Crossref]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matterwave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

D. Paganin and K. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998).

[Crossref]

J. Martinez-Carranza, K. Falaggis, T. Kozacki, and M. Kujawinska, “Effect of imposed boundary conditions on the accuracy of transport of intensity equation based solvers,” Proc. SPIE 8789, 87890N (2013).

[Crossref]

J. Martínez-Carranza, K. Falaggis, and T. Kozacki, “Optimum phase retrieval using the transport of intensity equation,” Proc. SPIE 9132, 91320T (2014).

[Crossref]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

K. Creath, “V Phase-Measurement Interferometry Techniques,” Prog. Opt. 26, 349–393 (1988).

[Crossref]

C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7(1), 7654 (2017).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, and A. Asundi, “Phase retrieval and computational imaging with the transport of intensity equation: boundary conditions, fast solution, and discrepancy compensation,” in Classical Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper CTh3C.3.

E. Bostan, E. Froustey, B. Rappaz, E. Shaffer, D. Sage, and M. Unser, “Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy,” in Proceedings of 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 3939–3943.

[Crossref]

T. C. Poon and J. P. Liu, Introduction to modern digital holography with MATLAB (Cambridge University, 2014).

T. M. Apostol, Mathematical Analysis, 2th ed. (Addison-Wesley, 1981).

P. Picart and J. C. Li, Digital Holography (Wiley, 2012).

J. W. Goodman, Introduction to Fourier Optics, 4th ed. (W. H. Freeman, 2017).