Abstract

We present an optofluidic droplet dye laser that is generated by an array of microfluidic nozzles fabricated on a polycarbonate chip. A droplet resonator forms upon pressurizing the nozzle backside microfluidic channel. Multimode low-threshold lasing is observed from individual microdroplets doped with dye. Additionally, droplets can be conveniently released from the nozzle by water rinsing from the top microfluidic channel and subsequently regenerated, and thus achieve optofluidic lasers on-demand. Our work demonstrates a new approach to generating on-chip laser source and laser arrays in a simple, reproducible, reconfigurable, and low-cost fashion.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Versatile optofluidic ring resonator lasers based on microdroplets

Wonsuk Lee, Yunhan Luo, Qiran Zhu, and Xudong Fan
Opt. Express 19(20) 19668-19674 (2011)

Mechanically tunable optofluidic distributed feedback dye laser

Zhenyu Li, Zhaoyu Zhang, Axel Scherer, and Demetri Psaltis
Opt. Express 14(22) 10494-10499 (2006)

Reconfigurable RGB dye lasers based on the laminar flow control in an optofluidic chip

Yue Kong, Hailang Dai, Xie He, Yuanlin Zheng, and Xianfeng Chen
Opt. Lett. 43(18) 4461-4464 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. K. Y. Tang, R. Derda, Q. Quan, M. Lončar, and G. M. Whitesides, “Continuously tunable microdroplet-laser in a microfluidic channel,” Opt. Express 19(3), 2204–2215 (2011).
    [Crossref] [PubMed]
  2. A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
    [Crossref]
  3. M. Aas, A. Jonáš, A. Kiraz, O. Brzobohatý, J. Ježek, Z. Pilát, and P. Zemánek, “Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching,” Opt. Express 21(18), 21380–21394 (2013).
    [Crossref] [PubMed]
  4. A. Bakal, C. Vannahme, A. Kristensen, and U. Levy, “Tunable on chip optofluidic laser,” Appl. Phys. Lett. 107(21), 211105 (2015).
    [Crossref]
  5. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
    [Crossref] [PubMed]
  6. S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
    [Crossref] [PubMed]
  7. G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
    [Crossref]
  8. Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
    [Crossref] [PubMed]
  9. Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
    [Crossref] [PubMed]
  10. Y. Sun and X. Fan, “Distinguishing DNA by Analog-to-Digital-like Conversion by Using Optofluidic Lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
    [Crossref] [PubMed]
  11. M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
    [Crossref]
  12. Y.-C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, and X. Fan, “Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis,” Nat Biomed Eng 1(9), 724–735 (2017).
    [Crossref] [PubMed]
  13. W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
    [Crossref] [PubMed]
  14. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
    [Crossref]
  15. Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
    [Crossref] [PubMed]
  16. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15(23), 15523–15530 (2007).
    [Crossref] [PubMed]
  17. E. Mobini, B. Abaie, M. Peysokhan, and A. Mafi, “Spectral selectivity in optical fiber capillary dye lasers,” Opt. Lett. 42(9), 1784–1787 (2017).
    [Crossref] [PubMed]
  18. S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
    [Crossref] [PubMed]
  19. A. Kiraz, A. Sennaroglu, S. Doğanay, M. Dündar, A. Kurt, H. Kalaycıoğlu, and A. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
    [Crossref]
  20. H. Azzouz, L. Alkhafadiji, S. Balslev, J. Johansson, N. A. Mortensen, S. Nilsson, and A. Kristensen, “Levitated droplet dye laser,” Opt. Express 14(10), 4374–4379 (2006).
    [Crossref] [PubMed]
  21. M. Tanyeri, R. Perron, and I. M. Kennedy, “Lasing droplets in a microfabricated channel,” Opt. Lett. 32(17), 2529–2531 (2007).
    [Crossref] [PubMed]
  22. H. Zhang, A. Balram, D. D. Meng, and Y. Sun, “Optofluidic Lasers with Monolayer Gain at the Liquid–Liquid Interface,” ACS Photonics 4(3), 621–625 (2017).
    [Crossref]
  23. B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
    [Crossref] [PubMed]
  24. M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
    [Crossref]
  25. S.-H. Huang, W.-H. Tan, F.-G. Tseng, and S. Takeuchi, “A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems,” J. Micromech. Microeng. 16(11), 2336–2344 (2006).
    [Crossref]
  26. S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, “Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices,” Langmuir 20(23), 9905–9908 (2004).
    [Crossref] [PubMed]
  27. C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
    [Crossref]
  28. Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, and N. Kroutchinina, “Microfabricated polycarbonate CE devices for DNA analysis,” Anal. Chem. 73(17), 4196–4201 (2001).
    [Crossref] [PubMed]
  29. C.-H. Chan, J.-K. Chen, and F.-C. Chang, “Specific DNA extraction through fluid channels with immobilization of layered double hydroxides on polycarbonate surface,” Sens. Actuator B-Chem. 133(1), 327–332 (2008).
    [Crossref]
  30. D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10(10), 1324–1327 (2010).
    [Crossref] [PubMed]
  31. P. Jankowski, D. Ogończyk, L. Derzsi, W. Lisowski, and P. Garstecki, “Hydrophilic polycarbonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions,” Microfluid. Nanofluidics 14(5), 767–774 (2013).
    [Crossref]

2017 (3)

Y.-C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, and X. Fan, “Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis,” Nat Biomed Eng 1(9), 724–735 (2017).
[Crossref] [PubMed]

E. Mobini, B. Abaie, M. Peysokhan, and A. Mafi, “Spectral selectivity in optical fiber capillary dye lasers,” Opt. Lett. 42(9), 1784–1787 (2017).
[Crossref] [PubMed]

H. Zhang, A. Balram, D. D. Meng, and Y. Sun, “Optofluidic Lasers with Monolayer Gain at the Liquid–Liquid Interface,” ACS Photonics 4(3), 621–625 (2017).
[Crossref]

2015 (2)

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

A. Bakal, C. Vannahme, A. Kristensen, and U. Levy, “Tunable on chip optofluidic laser,” Appl. Phys. Lett. 107(21), 211105 (2015).
[Crossref]

2013 (5)

M. Aas, A. Jonáš, A. Kiraz, O. Brzobohatý, J. Ježek, Z. Pilát, and P. Zemánek, “Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching,” Opt. Express 21(18), 21380–21394 (2013).
[Crossref] [PubMed]

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[Crossref]

P. Jankowski, D. Ogończyk, L. Derzsi, W. Lisowski, and P. Garstecki, “Hydrophilic polycarbonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions,” Microfluid. Nanofluidics 14(5), 767–774 (2013).
[Crossref]

2012 (1)

Y. Sun and X. Fan, “Distinguishing DNA by Analog-to-Digital-like Conversion by Using Optofluidic Lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

2011 (3)

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

S. K. Y. Tang, R. Derda, Q. Quan, M. Lončar, and G. M. Whitesides, “Continuously tunable microdroplet-laser in a microfluidic channel,” Opt. Express 19(3), 2204–2215 (2011).
[Crossref] [PubMed]

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

2010 (2)

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10(10), 1324–1327 (2010).
[Crossref] [PubMed]

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

2009 (3)

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[Crossref]

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

2008 (2)

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
[Crossref]

C.-H. Chan, J.-K. Chen, and F.-C. Chang, “Specific DNA extraction through fluid channels with immobilization of layered double hydroxides on polycarbonate surface,” Sens. Actuator B-Chem. 133(1), 327–332 (2008).
[Crossref]

2007 (3)

2006 (3)

2004 (2)

S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, “Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices,” Langmuir 20(23), 9905–9908 (2004).
[Crossref] [PubMed]

C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
[Crossref]

2001 (1)

Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, and N. Kroutchinina, “Microfabricated polycarbonate CE devices for DNA analysis,” Anal. Chem. 73(17), 4196–4201 (2001).
[Crossref] [PubMed]

1986 (1)

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

Aas, M.

Abaie, B.

Abate, A. R.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Agresti, J. J.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Alkhafadiji, L.

Arnold, S.

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Aubry, G.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

Azzouz, H.

Bakal, A.

A. Bakal, C. Vannahme, A. Kristensen, and U. Levy, “Tunable on chip optofluidic laser,” Appl. Phys. Lett. 107(21), 211105 (2015).
[Crossref]

Balram, A.

H. Zhang, A. Balram, D. D. Meng, and Y. Sun, “Optofluidic Lasers with Monolayer Gain at the Liquid–Liquid Interface,” ACS Photonics 4(3), 621–625 (2017).
[Crossref]

Balslev, S.

Brzobohatý, O.

Chan, C.-H.

C.-H. Chan, J.-K. Chen, and F.-C. Chang, “Specific DNA extraction through fluid channels with immobilization of layered double hydroxides on polycarbonate surface,” Sens. Actuator B-Chem. 133(1), 327–332 (2008).
[Crossref]

Chang, F.-C.

C.-H. Chan, J.-K. Chen, and F.-C. Chang, “Specific DNA extraction through fluid channels with immobilization of layered double hydroxides on polycarbonate surface,” Sens. Actuator B-Chem. 133(1), 327–332 (2008).
[Crossref]

Chang, R. K.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

Chen, J.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Chen, J.-K.

C.-H. Chan, J.-K. Chen, and F.-C. Chang, “Specific DNA extraction through fluid channels with immobilization of layered double hydroxides on polycarbonate surface,” Sens. Actuator B-Chem. 133(1), 327–332 (2008).
[Crossref]

Chen, Q.

Y.-C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, and X. Fan, “Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis,” Nat Biomed Eng 1(9), 724–735 (2017).
[Crossref] [PubMed]

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Chen, Y.-C.

Y.-C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, and X. Fan, “Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis,” Nat Biomed Eng 1(9), 724–735 (2017).
[Crossref] [PubMed]

Chua, S.-L.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Coskun, A. F.

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
[Crossref]

Cramer, C.

C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
[Crossref]

Cupps, J. M.

Dabrowski, B.

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10(10), 1324–1327 (2010).
[Crossref] [PubMed]

Demirel, A.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. Dündar, A. Kurt, H. Kalaycıoğlu, and A. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Derda, R.

Derzsi, L.

P. Jankowski, D. Ogończyk, L. Derzsi, W. Lisowski, and P. Garstecki, “Hydrophilic polycarbonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions,” Microfluid. Nanofluidics 14(5), 767–774 (2013).
[Crossref]

Doganay, S.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. Dündar, A. Kurt, H. Kalaycıoğlu, and A. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Dündar, M.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. Dündar, A. Kurt, H. Kalaycıoğlu, and A. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Fan, C.

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Fan, X.

Y.-C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, and X. Fan, “Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis,” Nat Biomed Eng 1(9), 724–735 (2017).
[Crossref] [PubMed]

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Y. Sun and X. Fan, “Distinguishing DNA by Analog-to-Digital-like Conversion by Using Optofluidic Lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15(23), 15523–15530 (2007).
[Crossref] [PubMed]

Fischer, P.

C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
[Crossref]

Ganser, D.

Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, and N. Kroutchinina, “Microfabricated polycarbonate CE devices for DNA analysis,” Anal. Chem. 73(17), 4196–4201 (2001).
[Crossref] [PubMed]

Garstecki, P.

P. Jankowski, D. Ogończyk, L. Derzsi, W. Lisowski, and P. Garstecki, “Hydrophilic polycarbonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions,” Microfluid. Nanofluidics 14(5), 767–774 (2013).
[Crossref]

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10(10), 1324–1327 (2010).
[Crossref] [PubMed]

Gather, M. C.

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Grodzinski, P.

Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, and N. Kroutchinina, “Microfabricated polycarbonate CE devices for DNA analysis,” Anal. Chem. 73(17), 4196–4201 (2001).
[Crossref] [PubMed]

Haghiri-Gosnet, A. M.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

He, J. J.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

Higuchi, T.

S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, “Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices,” Langmuir 20(23), 9905–9908 (2004).
[Crossref] [PubMed]

Huang, S.-H.

S.-H. Huang, W.-H. Tan, F.-G. Tseng, and S. Takeuchi, “A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems,” J. Micromech. Microeng. 16(11), 2336–2344 (2006).
[Crossref]

Jankowski, P.

P. Jankowski, D. Ogończyk, L. Derzsi, W. Lisowski, and P. Garstecki, “Hydrophilic polycarbonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions,” Microfluid. Nanofluidics 14(5), 767–774 (2013).
[Crossref]

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10(10), 1324–1327 (2010).
[Crossref] [PubMed]

Ježek, J.

Joannopoulos, J. D.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Johansson, J.

Johnson, S. G.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Jonáš, A.

Kalaycioglu, H.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. Dündar, A. Kurt, H. Kalaycıoğlu, and A. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Karadag, Y.

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
[Crossref]

Kennedy, I. M.

Kiraz, A.

M. Aas, A. Jonáš, A. Kiraz, O. Brzobohatý, J. Ježek, Z. Pilát, and P. Zemánek, “Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching,” Opt. Express 21(18), 21380–21394 (2013).
[Crossref] [PubMed]

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[Crossref]

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
[Crossref]

A. Kiraz, A. Sennaroglu, S. Doğanay, M. Dündar, A. Kurt, H. Kalaycıoğlu, and A. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Kou, Q.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

Kristensen, A.

Kroutchinina, N.

Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, and N. Kroutchinina, “Microfabricated polycarbonate CE devices for DNA analysis,” Anal. Chem. 73(17), 4196–4201 (2001).
[Crossref] [PubMed]

Kurt, A.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. Dündar, A. Kurt, H. Kalaycıoğlu, and A. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Lacey, S.

Lee, J.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Lee, W.

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Levy, U.

A. Bakal, C. Vannahme, A. Kristensen, and U. Levy, “Tunable on chip optofluidic laser,” Appl. Phys. Lett. 107(21), 211105 (2015).
[Crossref]

Li, Z.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[Crossref]

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
[Crossref] [PubMed]

Liang, X.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Lisowski, W.

P. Jankowski, D. Ogończyk, L. Derzsi, W. Lisowski, and P. Garstecki, “Hydrophilic polycarbonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions,” Microfluid. Nanofluidics 14(5), 767–774 (2013).
[Crossref]

Liu, H.

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Liu, R.

Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, and N. Kroutchinina, “Microfabricated polycarbonate CE devices for DNA analysis,” Anal. Chem. 73(17), 4196–4201 (2001).
[Crossref] [PubMed]

Liu, S.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, and N. Kroutchinina, “Microfabricated polycarbonate CE devices for DNA analysis,” Anal. Chem. 73(17), 4196–4201 (2001).
[Crossref] [PubMed]

Loncar, M.

Mafi, A.

Meance, S.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

Meng, D. D.

H. Zhang, A. Balram, D. D. Meng, and Y. Sun, “Optofluidic Lasers with Monolayer Gain at the Liquid–Liquid Interface,” ACS Photonics 4(3), 621–625 (2017).
[Crossref]

Mobini, E.

Mortensen, N. A.

Nilsson, S.

Nisisako, T.

S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, “Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices,” Langmuir 20(23), 9905–9908 (2004).
[Crossref] [PubMed]

Ogonczyk, D.

P. Jankowski, D. Ogończyk, L. Derzsi, W. Lisowski, and P. Garstecki, “Hydrophilic polycarbonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions,” Microfluid. Nanofluidics 14(5), 767–774 (2013).
[Crossref]

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10(10), 1324–1327 (2010).
[Crossref] [PubMed]

Okushima, S.

S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, “Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices,” Langmuir 20(23), 9905–9908 (2004).
[Crossref] [PubMed]

Pei, H.

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Perron, R.

Peysokhan, M.

Pilát, Z.

Psaltis, D.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[Crossref]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
[Crossref] [PubMed]

Qian, S.-X.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

Quan, Q.

Rodriguez, A. W.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Scherer, A.

Schneider, A.

Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, and N. Kroutchinina, “Microfabricated polycarbonate CE devices for DNA analysis,” Anal. Chem. 73(17), 4196–4201 (2001).
[Crossref] [PubMed]

Sennaroglu, A.

A. Kiraz, A. Sennaroglu, S. Doğanay, M. Dündar, A. Kurt, H. Kalaycıoğlu, and A. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Shapira, O.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Shopova, S. I.

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15(23), 15523–15530 (2007).
[Crossref] [PubMed]

Snow, J. B.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

Soljacic, M.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Song, W.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[Crossref]

Soto-Velasco, J.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

Sun, Q.

Y.-C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, and X. Fan, “Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis,” Nat Biomed Eng 1(9), 724–735 (2017).
[Crossref] [PubMed]

Sun, Y.

H. Zhang, A. Balram, D. D. Meng, and Y. Sun, “Optofluidic Lasers with Monolayer Gain at the Liquid–Liquid Interface,” ACS Photonics 4(3), 621–625 (2017).
[Crossref]

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

Y. Sun and X. Fan, “Distinguishing DNA by Analog-to-Digital-like Conversion by Using Optofluidic Lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Y. Sun, J. D. Suter, and X. Fan, “Robust integrated optofluidic-ring-resonator dye lasers,” Opt. Lett. 34(7), 1042–1044 (2009).
[Crossref] [PubMed]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15(23), 15523–15530 (2007).
[Crossref] [PubMed]

Suter, J. D.

Takeuchi, S.

S.-H. Huang, W.-H. Tan, F.-G. Tseng, and S. Takeuchi, “A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems,” J. Micromech. Microeng. 16(11), 2336–2344 (2006).
[Crossref]

Tan, W.-H.

S.-H. Huang, W.-H. Tan, F.-G. Tseng, and S. Takeuchi, “A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems,” J. Micromech. Microeng. 16(11), 2336–2344 (2006).
[Crossref]

Tan, X.

Y.-C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, and X. Fan, “Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis,” Nat Biomed Eng 1(9), 724–735 (2017).
[Crossref] [PubMed]

Tang, S. K.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Tang, S. K. Y.

Tanyeri, M.

Torii, T.

S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, “Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices,” Langmuir 20(23), 9905–9908 (2004).
[Crossref] [PubMed]

Tseng, F.-G.

S.-H. Huang, W.-H. Tan, F.-G. Tseng, and S. Takeuchi, “A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems,” J. Micromech. Microeng. 16(11), 2336–2344 (2006).
[Crossref]

Tzeng, H.-M.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

Vannahme, C.

A. Bakal, C. Vannahme, A. Kristensen, and U. Levy, “Tunable on chip optofluidic laser,” Appl. Phys. Lett. 107(21), 211105 (2015).
[Crossref]

Vasdekis, A. E.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[Crossref]

Wang, C.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

Wang, W.

Y.-C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, and X. Fan, “Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis,” Nat Biomed Eng 1(9), 724–735 (2017).
[Crossref] [PubMed]

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Wegrzyn, J.

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10(10), 1324–1327 (2010).
[Crossref] [PubMed]

Weitz, D. A.

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

White, I. M.

Whitesides, G. M.

S. K. Y. Tang, R. Derda, Q. Quan, M. Lončar, and G. M. Whitesides, “Continuously tunable microdroplet-laser in a microfluidic channel,” Opt. Express 19(3), 2204–2215 (2011).
[Crossref] [PubMed]

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Windhab, E. J.

C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
[Crossref]

Wu, C.-S.

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Yun, S. H.

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Zemánek, P.

Zhang, H.

H. Zhang, A. Balram, D. D. Meng, and Y. Sun, “Optofluidic Lasers with Monolayer Gain at the Liquid–Liquid Interface,” ACS Photonics 4(3), 621–625 (2017).
[Crossref]

Zhang, P.

Zhang, T.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Zhang, Z.

Zhen, B.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Zhou, C.

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Zhu, D.

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

H. Zhang, A. Balram, D. D. Meng, and Y. Sun, “Optofluidic Lasers with Monolayer Gain at the Liquid–Liquid Interface,” ACS Photonics 4(3), 621–625 (2017).
[Crossref]

Anal. Chem. (1)

Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, and N. Kroutchinina, “Microfabricated polycarbonate CE devices for DNA analysis,” Anal. Chem. 73(17), 4196–4201 (2001).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Y. Sun and X. Fan, “Distinguishing DNA by Analog-to-Digital-like Conversion by Using Optofluidic Lasers,” Angew. Chem. Int. Ed. Engl. 51(5), 1236–1239 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Optofluidic evanescent dye laser based on a distributed feedback circular grating,” Appl. Phys. Lett. 94(16), 161110 (2009).
[Crossref]

A. Kiraz, Y. Karadağ, and A. F. Coskun, “Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting,” Appl. Phys. Lett. 92(19), 191104 (2008).
[Crossref]

A. Bakal, C. Vannahme, A. Kristensen, and U. Levy, “Tunable on chip optofluidic laser,” Appl. Phys. Lett. 107(21), 211105 (2015).
[Crossref]

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

Chem. Eng. Sci. (1)

C. Cramer, P. Fischer, and E. J. Windhab, “Drop formation in a co-flowing ambient fluid,” Chem. Eng. Sci. 59(15), 3045–3058 (2004).
[Crossref]

J. Micromech. Microeng. (1)

S.-H. Huang, W.-H. Tan, F.-G. Tseng, and S. Takeuchi, “A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems,” J. Micromech. Microeng. 16(11), 2336–2344 (2006).
[Crossref]

Lab Chip (4)

D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, and P. Garstecki, “Bonding of microfluidic devices fabricated in polycarbonate,” Lab Chip 10(10), 1324–1327 (2010).
[Crossref] [PubMed]

Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, and X. Fan, “Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control,” Lab Chip 13(17), 3351–3354 (2013).
[Crossref] [PubMed]

S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

W. Wang, C. Zhou, T. Zhang, J. Chen, S. Liu, and X. Fan, “Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities,” Lab Chip 15(19), 3862–3869 (2015).
[Crossref] [PubMed]

Langmuir (1)

S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, “Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices,” Langmuir 20(23), 9905–9908 (2004).
[Crossref] [PubMed]

Microfluid. Nanofluidics (1)

P. Jankowski, D. Ogończyk, L. Derzsi, W. Lisowski, and P. Garstecki, “Hydrophilic polycarbonate chips for generation of oil-in-water (O/W) and water-in-oil-in-water (W/O/W) emulsions,” Microfluid. Nanofluidics 14(5), 767–774 (2013).
[Crossref]

Nat Biomed Eng (1)

Y.-C. Chen, X. Tan, Q. Sun, Q. Chen, W. Wang, and X. Fan, “Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis,” Nat Biomed Eng 1(9), 724–735 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics 5(7), 406–410 (2011).
[Crossref]

Opt. Commun. (2)

M. Aas, A. Jonáš, and A. Kiraz, “Lasing in optically manipulated, dye-doped emulsion microdroplets,” Opt. Commun. 290, 183–187 (2013).
[Crossref]

A. Kiraz, A. Sennaroglu, S. Doğanay, M. Dündar, A. Kurt, H. Kalaycıoğlu, and A. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276(1), 145–148 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (2)

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 110(34), 13711–13716 (2013).
[Crossref] [PubMed]

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Science (1)

S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231(4737), 486–488 (1986).
[Crossref] [PubMed]

Sens. Actuator B-Chem. (1)

C.-H. Chan, J.-K. Chen, and F.-C. Chang, “Specific DNA extraction through fluid channels with immobilization of layered double hydroxides on polycarbonate surface,” Sens. Actuator B-Chem. 133(1), 327–332 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Illustration of optofluidic droplet laser. Oil phase and water phase are delivered through Inlet 1 and Inlet 2 into the backside and top microfluidic channels, respectively. Upon pressurizing backside channel, oil droplets are generated on top of the micro-nozzle structures in the top channel. Droplets can be released from the nozzle by water rinsing in the top channel and regenerated subsequently. Inset: zoom-in image of one micro-nozzle with droplet. (b) The schematic illustration of the experimental setup. Pulsed optical parametric oscillator (OPO) (repetition rate: 20 Hz, pulse width: 5 ns, wavelength: 532 nm) is used for optical excitation. BS: beam splitter. L1, L2, L3, and L4 are lenses with a focal length of 5 cm, 5cm, 2.5 cm, and 2.5 cm, respectively. The fluorescent and lasing emissions from the droplets are sent to a spectrometer. The droplet is imaged by a camera, from which the droplet size is characterized. Green lines indicate pump light. Red lines indicate the emission from the droplet. Yellow lines indicate the illumination light.
Fig. 2
Fig. 2 Fabrication process flow of the micro-nozzle optofluidic laser device made of polycarbonate chip.
Fig. 3
Fig. 3 (a) An image of 1x4 micro-nozzles made on polycarbonate chip before bonding to the topside microfluidic channel. (b) Top view of the device (image of the area marked in (a)), showing the nozzle hole diameter of 282 μm and the nozzle ring outer diameter of 1239 μm. (c) Backside view of the device (image of the area marked in (a)), showing the backside microfluidic channel width of 566 μm and the nozzle hole diameter of 239 μm. (d) Generation of a droplet array. The average contact angle of the four droplets is 151.1° ± 2.4°.
Fig. 4
Fig. 4 Characterization of droplet generation. (a) The relationship between injection volume applied to the backside channel and the size of the droplet generated on the nozzle. The error bar is obtained on ten droplets generated in sequence for each injection volume. (b) The droplet diameter variation at different injection volumes. A total of 40 droplets were measured.
Fig. 5
Fig. 5 (a) Fluorescence and lasing emission spectra from a 563 μm diameter microdroplet under different pump energy densities. All spectra are taken under a 600 g/mm grating. (b) The plot of integrated lasing intensities as a function of pump energy density. The lasing threshold derived from the linear fitting is approximately 12 μJ/mm2. (c) Lasing emission spectra from a 544 μm diameter regenerated microdroplet under different pump energy densities. All spectra are taken under a 1200 g/mm grating. Traces are shifted vertically for clarity. (d) The plot of integrated lasing intensities as a function of pump energy density. The error bar is obtained on three spectra excited under the same pump energy density. The lasing threshold derived from the linear fitting is approximately 10 μJ/mm2. Insets in (b) and (d) are the side-view optical microscope images of the measured microdroplets. The scale bar is 250 μm in both images.
Fig. 6
Fig. 6 The emission spectra measurement of droplets with different sizes. The diameter of the droplets are 491μm, 588 μm, 642 μm, 670 μm, 694 μm, 706 μm, and 747 μm, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ FSR = λ 2 n g πD =0.15 nm.

Metrics