Abstract

In this paper, we report anti-resonant silica hollow-core fibers (AR-HCFs) for solarization-free ultraviolet (UV) pulse transmission. The new fibers reported have lower attenuation than any previous HCFs for this spectral range. We report a single fiber that guides over a part of the UV-C and the whole of the UV-A spectral regions in adjacent transmission bands. A second AR-HCF is used for delivery of 17 nanosecond laser pulses at 266 nm at 30 kHz repetition rate. The fiber maintained a constant transmission, free of silica fluorescence and solarization-induced fiber degradation while delivering 0.46 μJ pulses for a period of over one hour. By direct comparison, we demonstrate that the single-mode AR-HCF significantly outperforms commercially-available high-OH and solarization-resistant silica multimode fibers for pulsed light delivery in this spectral range.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Flexible single-mode delivery of a high-power 2  μm pulsed laser using an antiresonant hollow-core fiber

Elizabeth Lee, Jiaqi Luo, Biao Sun, Vincent Ramalingam, Ying Zhang, Qijie Wang, Fei Yu, and Xia Yu
Opt. Lett. 43(12) 2732-2735 (2018)

Single-mode optical fiber for high-power, low-loss UV transmission

Yves Colombe, Daniel H. Slichter, Andrew C. Wilson, Dietrich Leibfried, and David J. Wineland
Opt. Express 22(16) 19783-19793 (2014)

Hollow-core fibers for high power pulse delivery

Mattia Michieletto, Jens K. Lyngsø, Christian Jakobsen, Jesper Lægsgaard, Ole Bang, and Thomas T. Alkeskjold
Opt. Express 24(7) 7103-7119 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
    [Crossref] [PubMed]
  2. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
    [Crossref]
  3. H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
    [Crossref] [PubMed]
  4. J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484(7395), 489–492 (2012).
    [Crossref] [PubMed]
  5. G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Optica 458, 379–458 (2016).
  6. M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photonics Technol. Lett. 13(9), 978–980 (2001).
    [Crossref]
  7. K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” in Micro-Structured and Specialty Optical Fibres II, 87750B, K. Kalli, J. Kanka, and A. Mendez, eds. (2013), Vol. 8775, p. 87750B.
  8. L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” in Proc. SPIEG. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, (2001), 4347, p. 155.
    [Crossref]
  9. A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, “Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm,” Appl. Phys. Lett. 80(7), 1114–1116 (2002).
    [Crossref]
  10. M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523(4), 207–229 (2013).
    [Crossref]
  11. P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155(4-6), 386–397 (1998).
    [Crossref]
  12. P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155(4-6), 376–385 (1998).
    [Crossref]
  13. Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 22(16), 19783–19793 (2014).
    [Crossref] [PubMed]
  14. C. D. Marciniak, H. B. Ball, A. T.-H. Hung, and M. J. Biercuk, “Towards fully commercial, UV-compatible fiber patch cords,” Opt. Express 25(14), 15643–15661 (2017).
    [Crossref] [PubMed]
  15. D. Jain, Y. Jung, P. Barua, C. Sones, and J. K. Sahu, “Large mode area multi-trench fiber for UV and visible transmission,” Opt. Lett. 40(21), 5026–5029 (2015).
    [Crossref] [PubMed]
  16. N. Yamamoto, L. Tao, and A. P. Yalin, “Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber,” Opt. Express 17(19), 16933–16940 (2009).
    [Crossref] [PubMed]
  17. “Solarization-resistant multimode fiber attenuation,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6840 .
  18. F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
    [Crossref]
  19. C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
    [Crossref]
  20. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  21. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  22. S. F. Gao, Y. Y. Wang, X. L. Liu, C. Hong, S. Gu, and P. Wang, “Nodeless hollow-core fiber for the visible spectral range,” Opt. Lett. 42(1), 61–64 (2017).
    [Crossref] [PubMed]
  23. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209 (2017).
    [Crossref]
  24. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34(19), 2888–2890 (2009).
    [Crossref] [PubMed]
  25. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber--guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
    [Crossref] [PubMed]
  26. A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured “revolver” fibre for the UV spectral range,” Quantum Electron. 46(12), 1129–1133 (2016).
    [Crossref]
  27. A. Hartung, J. Kobelke, A. Schwuchow, J. Bierlich, J. Popp, M. A. Schmidt, and T. Frosch, “Low-loss single-mode guidance in large-core antiresonant hollow-core fibers,” Opt. Lett. 40(14), 3432–3435 (2015).
    [Crossref] [PubMed]
  28. F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, and P. S. J. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22(13), 15388–15396 (2014).
    [Crossref] [PubMed]
  29. https://doi.org/.
    [Crossref]
  30. F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24(12), 12969–12975 (2016).
    [Crossref] [PubMed]
  31. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
    [Crossref] [PubMed]
  32. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
    [Crossref] [PubMed]
  33. L. Van Putten, E. Numkam Fokoua, S. M. Abokhamis, W. Belardi, S. Chaudhuri, J. Badding, and F. Poletti, “Exploring the Effect of the Core Boundary Curvature in Hollow Antiresonant Fibers,” IEEE Photonics Technol. Lett. 1135, 263–266 (2016).

2017 (4)

2016 (7)

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured “revolver” fibre for the UV spectral range,” Quantum Electron. 46(12), 1129–1133 (2016).
[Crossref]

F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24(12), 12969–12975 (2016).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref] [PubMed]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. J. Russell, “Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes,” Opt. Lett. 41(9), 1961–1964 (2016).
[Crossref] [PubMed]

L. Van Putten, E. Numkam Fokoua, S. M. Abokhamis, W. Belardi, S. Chaudhuri, J. Badding, and F. Poletti, “Exploring the Effect of the Core Boundary Curvature in Hollow Antiresonant Fibers,” IEEE Photonics Technol. Lett. 1135, 263–266 (2016).

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Optica 458, 379–458 (2016).

2015 (3)

2014 (4)

2013 (1)

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523(4), 207–229 (2013).
[Crossref]

2012 (2)

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484(7395), 489–492 (2012).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

2009 (2)

2005 (1)

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

2002 (2)

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, “Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm,” Appl. Phys. Lett. 80(7), 1114–1116 (2002).
[Crossref]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

2001 (1)

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photonics Technol. Lett. 13(9), 978–980 (2001).
[Crossref]

1998 (2)

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155(4-6), 386–397 (1998).
[Crossref]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155(4-6), 376–385 (1998).
[Crossref]

Abeeluck, A. K.

Abokhamis, S. M.

L. Van Putten, E. Numkam Fokoua, S. M. Abokhamis, W. Belardi, S. Chaudhuri, J. Badding, and F. Poletti, “Exploring the Effect of the Core Boundary Curvature in Hollow Antiresonant Fibers,” IEEE Photonics Technol. Lett. 1135, 263–266 (2016).

Abouraddy, A. F.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Optica 458, 379–458 (2016).

Ahmed, G.

Alagashev, G. K.

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured “revolver” fibre for the UV spectral range,” Quantum Electron. 46(12), 1129–1133 (2016).
[Crossref]

Alkeskjold, T. T.

Amairi, S.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
[Crossref] [PubMed]

Amsanpally, A.

Auguste, J.-L.

Badding, J.

L. Van Putten, E. Numkam Fokoua, S. M. Abokhamis, W. Belardi, S. Chaudhuri, J. Badding, and F. Poletti, “Exploring the Effect of the Core Boundary Curvature in Hollow Antiresonant Fibers,” IEEE Photonics Technol. Lett. 1135, 263–266 (2016).

Badding, J. V.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Optica 458, 379–458 (2016).

Ball, H. B.

Ballato, J.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Optica 458, 379–458 (2016).

Bang, O.

Barua, P.

Baz, A.

Beaudou, B.

Becher, C.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Belardi, W.

L. Van Putten, E. Numkam Fokoua, S. M. Abokhamis, W. Belardi, S. Chaudhuri, J. Badding, and F. Poletti, “Exploring the Effect of the Core Boundary Curvature in Hollow Antiresonant Fibers,” IEEE Photonics Technol. Lett. 1135, 263–266 (2016).

Benabid, F.

Benhelm, J.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Biercuk, M. J.

C. D. Marciniak, H. B. Ball, A. T.-H. Hung, and M. J. Biercuk, “Towards fully commercial, UV-compatible fiber patch cords,” Opt. Express 25(14), 15643–15661 (2017).
[Crossref] [PubMed]

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484(7395), 489–492 (2012).
[Crossref] [PubMed]

Bierlich, J.

Biriukov, A. S.

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured “revolver” fibre for the UV spectral range,” Quantum Electron. 46(12), 1129–1133 (2016).
[Crossref]

Blatt, R.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Blondy, J. M.

Bollinger, J. J.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484(7395), 489–492 (2012).
[Crossref] [PubMed]

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Britton, J. W.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484(7395), 489–492 (2012).
[Crossref] [PubMed]

Bufetov, I. A.

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured “revolver” fibre for the UV spectral range,” Quantum Electron. 46(12), 1129–1133 (2016).
[Crossref]

Chafer, M.

Chaudhuri, S.

L. Van Putten, E. Numkam Fokoua, S. M. Abokhamis, W. Belardi, S. Chaudhuri, J. Badding, and F. Poletti, “Exploring the Effect of the Core Boundary Curvature in Hollow Antiresonant Fibers,” IEEE Photonics Technol. Lett. 1135, 263–266 (2016).

Chek-al-Kar, D.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Chwalla, M.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Colombe, Y.

Danto, S.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Optica 458, 379–458 (2016).

Debord, B.

Dragomir, A.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, “Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm,” Appl. Phys. Lett. 80(7), 1114–1116 (2002).
[Crossref]

Dür, W.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Ebendorff-heidepriem, H.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Optica 458, 379–458 (2016).

Edavalath, N. N.

Eggleton, B. J.

Ermolov, A.

Exarhos, G. J.

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” in Proc. SPIEG. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, (2001), 4347, p. 155.
[Crossref]

Février, S.

Fink, Y.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Optica 458, 379–458 (2016).

Freericks, J. K.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484(7395), 489–492 (2012).
[Crossref] [PubMed]

Frosch, T.

Frosz, M. H.

Gao, S. F.

Gebert, F.

F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, and P. S. J. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22(13), 15388–15396 (2014).
[Crossref] [PubMed]

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
[Crossref] [PubMed]

Gérôme, F.

Gu, S.

Guenther, A. H.

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” in Proc. SPIEG. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, (2001), 4347, p. 155.
[Crossref]

Gühne, O.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Günendi, M. C.

Häffner, H.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Hammerer, K.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
[Crossref] [PubMed]

Hänsel, W.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Hartung, A.

Headley, C.

Hemmerling, B.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
[Crossref] [PubMed]

Hillrichs, G.

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155(4-6), 386–397 (1998).
[Crossref]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155(4-6), 376–385 (1998).
[Crossref]

Hirano, M.

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photonics Technol. Lett. 13(9), 978–980 (2001).
[Crossref]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” in Proc. SPIEG. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, (2001), 4347, p. 155.
[Crossref]

Hong, C.

Hosono, H.

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photonics Technol. Lett. 13(9), 978–980 (2001).
[Crossref]

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” in Proc. SPIEG. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, (2001), 4347, p. 155.
[Crossref]

Hu, J.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
[Crossref]

Hugonnot, E.

Humbert, G.

Hung, A. T.-H.

Jain, D.

Jakobsen, C.

Joly, N. Y.

Joseph Weiblen, R.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
[Crossref]

Jung, Y.

Karlitschek, P.

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155(4-6), 386–397 (1998).
[Crossref]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155(4-6), 376–385 (1998).
[Crossref]

Kazansky, P. G.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, “Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm,” Appl. Phys. Lett. 80(7), 1114–1116 (2002).
[Crossref]

Keith, A. C.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484(7395), 489–492 (2012).
[Crossref] [PubMed]

Kikugawa, S.

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photonics Technol. Lett. 13(9), 978–980 (2001).
[Crossref]

Klein, K.-F.

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155(4-6), 386–397 (1998).
[Crossref]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155(4-6), 376–385 (1998).
[Crossref]

Knight, J. C.

Kobelke, J.

Kolyadin, A. N.

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured “revolver” fibre for the UV spectral range,” Quantum Electron. 46(12), 1129–1133 (2016).
[Crossref]

Körber, T.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Kosolapov, A. F.

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured “revolver” fibre for the UV spectral range,” Quantum Electron. 46(12), 1129–1133 (2016).
[Crossref]

Kozlowski, M. R.

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” in Proc. SPIEG. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, (2001), 4347, p. 155.
[Crossref]

Labruyère, A.

Lægsgaard, J.

Lancry, M.

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523(4), 207–229 (2013).
[Crossref]

Leibfried, D.

Leroux, I. D.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
[Crossref] [PubMed]

Lewis, K. L.

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” in Proc. SPIEG. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, (2001), 4347, p. 155.
[Crossref]

Litchinitser, N. M.

Liu, X. L.

Lörch, N.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
[Crossref] [PubMed]

Ludlow, A. D.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Lyngsø, J. K.

Marciniak, C. D.

Maurel, M.

McInerney, J. G.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, “Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm,” Appl. Phys. Lett. 80(7), 1114–1116 (2002).
[Crossref]

Ménard, J.-M.

Menyuk, C. R.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
[Crossref]

Michieletto, M.

Nikogosyan, D. N.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, “Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm,” Appl. Phys. Lett. 80(7), 1114–1116 (2002).
[Crossref]

Numkam Fokoua, E.

L. Van Putten, E. Numkam Fokoua, S. M. Abokhamis, W. Belardi, S. Chaudhuri, J. Badding, and F. Poletti, “Exploring the Effect of the Core Boundary Curvature in Hollow Antiresonant Fibers,” IEEE Photonics Technol. Lett. 1135, 263–266 (2016).

Oto, M.

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photonics Technol. Lett. 13(9), 978–980 (2001).
[Crossref]

Peik, E.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Poletti, F.

L. Van Putten, E. Numkam Fokoua, S. M. Abokhamis, W. Belardi, S. Chaudhuri, J. Badding, and F. Poletti, “Exploring the Effect of the Core Boundary Curvature in Hollow Antiresonant Fibers,” IEEE Photonics Technol. Lett. 1135, 263–266 (2016).

Popp, J.

Poumellec, B.

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523(4), 207–229 (2013).
[Crossref]

Pryamikov, A. D.

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured “revolver” fibre for the UV spectral range,” Quantum Electron. 46(12), 1129–1133 (2016).
[Crossref]

Rapol, U. D.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Riebe, M.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Roos, C. F.

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Russell, P. S. J.

Sahu, J. K.

Sarukura, N.

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photonics Technol. Lett. 13(9), 978–980 (2001).
[Crossref]

Sawyer, B. C.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484(7395), 489–492 (2012).
[Crossref] [PubMed]

Scharnhorst, N.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
[Crossref] [PubMed]

Schmidt, M. A.

Schmidt, P. O.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
[Crossref] [PubMed]

F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, and P. S. J. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22(13), 15388–15396 (2014).
[Crossref] [PubMed]

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

Schwuchow, A.

Scol, F.

Skuja, L.

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” in Proc. SPIEG. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, (2001), 4347, p. 155.
[Crossref]

Slichter, D. H.

Soileau, M. J.

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” in Proc. SPIEG. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, (2001), 4347, p. 155.
[Crossref]

Sones, C.

Stolyarov, A. M.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Optica 458, 379–458 (2016).

Tao, G.

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Optica 458, 379–458 (2016).

Tao, L.

Uebel, P.

Uys, H.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484(7395), 489–492 (2012).
[Crossref] [PubMed]

Van Putten, L.

L. Van Putten, E. Numkam Fokoua, S. M. Abokhamis, W. Belardi, S. Chaudhuri, J. Badding, and F. Poletti, “Exploring the Effect of the Core Boundary Curvature in Hollow Antiresonant Fibers,” IEEE Photonics Technol. Lett. 1135, 263–266 (2016).

Vel’miskin, V. V.

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured “revolver” fibre for the UV spectral range,” Quantum Electron. 46(12), 1129–1133 (2016).
[Crossref]

Vincetti, L.

Wadsworth, W. J.

Wan, Y.

F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, and P. S. J. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22(13), 15388–15396 (2014).
[Crossref] [PubMed]

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
[Crossref] [PubMed]

Wang, C.-C. J.

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484(7395), 489–492 (2012).
[Crossref] [PubMed]

Wang, P.

Wang, Y. Y.

Wei, C.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
[Crossref]

Weiss, T.

Wilson, A. C.

Wineland, D. J.

Wondraczek, K.

Wübbena, J. B.

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
[Crossref] [PubMed]

Xu, M.

Yalin, A. P.

Yamamoto, N.

Ye, J.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Yu, F.

Adv. Opt. Photonics (1)

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504 (2017).
[Crossref]

Appl. Phys. Lett. (1)

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, “Two-photon absorption properties of commercial fused silica and germanosilicate glass at 264 nm,” Appl. Phys. Lett. 80(7), 1114–1116 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Van Putten, E. Numkam Fokoua, S. M. Abokhamis, W. Belardi, S. Chaudhuri, J. Badding, and F. Poletti, “Exploring the Effect of the Core Boundary Curvature in Hollow Antiresonant Fibers,” IEEE Photonics Technol. Lett. 1135, 263–266 (2016).

M. Oto, S. Kikugawa, N. Sarukura, M. Hirano, and H. Hosono, “Optical fiber for deep ultraviolet light,” IEEE Photonics Technol. Lett. 13(9), 978–980 (2001).
[Crossref]

Nat. Commun. (1)

Y. Wan, F. Gebert, J. B. Wübbena, N. Scharnhorst, S. Amairi, I. D. Leroux, B. Hemmerling, N. Lörch, K. Hammerer, and P. O. Schmidt, “Precision spectroscopy by photon-recoil signal amplification,” Nat. Commun. 5, 3096 (2014).
[Crossref] [PubMed]

Nature (2)

H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-Kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438(7068), 643–646 (2005).
[Crossref] [PubMed]

J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484(7395), 489–492 (2012).
[Crossref] [PubMed]

Opt. Commun. (2)

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core,” Opt. Commun. 155(4-6), 386–397 (1998).
[Crossref]

P. Karlitschek, G. Hillrichs, and K.-F. Klein, “Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 1: all silica fibers with high-OH undoped core,” Opt. Commun. 155(4-6), 376–385 (1998).
[Crossref]

Opt. Express (8)

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 22(16), 19783–19793 (2014).
[Crossref] [PubMed]

C. D. Marciniak, H. B. Ball, A. T.-H. Hung, and M. J. Biercuk, “Towards fully commercial, UV-compatible fiber patch cords,” Opt. Express 25(14), 15643–15661 (2017).
[Crossref] [PubMed]

N. Yamamoto, L. Tao, and A. P. Yalin, “Single-mode delivery of 250 nm light using a large mode area photonic crystal fiber,” Opt. Express 17(19), 16933–16940 (2009).
[Crossref] [PubMed]

F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24(12), 12969–12975 (2016).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24(7), 7103–7119 (2016).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber--guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
[Crossref] [PubMed]

F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, and P. S. J. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22(13), 15388–15396 (2014).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (2)

G. Tao, H. Ebendorff-heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Optica 458, 379–458 (2016).

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4(2), 209 (2017).
[Crossref]

Phys. Rep. (1)

M. Lancry and B. Poumellec, “UV laser processing and multiphoton absorption processes in optical telecommunication fiber materials,” Phys. Rep. 523(4), 207–229 (2013).
[Crossref]

Quantum Electron. (1)

A. D. Pryamikov, A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, V. V. Vel’miskin, A. S. Biriukov, and I. A. Bufetov, “Hollow-core microstructured “revolver” fibre for the UV spectral range,” Quantum Electron. 46(12), 1129–1133 (2016).
[Crossref]

Rev. Mod. Phys. (1)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Other (4)

K.-F. Klein, C. P. Gonschior, D. Beer, H.-S. Eckhardt, M. Belz, J. Shannon, V. Khalilov, M. Klein, and C. Jakob, “Silica-based UV-fibers for DUV applications: current status,” in Micro-Structured and Specialty Optical Fibres II, 87750B, K. Kalli, J. Kanka, and A. Mendez, eds. (2013), Vol. 8775, p. 87750B.

L. Skuja, H. Hosono, and M. Hirano, “Laser-induced color centers in silica,” in Proc. SPIEG. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, (2001), 4347, p. 155.
[Crossref]

“Solarization-resistant multimode fiber attenuation,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6840 .

https://doi.org/.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       The video shows the pulsed 266 nm laser beam spot recorded at the focal plane of a plano-concave silica lens with 500 mm focal length. The measured laser power was 202 mW.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) SEM picture of the first AR-HCF. The core diameter is about 17 μm and the average thickness of core wall is 132 nm. (b) and (c) are the near-field-pattern images at the output of AR-HCF after 33.6 m and 8.4 m respectively in the cutback measurement, recorded using a 10 nm bandpass filter centered at 355 nm.
Fig. 2
Fig. 2 (a) Transmission spectra recorded by the OSA and Ocean Optics spectrometer for 33.6 m and 8.4 m lengths. Two groups of measured transmission spectra are normalized by their 33.6 m fiber transmitted intensities at 350 nm respectively. (b) Calculated attenuations based on raw data. The attenuation at 355 nm is 0.26 dB/m; and the averaged minimum attenuation is measured as 0.08 dB/m around 218 nm.
Fig. 3
Fig. 3 (a) SEM picture of the second AR-HCF designed for 266 nm laser delivery; (b) and (c) are the near-field-pattern images at the output of AR-HCF after 19.8 m and 5.7 m respectively, with no filter in use; (d) calculated attenuation from cutback measurements. 0.7 dB/m and 0.83 dB/m are measured minimum attenuations of two bands at 263.7 nm and 380 nm.
Fig. 4
Fig. 4 Schematic of laser coupling setup. All lenses were made of fused silica glass, anti-reflection coated for 266 nm. All the focal lengths given are provided by the manufacturer for visible wavelengths. The pinhole is Newport PH50 made of Molybdenum designed for high- energy laser application. Four aluminum coated UV reflection enhanced silver mirrors were also used in the coupling setup and not displayed. Inset (a): far-field pattern directly recorded by a camera beam profiler at the output of laser; inset (b) near-field pattern of laser beam at the output of AR-HCF at 266 nm recorded after a lens.
Fig. 5
Fig. 5 (a) Temporal evolution of transmissions in AR-HCF and two types of MMF. The incident powers are measured as 34.1 mW, 35.4 mW and 34 mW for AR-HCF, SR-MMF and OH-MMF respectively. (b) Temporal evolution of transmissions in AR-HCF with and without spatial filtering. The slight decline of transmission without pinhole is due to the reduced incident power from 120 mW to 107 mW in one hour. (c) Typical fluorescence of OH-MMF for about 35 mW incident power. The peak around 530 nm is residual light from the second harmonic generation stage of the laser.

Metrics