Abstract

The symmetry dependences of plasmon excitation modes are studied in 3D silver nanorod trimers. The degenerate plasmon modes split into chiral modes by breaking the inversion and mirror symmetry of the nanorod trimer through translation and/or rotation of the middle rod. With a translation operation, successive evolution of the circular dichroism (CD) spectrum can be achieved through gradual breaking of the inversion symmetry. An additional rotation operation produces even dramatic spectral changes due to breaking a quasi-mirror symmetry resulted from the same angular distance of the middle rod to the top and bottom rods. Especially, pairs of new chiral modes can be excited due to the contact of the middle rod with the top-bottom rod pair. The spectral changes in the simulations, which are also demonstrated experimentally, envision the 3D chiral nanorod trimer system as plasmon ruler for spatial configuration retrieval and dynamic bio-process analysis at the single molecule level.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure

Yu Qu, Lishun Huang, Li Wang, and Zhongyue Zhang
Opt. Express 25(5) 5480-5487 (2017)

Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials

Hai Lin, Dong Yang, Song Han, Yangjie Liu, and Helin Yang
Opt. Express 24(26) 30068-30078 (2016)

Extrinsic chirality of non-concentric plasmonic nanorings

Vladimir E. Bochenkov, Gunnar Klös, and Duncan S. Sutherland
Opt. Mater. Express 7(10) 3715-3721 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. D. Fasman, ed., Circular Dichroism and the Conformational Analysis of Biomolecules (Plenum, 1996).
  2. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
    [Crossref] [PubMed]
  3. L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
    [Crossref] [PubMed]
  4. K. Manoli, M. Magliulo, and L. Torsi, “Chiral sensor devices for differentiation of enantiomers,” Top. Curr. Chem. 341, 133–176 (2013).
    [Crossref] [PubMed]
  5. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(8379), 8379 (2015).
    [Crossref] [PubMed]
  6. Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
    [Crossref]
  7. L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
    [Crossref] [PubMed]
  8. W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
    [Crossref]
  9. N. Purdie and K. A. Swallows, “Analytical applications of polarimetry, optical rotatory dispersion, and circular dichroism,” Anal. Chem. 61(2), 77A–89A (1989).
    [Crossref] [PubMed]
  10. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
    [Crossref] [PubMed]
  11. M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
    [Crossref] [PubMed]
  12. R. Ogier, Y. Fang, M. Svedendahl, P. Johansson, and M. Käll, “Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography,” ACS Photonics 1(10), 1074–1081 (2014).
    [Crossref]
  13. J. Kaschke and M. Wegener, “Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography,” Opt. Lett. 40(17), 3986–3989 (2015).
    [Crossref] [PubMed]
  14. W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
    [Crossref] [PubMed]
  15. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
    [Crossref] [PubMed]
  16. C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapor deposition,” J. Opt. 15(7), 072101 (2013).
    [Crossref]
  17. K. Dietrich, D. Lehr, C. Helgert, A. Tünnermann, and E. B. Kley, “Circular dichroism from chiral nanomaterial fabricated by on-edge lithography,” Adv. Mater. 24(44), OP321–OP325 (2012).
    [Crossref] [PubMed]
  18. A. O. Govorov, Y. K. Gun’ko, J. M. Slocik, V. A. Gërard, Z. Fan, and R. R. Naik, “Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects,” J. Mater. Chem. 21(42), 16806–16818 (2011).
    [Crossref]
  19. B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
    [Crossref] [PubMed]
  20. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  21. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
    [Crossref] [PubMed]
  22. A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862–866 (2014).
    [Crossref] [PubMed]
  23. C. Zhou, X. Duan, and N. Liu, “A plasmonic nanorod that walks on DNA origami,” Nat. Commun. 6(8102), 8102 (2015).
    [Crossref] [PubMed]
  24. X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
    [Crossref] [PubMed]
  25. H. Wang, Z. Li, H. Zhang, P. Wang, and S. Wen, “Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer,” Sci. Rep. 5(8207), 1–6 (2015).
  26. P. Banzer, P. Woźniak, U. Mick, I. D. Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7(13117), 1–9 (2016).
  27. K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
    [Crossref] [PubMed]
  28. A. M. Funston, T. J. Davis, C. Novo, and P. Mulvaney, “Coupling modes of gold trimer superstructures,” Phil. Trans. R. Soc. A 369(1950), 3472–3482 (2011).
    [Crossref] [PubMed]
  29. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
    [Crossref] [PubMed]
  30. S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
    [Crossref] [PubMed]
  31. A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11(3), 941–951 (2016).
    [Crossref] [PubMed]
  32. Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
    [Crossref]
  33. X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic born-kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
    [Crossref] [PubMed]
  34. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref] [PubMed]
  35. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref] [PubMed]
  36. C. Han and W. Y. Tam, “Chirality from shadowing deposited metallic nanostructures,” Phot. Nano. Fund. Appl. 13, 50–57 (2015).
    [Crossref]
  37. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., 2005).
  38. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref] [PubMed]
  39. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  40. S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
    [Crossref] [PubMed]
  41. N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
    [Crossref] [PubMed]
  42. Y. Pinto, H. Z. Hel-Or, and D. Avnir, “Continuous chirality analysis of interconversion pathways of the water-trimer enantiomers,” J. Chem. Soc., Faraday Trans. 92(14), 2523–2527 (1996).
    [Crossref]
  43. C. Han, H. M. Leung, C. T. Chan, and W. Y. Tam, “Giant plasmonic circular dichroism in Ag staircase nanostructures,” Opt. Express 23(26), 33065–33078 (2015).
    [Crossref] [PubMed]
  44. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
    [Crossref] [PubMed]
  45. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
    [Crossref] [PubMed]
  46. C. Han and W. Y. Tam, “Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays,” Appl. Phys. Lett. 106(8), 081102 (2015).
    [Crossref]

2017 (1)

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

2016 (3)

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

P. Banzer, P. Woźniak, U. Mick, I. D. Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7(13117), 1–9 (2016).

A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11(3), 941–951 (2016).
[Crossref] [PubMed]

2015 (10)

S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
[Crossref] [PubMed]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

C. Han and W. Y. Tam, “Chirality from shadowing deposited metallic nanostructures,” Phot. Nano. Fund. Appl. 13, 50–57 (2015).
[Crossref]

C. Zhou, X. Duan, and N. Liu, “A plasmonic nanorod that walks on DNA origami,” Nat. Commun. 6(8102), 8102 (2015).
[Crossref] [PubMed]

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

H. Wang, Z. Li, H. Zhang, P. Wang, and S. Wen, “Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer,” Sci. Rep. 5(8207), 1–6 (2015).

J. Kaschke and M. Wegener, “Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography,” Opt. Lett. 40(17), 3986–3989 (2015).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(8379), 8379 (2015).
[Crossref] [PubMed]

C. Han, H. M. Leung, C. T. Chan, and W. Y. Tam, “Giant plasmonic circular dichroism in Ag staircase nanostructures,” Opt. Express 23(26), 33065–33078 (2015).
[Crossref] [PubMed]

C. Han and W. Y. Tam, “Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays,” Appl. Phys. Lett. 106(8), 081102 (2015).
[Crossref]

2014 (5)

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

R. Ogier, Y. Fang, M. Svedendahl, P. Johansson, and M. Käll, “Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography,” ACS Photonics 1(10), 1074–1081 (2014).
[Crossref]

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862–866 (2014).
[Crossref] [PubMed]

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref] [PubMed]

2013 (5)

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic born-kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapor deposition,” J. Opt. 15(7), 072101 (2013).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

K. Manoli, M. Magliulo, and L. Torsi, “Chiral sensor devices for differentiation of enantiomers,” Top. Curr. Chem. 341, 133–176 (2013).
[Crossref] [PubMed]

2012 (5)

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

K. Dietrich, D. Lehr, C. Helgert, A. Tünnermann, and E. B. Kley, “Circular dichroism from chiral nanomaterial fabricated by on-edge lithography,” Adv. Mater. 24(44), OP321–OP325 (2012).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

2011 (4)

A. O. Govorov, Y. K. Gun’ko, J. M. Slocik, V. A. Gërard, Z. Fan, and R. R. Naik, “Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects,” J. Mater. Chem. 21(42), 16806–16818 (2011).
[Crossref]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

A. M. Funston, T. J. Davis, C. Novo, and P. Mulvaney, “Coupling modes of gold trimer superstructures,” Phil. Trans. R. Soc. A 369(1950), 3472–3482 (2011).
[Crossref] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

2010 (1)

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[Crossref] [PubMed]

2009 (2)

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2008 (3)

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

2006 (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

2005 (1)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

2001 (1)

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
[Crossref]

1996 (1)

Y. Pinto, H. Z. Hel-Or, and D. Avnir, “Continuous chirality analysis of interconversion pathways of the water-trimer enantiomers,” J. Chem. Soc., Faraday Trans. 92(14), 2523–2527 (1996).
[Crossref]

1989 (1)

N. Purdie and K. A. Swallows, “Analytical applications of polarimetry, optical rotatory dispersion, and circular dichroism,” Anal. Chem. 61(2), 77A–89A (1989).
[Crossref] [PubMed]

Alivisatos, A. P.

S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
[Crossref] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

Avnir, D.

Y. Pinto, H. Z. Hel-Or, and D. Avnir, “Continuous chirality analysis of interconversion pathways of the water-trimer enantiomers,” J. Chem. Soc., Faraday Trans. 92(14), 2523–2527 (1996).
[Crossref]

Babudri, F.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bai, P.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Banzer, P.

P. Banzer, P. Woźniak, U. Mick, I. D. Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7(13117), 1–9 (2016).

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(8379), 8379 (2015).
[Crossref] [PubMed]

Bhat, R.

S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
[Crossref] [PubMed]

Bissell, M. J.

S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
[Crossref] [PubMed]

Boyd, R. W.

P. Banzer, P. Woźniak, U. Mick, I. D. Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7(13117), 1–9 (2016).

Braun, P. V.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Cai, W.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Chan, C. T.

Chang, W. S.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chen, H.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Chen, Q.

S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
[Crossref] [PubMed]

Chen, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(8379), 8379 (2015).
[Crossref] [PubMed]

Correia, A. L.

S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
[Crossref] [PubMed]

Cui, X.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Dai, J.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Davis, T. J.

A. M. Funston, T. J. Davis, C. Novo, and P. Mulvaney, “Coupling modes of gold trimer superstructures,” Phil. Trans. R. Soc. A 369(1950), 3472–3482 (2011).
[Crossref] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

Demchenko, I.

A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11(3), 941–951 (2016).
[Crossref] [PubMed]

Derkachova, A.

A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11(3), 941–951 (2016).
[Crossref] [PubMed]

Dietrich, K.

K. Dietrich, D. Lehr, C. Helgert, A. Tünnermann, and E. B. Kley, “Circular dichroism from chiral nanomaterial fabricated by on-edge lithography,” Adv. Mater. 24(44), OP321–OP325 (2012).
[Crossref] [PubMed]

Duan, X.

C. Zhou, X. Duan, and N. Liu, “A plasmonic nanorod that walks on DNA origami,” Nat. Commun. 6(8102), 8102 (2015).
[Crossref] [PubMed]

Fan, Z.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

A. O. Govorov, Y. K. Gun’ko, J. M. Slocik, V. A. Gërard, Z. Fan, and R. R. Naik, “Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects,” J. Mater. Chem. 21(42), 16806–16818 (2011).
[Crossref]

Fang, Y.

R. Ogier, Y. Fang, M. Svedendahl, P. Johansson, and M. Käll, “Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography,” ACS Photonics 1(10), 1074–1081 (2014).
[Crossref]

Farinola, G. M.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Fedotov, V. A.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Ferry, V. E.

S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
[Crossref] [PubMed]

Frank, B.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Funston, A. M.

A. M. Funston, T. J. Davis, C. Novo, and P. Mulvaney, “Coupling modes of gold trimer superstructures,” Phil. Trans. R. Soc. A 369(1950), 3472–3482 (2011).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Gërard, V. A.

A. O. Govorov, Y. K. Gun’ko, J. M. Slocik, V. A. Gërard, Z. Fan, and R. R. Naik, “Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects,” J. Mater. Chem. 21(42), 16806–16818 (2011).
[Crossref]

Giessen, H.

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic born-kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Govorov, A. O.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(8379), 8379 (2015).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862–866 (2014).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

A. O. Govorov, Y. K. Gun’ko, J. M. Slocik, V. A. Gërard, Z. Fan, and R. R. Naik, “Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects,” J. Mater. Chem. 21(42), 16806–16818 (2011).
[Crossref]

Gun’ko, Y. K.

A. O. Govorov, Y. K. Gun’ko, J. M. Slocik, V. A. Gërard, Z. Fan, and R. R. Naik, “Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects,” J. Mater. Chem. 21(42), 16806–16818 (2011).
[Crossref]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Halas, N. J.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Han, C.

C. Han and W. Y. Tam, “Chirality from shadowing deposited metallic nanostructures,” Phot. Nano. Fund. Appl. 13, 50–57 (2015).
[Crossref]

C. Han and W. Y. Tam, “Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays,” Appl. Phys. Lett. 106(8), 081102 (2015).
[Crossref]

C. Han, H. M. Leung, C. T. Chan, and W. Y. Tam, “Giant plasmonic circular dichroism in Ag staircase nanostructures,” Opt. Express 23(26), 33065–33078 (2015).
[Crossref] [PubMed]

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapor deposition,” J. Opt. 15(7), 072101 (2013).
[Crossref]

Harris, N.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref] [PubMed]

Hein, S. M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Helgert, C.

K. Dietrich, D. Lehr, C. Helgert, A. Tünnermann, and E. B. Kley, “Circular dichroism from chiral nanomaterial fabricated by on-edge lithography,” Adv. Mater. 24(44), OP321–OP325 (2012).
[Crossref] [PubMed]

Hel-Or, H. Z.

Y. Pinto, H. Z. Hel-Or, and D. Avnir, “Continuous chirality analysis of interconversion pathways of the water-trimer enantiomers,” J. Chem. Soc., Faraday Trans. 92(14), 2523–2527 (1996).
[Crossref]

Hentschel, M.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jia, H.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Johansson, P.

R. Ogier, Y. Fang, M. Svedendahl, P. Johansson, and M. Käll, “Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography,” ACS Photonics 1(10), 1074–1081 (2014).
[Crossref]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Käll, M.

R. Ogier, Y. Fang, M. Svedendahl, P. Johansson, and M. Käll, “Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography,” ACS Photonics 1(10), 1074–1081 (2014).
[Crossref]

Kang, L.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Kante, B.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

Kaschke, J.

Kley, E. B.

K. Dietrich, D. Lehr, C. Helgert, A. Tünnermann, and E. B. Kley, “Circular dichroism from chiral nanomaterial fabricated by on-edge lithography,” Adv. Mater. 24(44), OP321–OP325 (2012).
[Crossref] [PubMed]

Kolwas, K.

A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11(3), 941–951 (2016).
[Crossref] [PubMed]

Kotov, N. A.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Kriegler, C. E.

Ku, J. C.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref] [PubMed]

Kuang, H.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

Kuzyk, A.

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862–866 (2014).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Lan, S.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Lee, K.-T.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Lee, S. E.

S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
[Crossref] [PubMed]

Lehr, D.

K. Dietrich, D. Lehr, C. Helgert, A. Tünnermann, and E. B. Kley, “Circular dichroism from chiral nanomaterial fabricated by on-edge lithography,” Adv. Mater. 24(44), OP321–OP325 (2012).
[Crossref] [PubMed]

Leon, I. D.

P. Banzer, P. Woźniak, U. Mick, I. D. Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7(13117), 1–9 (2016).

Leung, H. M.

Li, E. P.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Li, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(8379), 8379 (2015).
[Crossref] [PubMed]

Li, Z.

H. Wang, Z. Li, H. Zhang, P. Wang, and S. Wen, “Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer,” Sci. Rep. 5(8207), 1–6 (2015).

Liedl, T.

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862–866 (2014).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

Link, S.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Liphardt, J.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

Liu, L.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

C. Zhou, X. Duan, and N. Liu, “A plasmonic nanorod that walks on DNA origami,” Nat. Commun. 6(8102), 8102 (2015).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862–866 (2014).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Liu, Y.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Ma, W.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

Magliulo, M.

K. Manoli, M. Magliulo, and L. Torsi, “Chiral sensor devices for differentiation of enantiomers,” Top. Curr. Chem. 341, 133–176 (2013).
[Crossref] [PubMed]

Manoli, K.

K. Manoli, M. Magliulo, and L. Torsi, “Chiral sensor devices for differentiation of enantiomers,” Top. Curr. Chem. 341, 133–176 (2013).
[Crossref] [PubMed]

Marinelli, F.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Metzger, B.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic born-kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Michel, A. K. U.

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

Mick, U.

P. Banzer, P. Woźniak, U. Mick, I. D. Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7(13117), 1–9 (2016).

Mirkin, C. A.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref] [PubMed]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Mulvaney, P.

A. M. Funston, T. J. Davis, C. Novo, and P. Mulvaney, “Coupling modes of gold trimer superstructures,” Phil. Trans. R. Soc. A 369(1950), 3472–3482 (2011).
[Crossref] [PubMed]

Naik, R. R.

A. O. Govorov, Y. K. Gun’ko, J. M. Slocik, V. A. Gërard, Z. Fan, and R. R. Naik, “Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects,” J. Mater. Chem. 21(42), 16806–16818 (2011).
[Crossref]

Naso, F.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Ni, X.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

Nordlander, P.

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Novo, C.

A. M. Funston, T. J. Davis, C. Novo, and P. Mulvaney, “Coupling modes of gold trimer superstructures,” Phil. Trans. R. Soc. A 369(1950), 3472–3482 (2011).
[Crossref] [PubMed]

Ogier, R.

R. Ogier, Y. Fang, M. Svedendahl, P. Johansson, and M. Käll, “Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography,” ACS Photonics 1(10), 1074–1081 (2014).
[Crossref]

Omar, O. H.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Osberg, K. D.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref] [PubMed]

Osipov, M.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
[Crossref]

Ozel, T.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref] [PubMed]

Palmisano, F.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Petkiewicz, S.

S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
[Crossref] [PubMed]

Pinto, Y.

Y. Pinto, H. Z. Hel-Or, and D. Avnir, “Continuous chirality analysis of interconversion pathways of the water-trimer enantiomers,” J. Chem. Soc., Faraday Trans. 92(14), 2523–2527 (1996).
[Crossref]

Premaratne, M.

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Purdie, N.

N. Purdie and K. A. Swallows, “Analytical applications of polarimetry, optical rotatory dispersion, and circular dichroism,” Anal. Chem. 61(2), 77A–89A (1989).
[Crossref] [PubMed]

Reinhard, B. M.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rodrigues, S. P.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Roller, E. M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Rukhlenko, I. D.

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

Ruther, M.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Schäferling, M.

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic born-kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Schatz, G. C.

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862–866 (2014).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Slocik, J. M.

A. O. Govorov, Y. K. Gun’ko, J. M. Slocik, V. A. Gërard, Z. Fan, and R. R. Naik, “Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects,” J. Mater. Chem. 21(42), 16806–16818 (2011).
[Crossref]

Smith, J. M.

S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
[Crossref] [PubMed]

Sönnichsen, C.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

Soukoulis, C. M.

Sun, M.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

Svedendahl, M.

R. Ogier, Y. Fang, M. Svedendahl, P. Johansson, and M. Käll, “Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography,” ACS Photonics 1(10), 1074–1081 (2014).
[Crossref]

Svirko, Y.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
[Crossref]

Swallows, K. A.

N. Purdie and K. A. Swallows, “Analytical applications of polarimetry, optical rotatory dispersion, and circular dichroism,” Anal. Chem. 61(2), 77A–89A (1989).
[Crossref] [PubMed]

Taghinejad, M.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Tam, W. Y.

C. Han and W. Y. Tam, “Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays,” Appl. Phys. Lett. 106(8), 081102 (2015).
[Crossref]

C. Han, H. M. Leung, C. T. Chan, and W. Y. Tam, “Giant plasmonic circular dichroism in Ag staircase nanostructures,” Opt. Express 23(26), 33065–33078 (2015).
[Crossref] [PubMed]

C. Han and W. Y. Tam, “Chirality from shadowing deposited metallic nanostructures,” Phot. Nano. Fund. Appl. 13, 50–57 (2015).
[Crossref]

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapor deposition,” J. Opt. 15(7), 072101 (2013).
[Crossref]

Tanese, M. C.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Taubner, T.

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tittl, A.

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

Torsi, L.

K. Manoli, M. Magliulo, and L. Torsi, “Chiral sensor devices for differentiation of enantiomers,” Top. Curr. Chem. 341, 133–176 (2013).
[Crossref] [PubMed]

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Tünnermann, A.

K. Dietrich, D. Lehr, C. Helgert, A. Tünnermann, and E. B. Kley, “Circular dichroism from chiral nanomaterial fabricated by on-edge lithography,” Adv. Mater. 24(44), OP321–OP325 (2012).
[Crossref] [PubMed]

Urbas, A.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(8379), 8379 (2015).
[Crossref] [PubMed]

Valli, L.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, H.

H. Wang, Z. Li, H. Zhang, P. Wang, and S. Wen, “Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer,” Sci. Rep. 5(8207), 1–6 (2015).

Wang, L.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

Wang, P.

H. Wang, Z. Li, H. Zhang, P. Wang, and S. Wen, “Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer,” Sci. Rep. 5(8207), 1–6 (2015).

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(8379), 8379 (2015).
[Crossref] [PubMed]

Wang, Y.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Wegener, M.

Weiss, T.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Wen, S.

H. Wang, Z. Li, H. Zhang, P. Wang, and S. Wen, “Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer,” Sci. Rep. 5(8207), 1–6 (2015).

Werner, D. H.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Wozniak, P.

P. Banzer, P. Woźniak, U. Mick, I. D. Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7(13117), 1–9 (2016).

Wu, L.

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

Wuttig, M.

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

Xiao, D.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Xiao, F.

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

Xu, C.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

Xu, L.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

Yang, S.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

Yao, K.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Yao, W.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Yin, X.

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic born-kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Zambonin, P. G.

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

Zeng, H.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Zhang, H.

H. Wang, Z. Li, H. Zhang, P. Wang, and S. Wen, “Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer,” Sci. Rep. 5(8207), 1–6 (2015).

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862–866 (2014).
[Crossref] [PubMed]

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

Zhang, P.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, X.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhao, J.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Zhao, Y.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

Zheludev, N.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Zhou, C.

C. Zhou, X. Duan, and N. Liu, “A plasmonic nanorod that walks on DNA origami,” Nat. Commun. 6(8102), 8102 (2015).
[Crossref] [PubMed]

Zhou, J.

Zhu, J.

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

Zhu, Y.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

ACS Nano (2)

M. Hentschel, L. Wu, M. Schäferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6(11), 10355–10365 (2012).
[Crossref] [PubMed]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

ACS Photonics (3)

R. Ogier, Y. Fang, M. Svedendahl, P. Johansson, and M. Käll, “Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography,” ACS Photonics 1(10), 1074–1081 (2014).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

K. Dietrich, D. Lehr, C. Helgert, A. Tünnermann, and E. B. Kley, “Circular dichroism from chiral nanomaterial fabricated by on-edge lithography,” Adv. Mater. 24(44), OP321–OP325 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

N. Purdie and K. A. Swallows, “Analytical applications of polarimetry, optical rotatory dispersion, and circular dichroism,” Anal. Chem. 61(2), 77A–89A (1989).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

C. Han and W. Y. Tam, “Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays,” Appl. Phys. Lett. 106(8), 081102 (2015).
[Crossref]

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

W. Zhu, I. D. Rukhlenko, F. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. Appl. Phys. 115(14), 143101 (2014).
[Crossref]

J. Chem. Soc., Faraday Trans. (1)

Y. Pinto, H. Z. Hel-Or, and D. Avnir, “Continuous chirality analysis of interconversion pathways of the water-trimer enantiomers,” J. Chem. Soc., Faraday Trans. 92(14), 2523–2527 (1996).
[Crossref]

J. Mater. Chem. (1)

A. O. Govorov, Y. K. Gun’ko, J. M. Slocik, V. A. Gërard, Z. Fan, and R. R. Naik, “Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects,” J. Mater. Chem. 21(42), 16806–16818 (2011).
[Crossref]

J. Opt. (1)

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapor deposition,” J. Opt. 15(7), 072101 (2013).
[Crossref]

Nano Lett. (6)

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

X. Yin, M. Schäferling, A. K. U. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic born-kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

S. E. Lee, Q. Chen, R. Bhat, S. Petkiewicz, J. M. Smith, V. E. Ferry, A. L. Correia, A. P. Alivisatos, and M. J. Bissell, “Reversible aptamer-Au plasmon rulers for secreted single molecules,” Nano Lett. 15(7), 4564–4570 (2015).
[Crossref] [PubMed]

K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, and C. A. Mirkin, “Systematic study of antibonding modes in gold nanorod dimers and trimers,” Nano Lett. 14(12), 6949–6954 (2014).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005).
[Crossref] [PubMed]

Nat. Commun. (3)

P. Banzer, P. Woźniak, U. Mick, I. D. Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7(13117), 1–9 (2016).

C. Zhou, X. Duan, and N. Liu, “A plasmonic nanorod that walks on DNA origami,” Nat. Commun. 6(8102), 8102 (2015).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(8379), 8379 (2015).
[Crossref] [PubMed]

Nat. Mater. (3)

L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, and F. Naso, “A sensitivity-enhanced field-effect chiral sensor,” Nat. Mater. 7(5), 412–417 (2008).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Liedl, and N. Liu, “Reconfigurable 3D plasmonic metamolecules,” Nat. Mater. 13(9), 862–866 (2014).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, and X. Zhang, “Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution,” Nat. Nanotechnol. 9(12), 1002–1006 (2014).
[Crossref] [PubMed]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7(8), 490–493 (2012).
[Crossref] [PubMed]

Nature (1)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phil. Trans. R. Soc. A (1)

A. M. Funston, T. J. Davis, C. Novo, and P. Mulvaney, “Coupling modes of gold trimer superstructures,” Phil. Trans. R. Soc. A 369(1950), 3472–3482 (2011).
[Crossref] [PubMed]

Phot. Nano. Fund. Appl. (1)

C. Han and W. Y. Tam, “Chirality from shadowing deposited metallic nanostructures,” Phot. Nano. Fund. Appl. 13, 50–57 (2015).
[Crossref]

Phys. Rev. Lett. (2)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Plasmonics (1)

A. Derkachova, K. Kolwas, and I. Demchenko, “Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres,” Plasmonics 11(3), 941–951 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

H. Wang, Z. Li, H. Zhang, P. Wang, and S. Wen, “Giant local circular dichroism within an asymmetric plasmonic nanoparticle trimer,” Sci. Rep. 5(8207), 1–6 (2015).

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3(1934), 1934 (2013).
[Crossref] [PubMed]

Science (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Top. Curr. Chem. (1)

K. Manoli, M. Magliulo, and L. Torsi, “Chiral sensor devices for differentiation of enantiomers,” Top. Curr. Chem. 341, 133–176 (2013).
[Crossref] [PubMed]

Other (2)

G. D. Fasman, ed., Circular Dichroism and the Conformational Analysis of Biomolecules (Plenum, 1996).

C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the 3D nanorod trimer with geometric parameters: l1 = 122 nm, l2 = 120 nm, w = 40 nm, t = 15 nm, h = 26.7 nm and g = 70 nm. The lattice spacings in both x- and y- directions are 250 nm. (b) Top view of the structure where s denotes the lateral displacement of the middle rod (pink) from the symmetry axis (s = 0). (c) Front view of the structure whereθ denotes the rotational angle of the middle rod. θ = 132° indicates the angle of the quasi-mirror plane of the nanorod trimer.
Fig. 2
Fig. 2 (a)-(b) Calculated absorption spectra of the discontinuous nanorod trimer for x- (blue color) and y- (red color) polarization incidence, respectively. The displacement s of middle rod is 0 (dash curve) and −40 nm (solid curve), respectively. (c) Calculated transmittance difference of RCP and LCP incident light. (d)-(i) The current distributions (black arrows) as well as the induced magnetic dipole (μ, green arrow) and electric dipole (p, purple arrow) moments for modes A0 (d, e), A1 (f, g) and A2 (h, i), respectively.
Fig. 3
Fig. 3 (a) Calculated ΔT of the discontinuous nanorod trimer for different lateral displacement s. (b) Amplitudes of CD for mode A1 (green) and A2 (red) at resonance as a function of s from −120 to 120 nm. (c) The corresponding frequencies of mode A1 (green) and A2 (red) and the frequency difference (blue) as a function of s.
Fig. 4
Fig. 4 (a) Schematic diagram of the middle rod rotation in the 3D nanorod trimer. Calculated ΔT for rotational angles (b) at θ = 132° (mirror plane), 120° and 140°, (c) From 132° to 200°, (d) From132° to 65°. (e) Amplitudes of CD for mode A1 (green) and A2 (red) at resonance as a function of θ from 65° to 200°. (f) Frequencies of mode A1 (green) and A2 (red) and the frequency difference (blue) as a function of θ.
Fig. 5
Fig. 5 (a)-(b) Transmission coefficients of the continuous nanorod trimer with s = −40 nm and θ = 50°, i.e. the middle rod bridging the top-bottom rod pair, for x- (blue color) and y- (red color) polarization incidence, respectively. (c) Calculated transmission difference of RCP and LCP incident light. (d)-(g) The distributions of the displacement currents (black arrows), the induced magnetic dipole (μ) and electric dipole (p) moments for mode A1, B1, A2 and B2, respectively.
Fig. 6
Fig. 6 (a)-(b) Experimental ΔT spectra and SEM images of the 3D chiral nanorod trimer for different lateral displacement s. The geometrical parameters are l1 = l2 = 130 nm, w = 40 nm, t = 40 nm and h = 40 nm. The black scale bar is 100 nm. (c) Amplitudes (red open circles) and frequencies (blue open circles) of ΔT peaks extracted from Fig. 6(b) as a function of s. (d)-(f) The corresponding simulation results including dielectric environment and the ITO glass.

Metrics