Abstract

Metasurfaces are investigated intensively for biophotonics applications due to their resonant wavelength flexibly tuned in the near infrared region specially matching biological tissues. Here, we present numerically a metasurface structure combining dielectric resonance with surface plasmon mode of a metal plane, which is a perfect absorber with a narrow linewidth 10 nm wide and quality factor 120 in the near infrared regime. As a sensor, its bulk sensitivity and bulk figure of merit reach respectively 840 nm/RIU and 84/RIU, while its surface sensitivity and surface figure of merit are respectively 1 and 0.1/nm. For different types of adsorbate layers with the same thickness of 8 nm, its surface sensitivity and figure of merit are respectively 32.3 and 3.2/RIU. The enhanced electric field is concentrated on top of dielectric patch ends and in the patch ends simultaneously. Results show that the presented structure has high surface (and bulk) sensing capability in sensing applications due to its narrow linewidth and deep modulation depth. This could pave a new route toward dielectric-metal metasurface in biosensing applications, such as early disease detections and designs of neural stem cell sensing platforms.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Metal-dielectric-metal based narrow band absorber for sensing applications

Xiaoyuan Lu, Rengang Wan, and Tongyi Zhang
Opt. Express 23(23) 29842-29847 (2015)

Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface

Jie Hu, Tingting Lang, and Guo-hua Shi
Opt. Express 25(13) 15241-15251 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Chen, A. J. Taylor, and N. F. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
    [Crossref] [PubMed]
  2. S. A. Maier, “Plasmonics: the benefits of darkness,” Nat. Mater. 8(9), 699–700 (2009).
    [Crossref] [PubMed]
  3. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
    [Crossref] [PubMed]
  4. M. Huang, A. A. Yanik, T. Y. Chang, and Hatice Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
    [Crossref]
  5. A. K. Yang, Z. Y. Li, M. P. Knudson, A. J. Hryn, W. J. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
    [Crossref] [PubMed]
  6. Z. Y. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
    [Crossref] [PubMed]
  7. J. A. Huang and L. B. Luo, “Low-dimensional plasmonic photodetectors: recent progress and future opportunities,” Adv. Opt. Mat., in press (2018).
    [Crossref]
  8. X. Y. Lu and J. T. Lin, “Field enhancement of metal grating with nanocavities and its sensing applications,” J. Opt. 19(5), 055004 (2017).
    [Crossref]
  9. J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
    [Crossref] [PubMed]
  10. H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
    [Crossref] [PubMed]
  11. S. Shu and Y. Y. Li, “Triple-layer Fabry-Perot/SPP aluminum absorber in the visible and near-infrared region,” Opt. Lett. 40(6), 934–937 (2015).
    [Crossref] [PubMed]
  12. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  13. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
    [Crossref]
  14. S. P. Zhang, K. Bao, N. J. Halas, H. X. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
    [Crossref] [PubMed]
  15. P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, “All-dielectric subwavelength metasurface focusing lens,” Opt. Express 22(21), 26212–26221 (2014).
    [Crossref] [PubMed]
  16. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).
  17. V. Asadchy, M. Albooyeh, and S. Tretyakov, “Optical metamirror: all-dielectric frequency-selective mirror with fully controllable reflection phase,” J. Opt. Soc. Am. B 33(2), A16–A20 (2016).
    [Crossref]
  18. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  19. P. C. Strickland, “Dielectric-resonator array antenna system,” U.S. Patent7,071,879 (July 4, 2006).
  20. Y. Yang, Q. Li, and M. Qiu, “Controlling the angular radiation of single emitters using dielectric patch nanoantennas,” Appl. Phys. Lett. 107(3), 031109 (2015).
    [Crossref]
  21. D. Ohana and U. Levy, “Mode conversion based on dielectric metamaterial in silicon,” Opt. Express 22(22), 27617–27631 (2014).
    [Crossref] [PubMed]
  22. M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108, 221903 (2016).
    [Crossref]
  23. S. Jahani and J. Zubin, “All-dielectric metamaterials,” Nat. Nanotech. 11(1), 23–36 (2016).
    [Crossref]
  24. N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D. Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
    [Crossref] [PubMed]
  25. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref] [PubMed]
  26. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69 (2012).
    [Crossref]
  27. J. F. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators,” Opt. Express 22(25), 30889–30898 (2014).
    [Crossref]
  28. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
    [Crossref]
  29. Y. Gu and Q. Gong, “Dielectric resonance bandgap and localized defect mode in a periodically ordered metallic-dielectric composite,” Phys. Rev. B 70(9), 092101 (2004).
    [Crossref]
  30. E. Almpanis and N. Papanikolaou, “Dielectric nanopatterned surfaces for subwavelength light localization and sensing applications,” Microelectron. Eng. 159, 60–63 (2016).
    [Crossref]
  31. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
    [Crossref] [PubMed]
  32. J. Li, J. Ye, C. Chen, Y. Li, N. Verellen, V. V. Moshchalkov, L. Lagae, and P. V. Dorpe, “Revisiting the surface sensitivity of nanoplasmonic biosensors,” ACS Photonics 2(3), 425–431 (2015).
    [Crossref]
  33. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref]
  34. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
    [Crossref] [PubMed]
  35. S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
    [Crossref] [PubMed]
  36. J. A. Huang, Y. L. Zhang, H. Ding, and H. B. Sun, “SERS-enabled lab-on-a-chip systems,” Adv. Opt. Mat. 3(5), 618–633 (2015).
    [Crossref]
  37. K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
    [Crossref]
  38. C. Paviolo, J. W. Haycock, J. Yong, A. Yu, P. R. Stoddart, and S. L. McArthur, “Laser exposure of gold nanorods can increase neuronal cell outgrowth,” Biotechnol. Bioeng. 110(8), 2277–2291 (2013).
    [Crossref] [PubMed]
  39. X. Y. Lu, L. X. Zhang, and T. Y. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
    [Crossref] [PubMed]
  40. X. Y. Lu, R. G. Wan, and T. Y. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23(23), 29842–29847 (2015).
    [Crossref] [PubMed]
  41. P. Zolotavin, A. Alabastri, P. Nordlander, and D. Natelson, “Plasmonic heating in Au nanowires at low Temperatures: the role of thermal boundary resistance,” ACS Nano 10(7), 6972–6979 (2016).
    [Crossref] [PubMed]
  42. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  43. Y. Li and C. Argyropoulos, “Controlling collective spontaneous emission with plasmonic waveguides,” Opt. Express 24(23), 26696–26708 (2016).
    [Crossref] [PubMed]
  44. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
    [Crossref]
  45. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
    [Crossref] [PubMed]
  46. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  47. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  48. L. Wollet, B. Frank, M. Schaferling, M. Mesch, S. Hein, and H. Giessen, “Plasmon hybridization in stacked metallic nanocups,” Opt. Mater. Express 2(10), 1384–1390 (2012).
    [Crossref]
  49. M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27(42), 424003 (2016).
    [Crossref] [PubMed]
  50. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
    [Crossref] [PubMed]
  51. W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).
    [Crossref]
  52. M. Decker, T. Pertsch, and I. Staude, “Strong coupling in hybrid metal-dielectric nanoresonators,” Phil. Trans. R. Soc. A 375(2090), 20160312 (2017).
    [Crossref] [PubMed]
  53. F. Callewaert, S. Chen, S. Butun, and K. Aydin, “Narrow band absorber based on a dielectric nanodisk array on silver film,” J. Opt. 18(7), 075006 (2016).
    [Crossref]
  54. A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir 32(4), 1091–1100 (2016).
    [Crossref] [PubMed]
  55. J. M. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, 2014).
  56. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  57. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
    [Crossref] [PubMed]
  58. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
    [Crossref] [PubMed]
  59. H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
    [Crossref] [PubMed]
  60. M. E. Beheiry, V. Liu, S. H. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
    [Crossref] [PubMed]
  61. Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
    [Crossref] [PubMed]
  62. T. L. Liu, K. J. Russell, S. Cui, and E. L. Hu, “Two-dimensional hybrid photonic/plasmonic crystal cavities,” Opt. Express 22(7), 8219–8225 (2014).
    [Crossref] [PubMed]
  63. L. Shi, H. Yin, X. Zhu, X. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
    [Crossref]

2018 (1)

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

2017 (5)

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

X. Y. Lu and J. T. Lin, “Field enhancement of metal grating with nanocavities and its sensing applications,” J. Opt. 19(5), 055004 (2017).
[Crossref]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D. Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

M. Decker, T. Pertsch, and I. Staude, “Strong coupling in hybrid metal-dielectric nanoresonators,” Phil. Trans. R. Soc. A 375(2090), 20160312 (2017).
[Crossref] [PubMed]

2016 (12)

F. Callewaert, S. Chen, S. Butun, and K. Aydin, “Narrow band absorber based on a dielectric nanodisk array on silver film,” J. Opt. 18(7), 075006 (2016).
[Crossref]

A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir 32(4), 1091–1100 (2016).
[Crossref] [PubMed]

E. Almpanis and N. Papanikolaou, “Dielectric nanopatterned surfaces for subwavelength light localization and sensing applications,” Microelectron. Eng. 159, 60–63 (2016).
[Crossref]

P. Zolotavin, A. Alabastri, P. Nordlander, and D. Natelson, “Plasmonic heating in Au nanowires at low Temperatures: the role of thermal boundary resistance,” ACS Nano 10(7), 6972–6979 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108, 221903 (2016).
[Crossref]

S. Jahani and J. Zubin, “All-dielectric metamaterials,” Nat. Nanotech. 11(1), 23–36 (2016).
[Crossref]

H. T. Chen, A. J. Taylor, and N. F. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

V. Asadchy, M. Albooyeh, and S. Tretyakov, “Optical metamirror: all-dielectric frequency-selective mirror with fully controllable reflection phase,” J. Opt. Soc. Am. B 33(2), A16–A20 (2016).
[Crossref]

Y. Li and C. Argyropoulos, “Controlling collective spontaneous emission with plasmonic waveguides,” Opt. Express 24(23), 26696–26708 (2016).
[Crossref] [PubMed]

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27(42), 424003 (2016).
[Crossref] [PubMed]

2015 (10)

Y. Yang, Q. Li, and M. Qiu, “Controlling the angular radiation of single emitters using dielectric patch nanoantennas,” Appl. Phys. Lett. 107(3), 031109 (2015).
[Crossref]

S. Shu and Y. Y. Li, “Triple-layer Fabry-Perot/SPP aluminum absorber in the visible and near-infrared region,” Opt. Lett. 40(6), 934–937 (2015).
[Crossref] [PubMed]

H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40(15), 3647–3650 (2015).
[Crossref] [PubMed]

X. Y. Lu, L. X. Zhang, and T. Y. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
[Crossref] [PubMed]

X. Y. Lu, R. G. Wan, and T. Y. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23(23), 29842–29847 (2015).
[Crossref] [PubMed]

A. K. Yang, Z. Y. Li, M. P. Knudson, A. J. Hryn, W. J. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref] [PubMed]

Z. Y. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

J. A. Huang, Y. L. Zhang, H. Ding, and H. B. Sun, “SERS-enabled lab-on-a-chip systems,” Adv. Opt. Mat. 3(5), 618–633 (2015).
[Crossref]

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

J. Li, J. Ye, C. Chen, Y. Li, N. Verellen, V. V. Moshchalkov, L. Lagae, and P. V. Dorpe, “Revisiting the surface sensitivity of nanoplasmonic biosensors,” ACS Photonics 2(3), 425–431 (2015).
[Crossref]

2014 (8)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

T. L. Liu, K. J. Russell, S. Cui, and E. L. Hu, “Two-dimensional hybrid photonic/plasmonic crystal cavities,” Opt. Express 22(7), 8219–8225 (2014).
[Crossref] [PubMed]

S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
[Crossref] [PubMed]

P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, “All-dielectric subwavelength metasurface focusing lens,” Opt. Express 22(21), 26212–26221 (2014).
[Crossref] [PubMed]

D. Ohana and U. Levy, “Mode conversion based on dielectric metamaterial in silicon,” Opt. Express 22(22), 27617–27631 (2014).
[Crossref] [PubMed]

J. F. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators,” Opt. Express 22(25), 30889–30898 (2014).
[Crossref]

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).
[Crossref]

Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

2013 (3)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

C. Paviolo, J. W. Haycock, J. Yong, A. Yu, P. R. Stoddart, and S. L. McArthur, “Laser exposure of gold nanorods can increase neuronal cell outgrowth,” Biotechnol. Bioeng. 110(8), 2277–2291 (2013).
[Crossref] [PubMed]

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

2012 (5)

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69 (2012).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref] [PubMed]

L. Wollet, B. Frank, M. Schaferling, M. Mesch, S. Hein, and H. Giessen, “Plasmon hybridization in stacked metallic nanocups,” Opt. Mater. Express 2(10), 1384–1390 (2012).
[Crossref]

2011 (2)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

S. P. Zhang, K. Bao, N. J. Halas, H. X. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

2010 (6)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

M. E. Beheiry, V. Liu, S. H. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
[Crossref] [PubMed]

L. Shi, H. Yin, X. Zhu, X. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

2009 (2)

2007 (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

2004 (2)

Y. Gu and Q. Gong, “Dielectric resonance bandgap and localized defect mode in a periodically ordered metallic-dielectric composite,” Phys. Rev. B 70(9), 092101 (2004).
[Crossref]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

2003 (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69 (2012).
[Crossref]

Alabastri, A.

P. Zolotavin, A. Alabastri, P. Nordlander, and D. Natelson, “Plasmonic heating in Au nanowires at low Temperatures: the role of thermal boundary resistance,” ACS Nano 10(7), 6972–6979 (2016).
[Crossref] [PubMed]

Alaee, R.

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108, 221903 (2016).
[Crossref]

Albooyeh, M.

Albrektsen, O.

Alessandri, I.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D. Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Almpanis, E.

E. Almpanis and N. Papanikolaou, “Dielectric nanopatterned surfaces for subwavelength light localization and sensing applications,” Microelectron. Eng. 159, 60–63 (2016).
[Crossref]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69 (2012).
[Crossref]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

Altug, Hatice

Ameling, R.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Aono, M.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Argyropoulos, C.

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69 (2012).
[Crossref]

Asadchy, V.

Aydin, K.

F. Callewaert, S. Chen, S. Butun, and K. Aydin, “Narrow band absorber based on a dielectric nanodisk array on silver film,” J. Opt. 18(7), 075006 (2016).
[Crossref]

Z. Y. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

A. K. Yang, Z. Y. Li, M. P. Knudson, A. J. Hryn, W. J. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref] [PubMed]

S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
[Crossref] [PubMed]

Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Bao, K.

S. P. Zhang, K. Bao, N. J. Halas, H. X. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

Beheiry, M. E.

Belov, P.

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108, 221903 (2016).
[Crossref]

Bhaskaran, M.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).
[Crossref]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bontempi, N.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D. Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Braun, P. V.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Brener, I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Butun, S.

F. Callewaert, S. Chen, S. Butun, and K. Aydin, “Narrow band absorber based on a dielectric nanodisk array on silver film,” J. Opt. 18(7), 075006 (2016).
[Crossref]

Z. Y. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
[Crossref] [PubMed]

Byren, R.

Callewaert, F.

F. Callewaert, S. Chen, S. Butun, and K. Aydin, “Narrow band absorber based on a dielectric nanodisk array on silver film,” J. Opt. 18(7), 075006 (2016).
[Crossref]

Carvalho, A.

A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir 32(4), 1091–1100 (2016).
[Crossref] [PubMed]

Cetin, A. E.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

Chanda, D.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Chang, T. Y.

Chen, C.

J. Li, J. Ye, C. Chen, Y. Li, N. Verellen, V. V. Moshchalkov, L. Lagae, and P. V. Dorpe, “Revisiting the surface sensitivity of nanoplasmonic biosensors,” ACS Photonics 2(3), 425–431 (2015).
[Crossref]

Chen, H. T.

H. T. Chen, A. J. Taylor, and N. F. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Chen, K.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Chen, S.

F. Callewaert, S. Chen, S. Butun, and K. Aydin, “Narrow band absorber based on a dielectric nanodisk array on silver film,” J. Opt. 18(7), 075006 (2016).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Choi, D. Y.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D. Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Chong, K. E.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D. Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Chui, Y. S.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

Cole, M. A.

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27(42), 424003 (2016).
[Crossref] [PubMed]

Cui, S.

Cumming, B. P.

Dao, T. D.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Decker, M.

M. Decker, T. Pertsch, and I. Staude, “Strong coupling in hybrid metal-dielectric nanoresonators,” Phil. Trans. R. Soc. A 375(2090), 20160312 (2017).
[Crossref] [PubMed]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Ding, H.

J. A. Huang, Y. L. Zhang, H. Ding, and H. B. Sun, “SERS-enabled lab-on-a-chip systems,” Adv. Opt. Mat. 3(5), 618–633 (2015).
[Crossref]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Dodds, R. K.

Dorpe, P. V.

J. Li, J. Ye, C. Chen, Y. Li, N. Verellen, V. V. Moshchalkov, L. Lagae, and P. V. Dorpe, “Revisiting the surface sensitivity of nanoplasmonic biosensors,” ACS Photonics 2(3), 425–431 (2015).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Fan, K.

Fan, S. H.

Fernandes, M. H.

A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir 32(4), 1091–1100 (2016).
[Crossref] [PubMed]

Frank, B.

Fumeaux, C.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).
[Crossref]

Gan, X.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

Giessen, H.

L. Wollet, B. Frank, M. Schaferling, M. Mesch, S. Hein, and H. Giessen, “Plasmon hybridization in stacked metallic nanocups,” Opt. Mater. Express 2(10), 1384–1390 (2012).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Gong, Q.

Y. Gu and Q. Gong, “Dielectric resonance bandgap and localized defect mode in a periodically ordered metallic-dielectric composite,” Phys. Rev. B 70(9), 092101 (2004).
[Crossref]

Gu, M.

Gu, Y.

Y. Gu and Q. Gong, “Dielectric resonance bandgap and localized defect mode in a periodically ordered metallic-dielectric composite,” Phys. Rev. B 70(9), 092101 (2004).
[Crossref]

Halas, N. J.

S. P. Zhang, K. Bao, N. J. Halas, H. X. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Hansford, D. J.

A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir 32(4), 1091–1100 (2016).
[Crossref] [PubMed]

Haycock, J. W.

C. Paviolo, J. W. Haycock, J. Yong, A. Yu, P. R. Stoddart, and S. L. McArthur, “Laser exposure of gold nanorods can increase neuronal cell outgrowth,” Biotechnol. Bioeng. 110(8), 2277–2291 (2013).
[Crossref] [PubMed]

He, L. F.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Hein, S.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

Hryn, A. J.

A. K. Yang, Z. Y. Li, M. P. Knudson, A. J. Hryn, W. J. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref] [PubMed]

Hu, E. L.

Huang, J. A.

J. A. Huang, Y. L. Zhang, H. Ding, and H. B. Sun, “SERS-enabled lab-on-a-chip systems,” Adv. Opt. Mat. 3(5), 618–633 (2015).
[Crossref]

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

J. A. Huang and L. B. Luo, “Low-dimensional plasmonic photodetectors: recent progress and future opportunities,” Adv. Opt. Mat., in press (2018).
[Crossref]

Huang, M.

Ihlefeld, J. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

Ishii, S.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jahani, S.

S. Jahani and J. Zubin, “All-dielectric metamaterials,” Nat. Nanotech. 11(1), 23–36 (2016).
[Crossref]

Jia, B.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Jin, J. M.

J. M. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, 2014).

Kapitanova, P.

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108, 221903 (2016).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69 (2012).
[Crossref]

Kildishev, A. V.

Kivshar, Y. S.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D. Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108, 221903 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Knudson, M. P.

A. K. Yang, Z. Y. Li, M. P. Knudson, A. J. Hryn, W. J. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref] [PubMed]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Lagae, L.

J. Li, J. Ye, C. Chen, Y. Li, N. Verellen, V. V. Moshchalkov, L. Lagae, and P. V. Dorpe, “Revisiting the surface sensitivity of nanoplasmonic biosensors,” ACS Photonics 2(3), 425–431 (2015).
[Crossref]

Langguth, L.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Lee, S. T.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Levi, O.

Levy, U.

Li, J.

J. Li, J. Ye, C. Chen, Y. Li, N. Verellen, V. V. Moshchalkov, L. Lagae, and P. V. Dorpe, “Revisiting the surface sensitivity of nanoplasmonic biosensors,” ACS Photonics 2(3), 425–431 (2015).
[Crossref]

Li, Q.

Y. Yang, Q. Li, and M. Qiu, “Controlling the angular radiation of single emitters using dielectric patch nanoantennas,” Appl. Phys. Lett. 107(3), 031109 (2015).
[Crossref]

Li, Y.

Y. Li and C. Argyropoulos, “Controlling collective spontaneous emission with plasmonic waveguides,” Opt. Express 24(23), 26696–26708 (2016).
[Crossref] [PubMed]

J. Li, J. Ye, C. Chen, Y. Li, N. Verellen, V. V. Moshchalkov, L. Lagae, and P. V. Dorpe, “Revisiting the surface sensitivity of nanoplasmonic biosensors,” ACS Photonics 2(3), 425–431 (2015).
[Crossref]

Li, Y. Y.

Li, Z. Y.

Z. Y. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

A. K. Yang, Z. Y. Li, M. P. Knudson, A. J. Hryn, W. J. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref] [PubMed]

Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Lin, J. T.

X. Y. Lu and J. T. Lin, “Field enhancement of metal grating with nanocavities and its sensing applications,” J. Opt. 19(5), 055004 (2017).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, T. L.

Liu, V.

Liu, W.

Liu, X.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

L. Shi, H. Yin, X. Zhu, X. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

Lu, H.

Lu, X. Y.

Lui, E.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Luo, L. B.

J. A. Huang and L. B. Luo, “Low-dimensional plasmonic photodetectors: recent progress and future opportunities,” Adv. Opt. Mat., in press (2018).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

S. A. Maier, “Plasmonics: the benefits of darkness,” Nat. Mater. 8(9), 699–700 (2009).
[Crossref] [PubMed]

Mao, D.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

McArthur, S. L.

C. Paviolo, J. W. Haycock, J. Yong, A. Yu, P. R. Stoddart, and S. L. McArthur, “Laser exposure of gold nanorods can increase neuronal cell outgrowth,” Biotechnol. Bioeng. 110(8), 2277–2291 (2013).
[Crossref] [PubMed]

Mesch, M.

L. Wollet, B. Frank, M. Schaferling, M. Mesch, S. Hein, and H. Giessen, “Plasmon hybridization in stacked metallic nanocups,” Opt. Mater. Express 2(10), 1384–1390 (2012).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Mihi, A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Monteiro, F. J.

A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir 32(4), 1091–1100 (2016).
[Crossref] [PubMed]

Moshchalkov, V. V.

J. Li, J. Ye, C. Chen, Y. Li, N. Verellen, V. V. Moshchalkov, L. Lagae, and P. V. Dorpe, “Revisiting the surface sensitivity of nanoplasmonic biosensors,” ACS Photonics 2(3), 425–431 (2015).
[Crossref]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Nagao, T.

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Natelson, D.

P. Zolotavin, A. Alabastri, P. Nordlander, and D. Natelson, “Plasmonic heating in Au nanowires at low Temperatures: the role of thermal boundary resistance,” ACS Nano 10(7), 6972–6979 (2016).
[Crossref] [PubMed]

Neshev, D. N.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D. Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Nielsen, M. G.

Nordlander, P.

P. Zolotavin, A. Alabastri, P. Nordlander, and D. Natelson, “Plasmonic heating in Au nanowires at low Temperatures: the role of thermal boundary resistance,” ACS Nano 10(7), 6972–6979 (2016).
[Crossref] [PubMed]

S. P. Zhang, K. Bao, N. J. Halas, H. X. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Odit, M.

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108, 221903 (2016).
[Crossref]

Odom, T. W.

A. K. Yang, Z. Y. Li, M. P. Knudson, A. J. Hryn, W. J. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref] [PubMed]

Ohana, D.

Orton, H. W.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D. Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).
[Crossref]

Palacios, E.

Z. Y. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Papanikolaou, N.

E. Almpanis and N. Papanikolaou, “Dielectric nanopatterned surfaces for subwavelength light localization and sensing applications,” Microelectron. Eng. 159, 60–63 (2016).
[Crossref]

Paviolo, C.

C. Paviolo, J. W. Haycock, J. Yong, A. Yu, P. R. Stoddart, and S. L. McArthur, “Laser exposure of gold nanorods can increase neuronal cell outgrowth,” Biotechnol. Bioeng. 110(8), 2277–2291 (2013).
[Crossref] [PubMed]

Pelaez-Vargas, A.

A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir 32(4), 1091–1100 (2016).
[Crossref] [PubMed]

Pertsch, T.

M. Decker, T. Pertsch, and I. Staude, “Strong coupling in hybrid metal-dielectric nanoresonators,” Phil. Trans. R. Soc. A 375(2090), 20160312 (2017).
[Crossref] [PubMed]

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

Pors, A.

Powell, D. A.

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27(42), 424003 (2016).
[Crossref] [PubMed]

Qin, S.

Qiu, M.

Y. Yang, Q. Li, and M. Qiu, “Controlling the angular radiation of single emitters using dielectric patch nanoantennas,” Appl. Phys. Lett. 107(3), 031109 (2015).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

Rockstuhl, C.

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108, 221903 (2016).
[Crossref]

Rogers, J. A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Russell, K. J.

Schaferling, M.

Schulmerich, M.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Shadrivov, I. V.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27(42), 424003 (2016).
[Crossref] [PubMed]

Shah, C. M.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).
[Crossref]

Shalaev, V. M.

P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, “All-dielectric subwavelength metasurface focusing lens,” Opt. Express 22(21), 26212–26221 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Shi, L.

L. Shi, H. Yin, X. Zhu, X. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

Shigeta, K.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Shkunov, V. V.

Shu, S.

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69 (2012).
[Crossref]

Sinclair, M. B.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

Sriram, S.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).
[Crossref]

Staude, I.

M. Decker, T. Pertsch, and I. Staude, “Strong coupling in hybrid metal-dielectric nanoresonators,” Phil. Trans. R. Soc. A 375(2090), 20160312 (2017).
[Crossref] [PubMed]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D. Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

Stewart, J. L.

Stoddart, P. R.

C. Paviolo, J. W. Haycock, J. Yong, A. Yu, P. R. Stoddart, and S. L. McArthur, “Laser exposure of gold nanorods can increase neuronal cell outgrowth,” Biotechnol. Bioeng. 110(8), 2277–2291 (2013).
[Crossref] [PubMed]

Strickland, P. C.

P. C. Strickland, “Dielectric-resonator array antenna system,” U.S. Patent7,071,879 (July 4, 2006).

Strohkendl, F.

Sun, H. B.

J. A. Huang, Y. L. Zhang, H. Ding, and H. B. Sun, “SERS-enabled lab-on-a-chip systems,” Adv. Opt. Mat. 3(5), 618–633 (2015).
[Crossref]

Taylor, A. J.

H. T. Chen, A. J. Taylor, and N. F. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Tretyakov, S.

Truong, T.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Ung, B. S. Y.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Verellen, N.

J. Li, J. Ye, C. Chen, Y. Li, N. Verellen, V. V. Moshchalkov, L. Lagae, and P. V. Dorpe, “Revisiting the surface sensitivity of nanoplasmonic biosensors,” ACS Photonics 2(3), 425–431 (2015).
[Crossref]

Wan, R. G.

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Wang, W. J.

A. K. Yang, Z. Y. Li, M. P. Knudson, A. J. Hryn, W. J. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref] [PubMed]

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wendt, J. R.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

West, P. R.

Withayachumnankul, W.

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).
[Crossref]

Wollet, L.

Wong, T. L.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69 (2012).
[Crossref]

Xu, H. X.

S. P. Zhang, K. Bao, N. J. Halas, H. X. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Yang, A. K.

A. K. Yang, Z. Y. Li, M. P. Knudson, A. J. Hryn, W. J. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, Q. Li, and M. Qiu, “Controlling the angular radiation of single emitters using dielectric patch nanoantennas,” Appl. Phys. Lett. 107(3), 031109 (2015).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69 (2012).
[Crossref]

M. Huang, A. A. Yanik, T. Y. Chang, and Hatice Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[Crossref]

Ye, J.

J. Li, J. Ye, C. Chen, Y. Li, N. Verellen, V. V. Moshchalkov, L. Lagae, and P. V. Dorpe, “Revisiting the surface sensitivity of nanoplasmonic biosensors,” ACS Photonics 2(3), 425–431 (2015).
[Crossref]

Yin, H.

L. Shi, H. Yin, X. Zhu, X. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

Yong, J.

C. Paviolo, J. W. Haycock, J. Yong, A. Yu, P. R. Stoddart, and S. L. McArthur, “Laser exposure of gold nanorods can increase neuronal cell outgrowth,” Biotechnol. Bioeng. 110(8), 2277–2291 (2013).
[Crossref] [PubMed]

Yu, A.

C. Paviolo, J. W. Haycock, J. Yong, A. Yu, P. R. Stoddart, and S. L. McArthur, “Laser exposure of gold nanorods can increase neuronal cell outgrowth,” Biotechnol. Bioeng. 110(8), 2277–2291 (2013).
[Crossref] [PubMed]

Yu, N. F.

H. T. Chen, A. J. Taylor, and N. F. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Yuan, X.

Zakharenkov, Y. A.

Zhang, J. F.

Zhang, L. X.

Zhang, S. P.

S. P. Zhang, K. Bao, N. J. Halas, H. X. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Zhang, T. Y.

Zhang, W. J.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, X. J.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, Y. L.

J. A. Huang, Y. L. Zhang, H. Ding, and H. B. Sun, “SERS-enabled lab-on-a-chip systems,” Adv. Opt. Mat. 3(5), 618–633 (2015).
[Crossref]

Zhao, J.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
[Crossref]

Zhao, Y. Q.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Zhu, X.

L. Shi, H. Yin, X. Zhu, X. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

Zhu, Z.

Zi, J.

L. Shi, H. Yin, X. Zhu, X. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

Zolotavin, P.

P. Zolotavin, A. Alabastri, P. Nordlander, and D. Natelson, “Plasmonic heating in Au nanowires at low Temperatures: the role of thermal boundary resistance,” ACS Nano 10(7), 6972–6979 (2016).
[Crossref] [PubMed]

Zubin, J.

S. Jahani and J. Zubin, “All-dielectric metamaterials,” Nat. Nanotech. 11(1), 23–36 (2016).
[Crossref]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

ACS Nano (4)

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[Crossref] [PubMed]

A. K. Yang, Z. Y. Li, M. P. Knudson, A. J. Hryn, W. J. Wang, K. Aydin, and T. W. Odom, “Unidirectional lasing from template-stripped two-dimensional plasmonic crystals,” ACS Nano 9(12), 11582–11588 (2015).
[Crossref] [PubMed]

P. Zolotavin, A. Alabastri, P. Nordlander, and D. Natelson, “Plasmonic heating in Au nanowires at low Temperatures: the role of thermal boundary resistance,” ACS Nano 10(7), 6972–6979 (2016).
[Crossref] [PubMed]

Z. Y. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, and S. Sriram, “Plasmonic resonance toward terahertz perfect absorbers,” ACS Photonics 1(7), 625–630 (2014).
[Crossref]

J. Li, J. Ye, C. Chen, Y. Li, N. Verellen, V. V. Moshchalkov, L. Lagae, and P. V. Dorpe, “Revisiting the surface sensitivity of nanoplasmonic biosensors,” ACS Photonics 2(3), 425–431 (2015).
[Crossref]

Adv. Funct. Mater. (1)

K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, “Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy,” Adv. Funct. Mater. 25(42), 6637–6643 (2015).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Mat. (1)

J. A. Huang, Y. L. Zhang, H. Ding, and H. B. Sun, “SERS-enabled lab-on-a-chip systems,” Adv. Opt. Mat. 3(5), 618–633 (2015).
[Crossref]

Appl. Phys. Lett. (4)

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108, 221903 (2016).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97(25), 253116 (2010).
[Crossref]

Y. Yang, Q. Li, and M. Qiu, “Controlling the angular radiation of single emitters using dielectric patch nanoantennas,” Appl. Phys. Lett. 107(3), 031109 (2015).
[Crossref]

L. Shi, H. Yin, X. Zhu, X. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett. 97(25), 251111 (2010).
[Crossref]

Biotechnol. Bioeng. (1)

C. Paviolo, J. W. Haycock, J. Yong, A. Yu, P. R. Stoddart, and S. L. McArthur, “Laser exposure of gold nanorods can increase neuronal cell outgrowth,” Biotechnol. Bioeng. 110(8), 2277–2291 (2013).
[Crossref] [PubMed]

J. Opt. (3)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

X. Y. Lu and J. T. Lin, “Field enhancement of metal grating with nanocavities and its sensing applications,” J. Opt. 19(5), 055004 (2017).
[Crossref]

F. Callewaert, S. Chen, S. Butun, and K. Aydin, “Narrow band absorber based on a dielectric nanodisk array on silver film,” J. Opt. 18(7), 075006 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Langmuir (1)

A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir 32(4), 1091–1100 (2016).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Microelectron. Eng. (1)

E. Almpanis and N. Papanikolaou, “Dielectric nanopatterned surfaces for subwavelength light localization and sensing applications,” Microelectron. Eng. 159, 60–63 (2016).
[Crossref]

Nano Lett. (6)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref] [PubMed]

S. P. Zhang, K. Bao, N. J. Halas, H. X. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Z. Y. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref] [PubMed]

Nanoscale (1)

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D. Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

M. A. Cole, D. A. Powell, and I. V. Shadrivov, “Strong terahertz absorption in all-dielectric Huygens’ metasurfaces,” Nanotechnology 27(42), 424003 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Nat. Mater. (3)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69 (2012).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

S. A. Maier, “Plasmonics: the benefits of darkness,” Nat. Mater. 8(9), 699–700 (2009).
[Crossref] [PubMed]

Nat. Nanotech. (1)

S. Jahani and J. Zubin, “All-dielectric metamaterials,” Nat. Nanotech. 11(1), 23–36 (2016).
[Crossref]

Nat. Photonics (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Opt. Express (12)

X. Y. Lu, L. X. Zhang, and T. Y. Zhang, “Nanoslit-microcavity-based narrow band absorber for sensing applications,” Opt. Express 23(16), 20715–20720 (2015).
[Crossref] [PubMed]

X. Y. Lu, R. G. Wan, and T. Y. Zhang, “Metal-dielectric-metal based narrow band absorber for sensing applications,” Opt. Express 23(23), 29842–29847 (2015).
[Crossref] [PubMed]

Y. Li and C. Argyropoulos, “Controlling collective spontaneous emission with plasmonic waveguides,” Opt. Express 24(23), 26696–26708 (2016).
[Crossref] [PubMed]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

M. Huang, A. A. Yanik, T. Y. Chang, and Hatice Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[Crossref]

M. E. Beheiry, V. Liu, S. H. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18(22), 22702–22714 (2010).
[Crossref] [PubMed]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref] [PubMed]

T. L. Liu, K. J. Russell, S. Cui, and E. L. Hu, “Two-dimensional hybrid photonic/plasmonic crystal cavities,” Opt. Express 22(7), 8219–8225 (2014).
[Crossref] [PubMed]

S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
[Crossref] [PubMed]

P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, “All-dielectric subwavelength metasurface focusing lens,” Opt. Express 22(21), 26212–26221 (2014).
[Crossref] [PubMed]

D. Ohana and U. Levy, “Mode conversion based on dielectric metamaterial in silicon,” Opt. Express 22(22), 27617–27631 (2014).
[Crossref] [PubMed]

J. F. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators,” Opt. Express 22(25), 30889–30898 (2014).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phil. Trans. R. Soc. A (1)

M. Decker, T. Pertsch, and I. Staude, “Strong coupling in hybrid metal-dielectric nanoresonators,” Phil. Trans. R. Soc. A 375(2090), 20160312 (2017).
[Crossref] [PubMed]

Photon. Res. (1)

Phys. Rev. B (1)

Y. Gu and Q. Gong, “Dielectric resonance bandgap and localized defect mode in a periodically ordered metallic-dielectric composite,” Phys. Rev. B 70(9), 092101 (2004).
[Crossref]

Phys. Rev. Lett. (2)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

H. T. Chen, A. J. Taylor, and N. F. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys. 79(7), 076401 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Science (1)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Other (5)

J. A. Huang and L. B. Luo, “Low-dimensional plasmonic photodetectors: recent progress and future opportunities,” Adv. Opt. Mat., in press (2018).
[Crossref]

P. C. Strickland, “Dielectric-resonator array antenna system,” U.S. Patent7,071,879 (July 4, 2006).

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Infrared dielectric resonator metamaterial,” arXiv preprint arXiv:1108.4911 (2011).

J. M. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, 2014).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of dielectric patch array backed by a metal plane structure. Structural parameters: LD, LM, px, py, wx, wy. “DIC” and “DAM” are abbreviations of “dielectric” and “dielectric array metal”, respectively.
Fig. 2
Fig. 2 (a) Reflective (R), transmission (T), and absorption (A) spectra of the presented DAM structure. (b) Calculated refective spectra with varying incident angle from 0° to 40°, the horizontal axis represents magnitude of the x component of the wave vector which is normalized by π/p, and the vertical axis represents light wavelength. Parameters: wx = wy = 0.8µm, px = py = 1.1µm, LM = 1µm, LD = 0.25 µm.
Fig. 3
Fig. 3 Electric field patterns (a) (d), magnetic field patterns (b) (e), and power loss patterns (c) (f) of the presented DAM structure at the resonance wavelength of 1.2641 µm. The sampling planes are both at z = 0 for (a) and (b), while it is at z = −2 nm for (c). The sampling planes are all at y = 0 for (d), (e), and (f). Parameters: wx = wy = 0.8 µm, px = py = 1.1 µm, LM = 1 µm, LD = 0.25 µm. Metal and dielectric are aluminum and SiO2, respectively. In the color scale, blue and red indicate minimum and maximum values of fields’ magnitudes, respectively.
Fig. 4
Fig. 4 (a) Reflective spectra (b) Reflective dips and resonant wavelength with different refractive index of the surrounding environment. (c) Reflective spectra of the DAM structure with and without an adsorbed thin protein layer of 8-nm thickness, of which the value of refractive index is 1.2, 1.6, and 1.7, respectively. (d) Reflectivity dip and resonant wavelength as a function of the adsorbate-layer thickness, while the reflective index of the adsorbed layer is 1.4. Parameters: px = py = 1.1 µm, wx = wy = 0.8 µm, LM = 1 µm, and LD = 250 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S bulk = Δ λ Δ n ,
S surface = Δ λ Δ l ,
FOM i = S i FWHM .
S surface = Δ λ Δ n ,
FO M surface = S surface FWHM .