Abstract

We propose a DSP-free coherent-lite system that requires neither high-speed DSP nor high-resolution signal converters for deployment inside datacenters over single mode fiber links with reaches of 10 km and less. The removal of converters and DSP, in which some subsystems are fundamental for successful coherent detection, is enabled by either replacing DSP subsystems with optics having equivalent functions or by re-engineering the system. We validate in a proof-of-concept experiment the proposed DSP-free system using 50 Gbaud DP-16QAM delivering 400 Gb/s over 10 km of single mode fiber (SMF) below the KP4 forward error correction (FEC) threshold of 2.2 × 10−4. In addition, we perform a detailed experimental parametric study of the coherent-lite system in which various system parameters are swept such as baud rate, reach, laser power and laser linewidth. Our results verify that the coherent-lite system can be realized using low-cost DFB lasers with linewidths of a few hundred kHz. Moreover, we compare the performance of the coherent-lite system with that of a conventional coherent transceiver leveraging the full DSP stack. Then, we evaluate the power consumption savings achieved by the coherent-lite scheme relative to a classic DSP-based coherent system. Assuming a CMOS node ranging from 28 to 7 nm for DSP implementation, our estimate shows that the coherent-lite scheme can save 95 to 78% of the power consumed by the following subsystems: analog-to-digital converters, chromatic dispersion compensation, 2 × 2 MIMO polarization demultiplexing and carrier recovery. Finally, we compare the power consumption of the coherent-lite scheme with more standard 400G IM-DD systems utilizing either eight or four parallel WDM lanes (8 × 50G and 4 × 100G). The coherent-lite system is found to have similar module power consumption requirements as a corresponding 4 × 100G IM-DD system while bringing the benefits of coherent detection including improved sensitivity and higher spectral efficiency leading to fewer light sources per transceiver module. To the best of our knowledge, this work represents the first experimental demonstration of a DSP-free coherent-lite system for single channel 400G datacenter 10 km interconnects, a potential attractive solution due to its scalability to future 800G and 1.6T intra-datacenter optical interconnects.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Self-homodyne system for next generation intra-datacenter optical interconnects

Mohammed Y. S. Sowailem, Eslam El-Fiky, Mohamed Morsy-Osman, Qunbi Zhuge, Thang M. Hoang, Stephane Paquet, Carl Paquet, Ian Woods, Odile Liboiron-Ladouceur, and David V. Plant
Opt. Express 25(22) 27834-27844 (2017)

First demonstration of a 400 Gb/s 4λ CWDM TOSA for datacenter optical interconnects

Eslam El-Fiky, Mohamed Osman, Alireza Samani, Claude Gamache, Michael H. Ayliffe, Jingsi Li, Maxime Jacques, Yun Wang, Amar Kumar, and David V. Plant
Opt. Express 26(16) 19742-19749 (2018)

Real-time 100 Gbps/λ/core NRZ and EDB IM/DD transmission over multicore fiber for intra-datacenter communication networks

Rui Lin, Joris Van Kerrebrouck, Xiaodan Pang, Michiel Verplaetse, Oskars Ozolins, Aleksejs Udalcovs, Lu Zhang, Lin Gan, Ming Tang, Songnian Fu, Richard Schatz, Urban Westergren, Sergei Popov, Deming Liu, Weijun Tong, Timothy De Keulenaer, Guy Torfs, Johan Bauwelinck, Xin Yin, and Jiajia Chen
Opt. Express 26(8) 10519-10526 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Cisco Global Cloud Index, (Cisco Corp., 2015).
  2. 802.3bm-2015 - IEEE Standard for Ethernet - Amendment 3: Physical Layer Specifications and Management Parameters for 40 Gb/s and 100 Gb/s Operation over Fiber Optic Cables.
  3. Finisar product webpage available at https://www.finisar.com/optical-transceivers/ftlc1151rdpl
  4. 2016 Ethernet roadmap, Ethernet alliance available at https://ethernetalliance.org/roadmap/
  5. M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22(17), 21018–21036 (2014).
    [Crossref] [PubMed]
  6. M. A. Mestre, F. Jorge, H. Mardoyan, J. Estarán, F. Blache, P. Angelini, A. Konczykowska, M. Riet, V. Nodjiadjim, J.-Y. Dupuy, and S. Bigo, “100-Gbaud PAM-4 intensity-modulation direct-detection transceiver for datacenter interconnect,” paper M.2.C.1, ECOC 2016.
  7. H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps Discrete Multi-tone Transmission Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” paper Th.3.B.4, ECOC 2016.
  8. E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s Single Carrier PAM4 Transmission for Intra Data Center Optical Interconnects,” IEEE Photonics Technol. Lett. 29, 314-317 (2017).
  9. M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” JLT 32(4), 798–804 (2014).
  10. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  11. M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ × 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3 μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Eur. Conf. Opt. Commun. (2014), paper PD.4.4.
  12. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Opt. Fiber Commun. Conf. (2014), paper Th5C.7.
    [Crossref]
  13. M. Chagnon, M. Morsy-Osman, D. Patel, V. Veerasubramanian, A. Samani, and D. V. Plant, “Digital Signal Processing for Dual-Polarization Intensity and Inter-polarization Phase Modulation formats using Stokes Detection,” JLT 34(1), 188–195 (2016).
  14. M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Polarization Division Multiplexed Intensity, Inter Polarization Phase and Inter Polarization Differential Phase Modulation with Stokes Space Direct Detection for 1λ×320 Gb/s 10 km Transmission at 8 bits/symbol,” in Eur. Conf. Opt. Commun. (2015), paper PDP.2.3.
  15. X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Single mode Fiber Using Kramers-Kronig Detection,” in OFC (2017), paper Th5B.6.
  16. F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT Using IM/DD for 2-km Optical Interconnect,” J. Lightwave Technol. 35(4), 941–948 (2017).
    [Crossref]
  17. X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
    [Crossref] [PubMed]
  18. J. K. Perin, A. Shastri, and J. M. Kahn, “Design of Low-Power DSP-Free Coherent Receivers for Data Center Links,” J. Lightwave Technol. 35(21), 4650–4662 (2017).
  19. 3-bit DAC datasheet. Available at https://www.shf.de/wp-content/uploads/datasheets/datasheet_shf_615_b.pdf
  20. A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, V. Nodjiadjim, H. Aubry, and A. Adamiecki, “84 GBd (168 Gbit/s) PAM-4 3.7 Vpp power DAC in InP DHBT for short reach and long haul optical networks,” Electron. Letters51, (2015).
    [Crossref]
  21. A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.
  22. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Capuzzo, L. T. Gomez, T. N. Nielsen, and I. Brener, “Multistage dispersion compensator using ring resonators,” Opt. Lett. 24(22), 1555–1557 (1999).
    [Crossref] [PubMed]
  23. Corning SMF-28e + datasheet (Corning Corp., 2014).
  24. C. R. Doerr, L. Chen, T. Nielsen, R. Aroca, L. Chen, M. Banaee, S. Azemati, G. McBrien, S. Y. Park, J. Geyer, B. Guan, B. Mikkelsen, C. Rasmussen, M. Givhechi, Z. Wang, B. Potsaid, H. Lee, E. Swanson, and J. Fujimoto, “O, E, S, C, and L Band Silicon Photonics Coherent Modulator/Receiver,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5C.4.
    [Crossref]
  25. M. Y. S. Sowailem, E. El-Fiky, M. Morsy-Osman, Q. Zhuge, T. M. Hoang, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “Self-homodyne system for next generation intra-datacenter optical interconnects,” Opt. Express 25(22), 27834–27844 (2017).
    [Crossref] [PubMed]
  26. G. Agrawal, Lightwave Technology: Telecommunication Systems (Wiley Interscience, 2005).
  27. C. Doerr and L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” ECOC 2010.
  28. W. D. Sacher, T. Barwicz, B. J. F. Taylor, and J. K. S. Poon, “Polarization rotator-splitters in standard active silicon photonics platforms,” Opt. Express 22(4), 3777–3786 (2014).
    [Crossref] [PubMed]
  29. B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
    [Crossref]
  30. N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express 22(9), 10487–10493 (2014).
    [Crossref] [PubMed]
  31. B. Pillai, B. Sedighi, K. Guan, N. P. Anthapadmanabhan, W. Shieh, K. J. Hinton, and R. S. Tucker, “End-to-End Energy Modeling and Analysis of Long-Haul Coherent Transmission Systems,” J. Lightwave Technol. 32(18), 3093–3111 (2014).
    [Crossref]
  32. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  33. Emcore C-band DFB laser datasheetavailable at http://emcore.com/wp-content/uploads/2016/03/1764-C-Band.pdf
  34. IEEE Standard for Ethernet, “Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation,” in IEEE Std 802.3bs-2017.
  35. 100GLambda multi-source agreement available at http://100glambda.com/
  36. H. Isono, T. Takahara, H. Sakamoto, Y. Miyaki, T. Tanaka, M. Nishihara, and J. C. Rasmussen, “Production feasibility study on 400GbE PMD for SMF objectives,” slides available at http://www.ieee802.org/3/bs/public/14_11/isono_3bs_01a_1114.pdf
  37. 40Gb/s CyOptics (currently Broadcom limited) EML datasheet available online at http://www.lightwavestore.com/product_datasheet/OSC-LDS-EML-C-501C_pdf1.pdf

2017 (4)

2016 (2)

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
[Crossref]

M. Chagnon, M. Morsy-Osman, D. Patel, V. Veerasubramanian, A. Samani, and D. V. Plant, “Digital Signal Processing for Dual-Polarization Intensity and Inter-polarization Phase Modulation formats using Stokes Detection,” JLT 34(1), 188–195 (2016).

2015 (1)

2014 (5)

2010 (1)

B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

2008 (1)

1999 (1)

Adamiecki, A.

A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, V. Nodjiadjim, H. Aubry, and A. Adamiecki, “84 GBd (168 Gbit/s) PAM-4 3.7 Vpp power DAC in InP DHBT for short reach and long haul optical networks,” Electron. Letters51, (2015).
[Crossref]

Aimone, A.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Alreesh, S.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Anthapadmanabhan, N. P.

Antonelli, C.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
[Crossref]

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Single mode Fiber Using Kramers-Kronig Detection,” in OFC (2017), paper Th5B.6.

Aubry, H.

A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, V. Nodjiadjim, H. Aubry, and A. Adamiecki, “84 GBd (168 Gbit/s) PAM-4 3.7 Vpp power DAC in InP DHBT for short reach and long haul optical networks,” Electron. Letters51, (2015).
[Crossref]

Baehr-Jones, T.

Bao, Y.

Barwicz, T.

Ben Bakir, B.

B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Brast, T.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Brener, I.

Bruce, A. J.

Cao, Z.

Capuzzo, M. A.

Chagnon, M.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s Single Carrier PAM4 Transmission for Intra Data Center Optical Interconnects,” IEEE Photonics Technol. Lett. 29, 314-317 (2017).

M. Chagnon, M. Morsy-Osman, D. Patel, V. Veerasubramanian, A. Samani, and D. V. Plant, “Digital Signal Processing for Dual-Polarization Intensity and Inter-polarization Phase Modulation formats using Stokes Detection,” JLT 34(1), 188–195 (2016).

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22(17), 21018–21036 (2014).
[Crossref] [PubMed]

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ × 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3 μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Eur. Conf. Opt. Commun. (2014), paper PD.4.4.

M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Polarization Division Multiplexed Intensity, Inter Polarization Phase and Inter Polarization Differential Phase Modulation with Stokes Space Direct Detection for 1λ×320 Gb/s 10 km Transmission at 8 bits/symbol,” in Eur. Conf. Opt. Commun. (2015), paper PDP.2.3.

Chandrasekhar, S.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Single mode Fiber Using Kramers-Kronig Detection,” in OFC (2017), paper Th5B.6.

Che, D.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Opt. Fiber Commun. Conf. (2014), paper Th5C.7.
[Crossref]

Chen, M.

Chen, X.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Single mode Fiber Using Kramers-Kronig Detection,” in OFC (2017), paper Th5B.6.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Opt. Fiber Commun. Conf. (2014), paper Th5C.7.
[Crossref]

Dupuy, J-Y.

A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, V. Nodjiadjim, H. Aubry, and A. Adamiecki, “84 GBd (168 Gbit/s) PAM-4 3.7 Vpp power DAC in InP DHBT for short reach and long haul optical networks,” Electron. Letters51, (2015).
[Crossref]

El-Fiky, E.

M. Y. S. Sowailem, E. El-Fiky, M. Morsy-Osman, Q. Zhuge, T. M. Hoang, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “Self-homodyne system for next generation intra-datacenter optical interconnects,” Opt. Express 25(22), 27834–27844 (2017).
[Crossref] [PubMed]

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s Single Carrier PAM4 Transmission for Intra Data Center Optical Interconnects,” IEEE Photonics Technol. Lett. 29, 314-317 (2017).

Englund, D.

Fedeli, J.-M.

B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Fiol, G.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Fischer, J. K.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Gagné, J.-F.

Galland, C.

Garcia Lopez, I.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Gomez, L. T.

Gruner, M.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Guan, K.

Harris, N. C.

Hinton, K. J.

Hoang, T. M.

Hochberg, M.

Hohns, V.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Honecker, J.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Hu, Q.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Opt. Fiber Commun. Conf. (2014), paper Th5C.7.
[Crossref]

Jensen, J. B.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” JLT 32(4), 798–804 (2014).

Jorge, F.

A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, V. Nodjiadjim, H. Aubry, and A. Adamiecki, “84 GBd (168 Gbit/s) PAM-4 3.7 Vpp power DAC in InP DHBT for short reach and long haul optical networks,” Electron. Letters51, (2015).
[Crossref]

Kahn, J. M.

Kissinger, D.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Konczykowska, A.

A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, V. Nodjiadjim, H. Aubry, and A. Adamiecki, “84 GBd (168 Gbit/s) PAM-4 3.7 Vpp power DAC in InP DHBT for short reach and long haul optical networks,” Electron. Letters51, (2015).
[Crossref]

Latrasse, C.

Lenz, G.

Lessard, S.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22(17), 21018–21036 (2014).
[Crossref] [PubMed]

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ × 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3 μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Eur. Conf. Opt. Commun. (2014), paper PD.4.4.

Li, A.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Opt. Fiber Commun. Conf. (2014), paper Th5C.7.
[Crossref]

Li, F.

Li, J.

Li, X.

Li, Z.

Liboiron-Ladouceur, O.

Liu, G. N.

Lyan, P.

B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Ma, Y.

Madsen, C. K.

Mecozzi, A.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
[Crossref]

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Single mode Fiber Using Kramers-Kronig Detection,” in OFC (2017), paper Th5B.6.

Monroy, I. T.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” JLT 32(4), 798–804 (2014).

Morsy-Osman, M.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s Single Carrier PAM4 Transmission for Intra Data Center Optical Interconnects,” IEEE Photonics Technol. Lett. 29, 314-317 (2017).

M. Y. S. Sowailem, E. El-Fiky, M. Morsy-Osman, Q. Zhuge, T. M. Hoang, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “Self-homodyne system for next generation intra-datacenter optical interconnects,” Opt. Express 25(22), 27834–27844 (2017).
[Crossref] [PubMed]

M. Chagnon, M. Morsy-Osman, D. Patel, V. Veerasubramanian, A. Samani, and D. V. Plant, “Digital Signal Processing for Dual-Polarization Intensity and Inter-polarization Phase Modulation formats using Stokes Detection,” JLT 34(1), 188–195 (2016).

M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Polarization Division Multiplexed Intensity, Inter Polarization Phase and Inter Polarization Differential Phase Modulation with Stokes Space Direct Detection for 1λ×320 Gb/s 10 km Transmission at 8 bits/symbol,” in Eur. Conf. Opt. Commun. (2015), paper PDP.2.3.

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ × 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3 μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Eur. Conf. Opt. Commun. (2014), paper PD.4.4.

Mower, J.

Nielsen, T. N.

Nodjiadjim, V.

A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, V. Nodjiadjim, H. Aubry, and A. Adamiecki, “84 GBd (168 Gbit/s) PAM-4 3.7 Vpp power DAC in InP DHBT for short reach and long haul optical networks,” Electron. Letters51, (2015).
[Crossref]

Olmedo, M. I.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” JLT 32(4), 798–804 (2014).

Orobtchouk, R.

B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Osman, M.

Painchaud, Y.

Paquet, C.

Paquet, S.

Patel, D.

M. Chagnon, M. Morsy-Osman, D. Patel, V. Veerasubramanian, A. Samani, and D. V. Plant, “Digital Signal Processing for Dual-Polarization Intensity and Inter-polarization Phase Modulation formats using Stokes Detection,” JLT 34(1), 188–195 (2016).

Perin, J. K.

Pillai, B.

Plant, D.

Plant, D. V.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s Single Carrier PAM4 Transmission for Intra Data Center Optical Interconnects,” IEEE Photonics Technol. Lett. 29, 314-317 (2017).

M. Y. S. Sowailem, E. El-Fiky, M. Morsy-Osman, Q. Zhuge, T. M. Hoang, S. Paquet, C. Paquet, I. Woods, O. Liboiron-Ladouceur, and D. V. Plant, “Self-homodyne system for next generation intra-datacenter optical interconnects,” Opt. Express 25(22), 27834–27844 (2017).
[Crossref] [PubMed]

M. Chagnon, M. Morsy-Osman, D. Patel, V. Veerasubramanian, A. Samani, and D. V. Plant, “Digital Signal Processing for Dual-Polarization Intensity and Inter-polarization Phase Modulation formats using Stokes Detection,” JLT 34(1), 188–195 (2016).

M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Polarization Division Multiplexed Intensity, Inter Polarization Phase and Inter Polarization Differential Phase Modulation with Stokes Space Direct Detection for 1λ×320 Gb/s 10 km Transmission at 8 bits/symbol,” in Eur. Conf. Opt. Commun. (2015), paper PDP.2.3.

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ × 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3 μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Eur. Conf. Opt. Commun. (2014), paper PD.4.4.

Poon, J. K. S.

Popov, S.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” JLT 32(4), 798–804 (2014).

Porzier, C.

B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Poulin, M.

M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22(17), 21018–21036 (2014).
[Crossref] [PubMed]

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ × 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3 μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Eur. Conf. Opt. Commun. (2014), paper PD.4.4.

Raybon, G.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Single mode Fiber Using Kramers-Kronig Detection,” in OFC (2017), paper Th5B.6.

Riet, M.

A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, V. Nodjiadjim, H. Aubry, and A. Adamiecki, “84 GBd (168 Gbit/s) PAM-4 3.7 Vpp power DAC in InP DHBT for short reach and long haul optical networks,” Electron. Letters51, (2015).
[Crossref]

Rito, P.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Roman, A.

B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Sacher, W. D.

Samani, A.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s Single Carrier PAM4 Transmission for Intra Data Center Optical Interconnects,” IEEE Photonics Technol. Lett. 29, 314-317 (2017).

M. Chagnon, M. Morsy-Osman, D. Patel, V. Veerasubramanian, A. Samani, and D. V. Plant, “Digital Signal Processing for Dual-Polarization Intensity and Inter-polarization Phase Modulation formats using Stokes Detection,” JLT 34(1), 188–195 (2016).

Savory, S. J.

Schell, M.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Sedighi, B.

Shastri, A.

Shieh, W.

B. Pillai, B. Sedighi, K. Guan, N. P. Anthapadmanabhan, W. Shieh, K. J. Hinton, and R. S. Tucker, “End-to-End Energy Modeling and Analysis of Long-Haul Coherent Transmission Systems,” J. Lightwave Technol. 32(18), 3093–3111 (2014).
[Crossref]

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Opt. Fiber Commun. Conf. (2014), paper Th5C.7.
[Crossref]

Shtaif, M.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
[Crossref]

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Single mode Fiber Using Kramers-Kronig Detection,” in OFC (2017), paper Th5B.6.

Sinsky, J.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Single mode Fiber Using Kramers-Kronig Detection,” in OFC (2017), paper Th5B.6.

Sowailem, M.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s Single Carrier PAM4 Transmission for Intra Data Center Optical Interconnects,” IEEE Photonics Technol. Lett. 29, 314-317 (2017).

Sowailem, M. Y. S.

Steffan, A. G.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Taylor, B. J. F.

Tucker, R. S.

Ulusoy, A. C.

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Vazquez de Gyves, A.

B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Veerasubramanian, V.

M. Chagnon, M. Morsy-Osman, D. Patel, V. Veerasubramanian, A. Samani, and D. V. Plant, “Digital Signal Processing for Dual-Polarization Intensity and Inter-polarization Phase Modulation formats using Stokes Detection,” JLT 34(1), 188–195 (2016).

Wang, Y.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Opt. Fiber Commun. Conf. (2014), paper Th5C.7.
[Crossref]

Winzer, P.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Single mode Fiber Using Kramers-Kronig Detection,” in OFC (2017), paper Th5B.6.

Woods, I.

Xu, X.

X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
[Crossref] [PubMed]

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” JLT 32(4), 798–804 (2014).

Yu, J.

Zhang, J.

Zhang, L.

Zhang, X.

Zhong, Q.

X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
[Crossref] [PubMed]

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” JLT 32(4), 798–804 (2014).

Zhou, E.

Zhuge, Q.

Zuo, T.

X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
[Crossref] [PubMed]

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” JLT 32(4), 798–804 (2014).

IEEE Photonics Technol. Lett. (2)

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s Single Carrier PAM4 Transmission for Intra Data Center Optical Interconnects,” IEEE Photonics Technol. Lett. 29, 314-317 (2017).

B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photonics Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

J. Lightwave Technol. (3)

JLT (2)

M. Chagnon, M. Morsy-Osman, D. Patel, V. Veerasubramanian, A. Samani, and D. V. Plant, “Digital Signal Processing for Dual-Polarization Intensity and Inter-polarization Phase Modulation formats using Stokes Detection,” JLT 34(1), 188–195 (2016).

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” JLT 32(4), 798–804 (2014).

Opt. Express (6)

Opt. Lett. (1)

Optica (1)

Other (22)

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1 λ × 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signals using 1.3 μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Eur. Conf. Opt. Commun. (2014), paper PD.4.4.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” in Opt. Fiber Commun. Conf. (2014), paper Th5C.7.
[Crossref]

Cisco Global Cloud Index, (Cisco Corp., 2015).

802.3bm-2015 - IEEE Standard for Ethernet - Amendment 3: Physical Layer Specifications and Management Parameters for 40 Gb/s and 100 Gb/s Operation over Fiber Optic Cables.

Finisar product webpage available at https://www.finisar.com/optical-transceivers/ftlc1151rdpl

2016 Ethernet roadmap, Ethernet alliance available at https://ethernetalliance.org/roadmap/

M. A. Mestre, F. Jorge, H. Mardoyan, J. Estarán, F. Blache, P. Angelini, A. Konczykowska, M. Riet, V. Nodjiadjim, J.-Y. Dupuy, and S. Bigo, “100-Gbaud PAM-4 intensity-modulation direct-detection transceiver for datacenter interconnect,” paper M.2.C.1, ECOC 2016.

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps Discrete Multi-tone Transmission Using Digital-Preprocessed Analog-Multiplexed DAC with Halved Clock Frequency and Suppressed Image,” paper Th.3.B.4, ECOC 2016.

M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Polarization Division Multiplexed Intensity, Inter Polarization Phase and Inter Polarization Differential Phase Modulation with Stokes Space Direct Detection for 1λ×320 Gb/s 10 km Transmission at 8 bits/symbol,” in Eur. Conf. Opt. Commun. (2015), paper PDP.2.3.

X. Chen, C. Antonelli, S. Chandrasekhar, G. Raybon, J. Sinsky, A. Mecozzi, M. Shtaif, and P. Winzer, “218-Gb/s Single-Wavelength, Single-Polarization, Single-Photodiode Transmission Over 125-km of Standard Single mode Fiber Using Kramers-Kronig Detection,” in OFC (2017), paper Th5B.6.

3-bit DAC datasheet. Available at https://www.shf.de/wp-content/uploads/datasheets/datasheet_shf_615_b.pdf

A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, V. Nodjiadjim, H. Aubry, and A. Adamiecki, “84 GBd (168 Gbit/s) PAM-4 3.7 Vpp power DAC in InP DHBT for short reach and long haul optical networks,” Electron. Letters51, (2015).
[Crossref]

A. Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Hohns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free ultra-low-power dual-polarization 64-QAM transmission with InP IQ segmented MZM module,” in OFC (2016), paper Th5C.6.

Corning SMF-28e + datasheet (Corning Corp., 2014).

C. R. Doerr, L. Chen, T. Nielsen, R. Aroca, L. Chen, M. Banaee, S. Azemati, G. McBrien, S. Y. Park, J. Geyer, B. Guan, B. Mikkelsen, C. Rasmussen, M. Givhechi, Z. Wang, B. Potsaid, H. Lee, E. Swanson, and J. Fujimoto, “O, E, S, C, and L Band Silicon Photonics Coherent Modulator/Receiver,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th5C.4.
[Crossref]

G. Agrawal, Lightwave Technology: Telecommunication Systems (Wiley Interscience, 2005).

C. Doerr and L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” ECOC 2010.

Emcore C-band DFB laser datasheetavailable at http://emcore.com/wp-content/uploads/2016/03/1764-C-Band.pdf

IEEE Standard for Ethernet, “Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation,” in IEEE Std 802.3bs-2017.

100GLambda multi-source agreement available at http://100glambda.com/

H. Isono, T. Takahara, H. Sakamoto, Y. Miyaki, T. Tanaka, M. Nishihara, and J. C. Rasmussen, “Production feasibility study on 400GbE PMD for SMF objectives,” slides available at http://www.ieee802.org/3/bs/public/14_11/isono_3bs_01a_1114.pdf

40Gb/s CyOptics (currently Broadcom limited) EML datasheet available online at http://www.lightwavestore.com/product_datasheet/OSC-LDS-EML-C-501C_pdf1.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Full-duplex transmission using the proposed coherent-lite transceivers (low-speed electrical signals represented by green lines, high-speed electrical signals by magenta lines, optical signals by black, red, blue lines), (b) Legacy coherent DSP that are omitted in coherent-lite (left: transmitter DSP, right: receiver DSP excluding fiber nonlinearity mitigation), (c) Schematics of the polarization controller in the signal path (top) and tone path (bottom) which can be integrated on a PIC comprising polarization splitter rotator (PSR), phase shifters and couplers.
Fig. 2
Fig. 2 (a) Experimental setup, (b) Raw constellations of the 50 Gbaud 16QAM signal after only timing recovery to find the optimum sampling location. The constellations show the entire length of the captured frame from the RTO lasting 12.5 μs before and after the common phase de-rotation, (c) Raw unequalized 50 Gbaud 4-level eyediagram of one received quadrature from Keysight PAM-4 analysis tool.
Fig. 3
Fig. 3 Experimental results showing (a) BER versus baud rate for DP-16QAM in back-to-back (B2B) for DP and SP transmission, (b) BER versus baud rate for DP-16QAM after 2 and 10 km comparing DSP-free, DSP CD compensation and full DSP performance, (c) BER of 50 Gbaud 16QAM in B2B versus the laser power (note that decreasing laser power decreases both signal and tone powers), (d) BER of 50 Gbaud 16QAM in B2B versus mismatch between tone and signal paths for three different lasers.

Tables (3)

Tables Icon

Table 1 Parameters used for power consumption of ADCs and DSP in a classic 400 Gb/s DP-16QAM coherent system.

Tables Icon

Table 2 Comparison between various systems in terms of component requirements per transmission direction on the duplex fiber; all systems deliver 400 Gb/s aggregate capacity and have 10 km target reach over SMF.

Tables Icon

Table 3 Power consumption of individual components.

Metrics