Abstract

We demonstrate a nonlinear polarization evolution (NPE) mode-locked polarization maintaining (PM) Yb-doped fiber laser with short NPE section segments by setting proper splicing angle. With a theoretical analysis, we propose that an appropriate deviation splicing angle exists to maximize the adjustable range of transmission modulation. The simulation results are highly consistent with theoretical conclusions. Experimentally, using the optimal splicing angle predicted by the theoretical calculation, we have achieved an environmentally stable mode-locking fiber laser at 111-MHz repetition rate with corresponding pulse energy of 0.47 nJ. Additionally, the noise performance of this PM fiber laser is characterized. The measured RMS timing jitter and amplitude noise are 6.41 fs and 0.0052% respectively (1 kHz-10 MHz), which are competitive to the low phase noise performance of the typical fiber laser.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dissipative-soliton generation with nonlinear-polarization-evolution in a polarization maintaining fiber

Jiaqi Zhou, Weiwei Pan, Xijia Gu, Lei Zhang, and Yan Feng
Opt. Express 26(4) 4166-4171 (2018)

Nonlinear polarization evolution of ultrashort pulses in polarization maintaining fibers

Jan Szczepanek, Tomasz M. Kardaś, Czesław Radzewicz, and Yuriy Stepanenko
Opt. Express 26(10) 13590-13604 (2018)

Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers

Jan Szczepanek, Tomasz M. Kardaś, Czesław Radzewicz, and Yuriy Stepanenko
Opt. Lett. 42(3) 575-578 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8(10), 2068–2076 (1991).
    [Crossref]
  2. W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
    [Crossref]
  3. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502–504 (1991).
    [Crossref] [PubMed]
  4. J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E 74(4), 046605 (2006).
    [Crossref] [PubMed]
  5. M. E. Fermann, L. M. Yang, M. L. Stock, and M. J. Andrejco, “Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses,” Opt. Lett. 19(1), 43–45 (1994).
    [Crossref] [PubMed]
  6. C. K. Nielsen and S. R. Keiding, “All-fiber mode-locked fiber laser,” Opt. Lett. 32(11), 1474–1476 (2007).
    [Crossref] [PubMed]
  7. S. Boivinet, J. B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
    [Crossref]
  8. Y. Wang, L. Zhang, Z. Zhuo, and S. Guo, “Cross-splicing method for compensating fiber birefringence in polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution,” Appl. Opt. 55(21), 5766–5770 (2016).
    [Crossref] [PubMed]
  9. J. Szczepanek, T. M. Kardaś, C. Radzewicz, Y. Stepanenko, and Y. Stepanenko, “Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers,” Opt. Lett. 42(3), 575–578 (2017).
    [Crossref] [PubMed]
  10. H. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
    [Crossref]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (2013).
  12. R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7(10), 512–514 (1982).
    [Crossref] [PubMed]
  13. L. M. Zhao, Soliton Dynamics in Passively Mode-locked Fiber Lasers (Nanyang Technological University, 2006).
  14. L. Q. Zhang, Z. Zhuo, Z. Y. Pan, Y. Z. Wang, J. W. Zhao, and J. X. Wang, “Investigation of pulse splitting behaviour in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).
    [Crossref]
  15. D. A. Korobko, A. A. Fotiadi, and I. O. Zolotovskii, “Mode-locking evolution in ring fiber lasers with tunable repetition rate,” Opt. Express 25(18), 21180–21190 (2017).
    [Crossref] [PubMed]
  16. L. Pang, H. Han, Z. Zhao, W. Liu, and Z. Wei, “Ultra-stability Yb-doped fiber optical frequency comb with 2 × 10-18/s stability in-loop,” Opt. Express 24(25), 28993–29000 (2016).
    [Crossref] [PubMed]

2017 (3)

2016 (2)

2014 (1)

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

2013 (1)

L. Q. Zhang, Z. Zhuo, Z. Y. Pan, Y. Z. Wang, J. W. Zhao, and J. X. Wang, “Investigation of pulse splitting behaviour in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).
[Crossref]

2007 (1)

2006 (1)

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E 74(4), 046605 (2006).
[Crossref] [PubMed]

1994 (1)

1992 (1)

H. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
[Crossref]

1991 (2)

1982 (1)

Andrejco, M. J.

Ashkin, A.

Boivinet, S.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Botineau, J.

Chan, C. C.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E 74(4), 046605 (2006).
[Crossref] [PubMed]

Cleff, C.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Dobner, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Doubek, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Fermann, M. E.

Fischer, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Fotiadi, A.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Fotiadi, A. A.

Fujimoto, J. G.

H. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
[Crossref]

E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8(10), 2068–2076 (1991).
[Crossref]

Giunta, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Guo, S.

Haberl, F.

Han, H.

Hänsel, W.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Haus, H.

H. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
[Crossref]

Haus, H. A.

Hernandez, Y.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Hofer, M.

Holzwarth, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Hoogland, H.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Ippen, E. P.

H. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
[Crossref]

E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8(10), 2068–2076 (1991).
[Crossref]

Kardas, T. M.

Keiding, S. R.

Korobko, D. A.

Lecourt, J. B.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Liu, W.

Mayer, P.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Mégret, P.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Nielsen, C. K.

Ober, M. H.

Pan, Z. Y.

L. Q. Zhang, Z. Zhuo, Z. Y. Pan, Y. Z. Wang, J. W. Zhao, and J. X. Wang, “Investigation of pulse splitting behaviour in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).
[Crossref]

Pang, L.

Radzewicz, C.

Schmid, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Schmidt, A. J.

Steinmetz, T.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Stepanenko, Y.

Stock, M. L.

Stolen, R. H.

Szczepanek, J.

Tang, D. Y.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E 74(4), 046605 (2006).
[Crossref] [PubMed]

Wang, J. X.

L. Q. Zhang, Z. Zhuo, Z. Y. Pan, Y. Z. Wang, J. W. Zhao, and J. X. Wang, “Investigation of pulse splitting behaviour in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).
[Crossref]

Wang, Y.

Wang, Y. Z.

L. Q. Zhang, Z. Zhuo, Z. Y. Pan, Y. Z. Wang, J. W. Zhao, and J. X. Wang, “Investigation of pulse splitting behaviour in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).
[Crossref]

Wei, Z.

Wu, J.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E 74(4), 046605 (2006).
[Crossref] [PubMed]

Wuilpart, M.

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

Yang, L. M.

Zhang, L.

Zhang, L. Q.

L. Q. Zhang, Z. Zhuo, Z. Y. Pan, Y. Z. Wang, J. W. Zhao, and J. X. Wang, “Investigation of pulse splitting behaviour in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).
[Crossref]

Zhao, J. W.

L. Q. Zhang, Z. Zhuo, Z. Y. Pan, Y. Z. Wang, J. W. Zhao, and J. X. Wang, “Investigation of pulse splitting behaviour in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).
[Crossref]

Zhao, L. M.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E 74(4), 046605 (2006).
[Crossref] [PubMed]

Zhao, Z.

Zhuo, Z.

Y. Wang, L. Zhang, Z. Zhuo, and S. Guo, “Cross-splicing method for compensating fiber birefringence in polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution,” Appl. Opt. 55(21), 5766–5770 (2016).
[Crossref] [PubMed]

L. Q. Zhang, Z. Zhuo, Z. Y. Pan, Y. Z. Wang, J. W. Zhao, and J. X. Wang, “Investigation of pulse splitting behaviour in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).
[Crossref]

Zolotovskii, I. O.

Appl. Opt. (1)

Appl. Phys. B (1)

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Boivinet, J. B. Lecourt, Y. Hernandez, A. Fotiadi, M. Wuilpart, and P. Mégret, “All-Fiber 1-μm PM Mode-Lock Laser Delivering Picosecond Pulses at Sub-MHz Repetition Rate,” IEEE Photonics Technol. Lett. 26(22), 2256–2259 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

L. Q. Zhang, Z. Zhuo, Z. Y. Pan, Y. Z. Wang, J. W. Zhao, and J. X. Wang, “Investigation of pulse splitting behaviour in a dissipative soliton fibre laser,” Laser Phys. Lett. 10(10), 105104 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. E (1)

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E 74(4), 046605 (2006).
[Crossref] [PubMed]

Other (2)

L. M. Zhao, Soliton Dynamics in Passively Mode-locked Fiber Lasers (Nanyang Technological University, 2006).

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Structure of a nonlinear Mach-Zehnder interferometer when the Kerr medium is the PM fiber; (b) NPB varies with deviation angle θ; (c) Transmission varies with nonlinear phase bias at deviation angle of 0°, 30°, 90°; (d) The adjustable ranges of the transmittance when the NPB is fixed at different deviation angle; (e) The adjustable ranges of the transmittance at each deviation angle.
Fig. 2
Fig. 2 Schematic diagrams of the configuration. LD, laser diode; WDM, wavelength division multiplexer; YDF, Yb-doped gain fiber; C1, C2, collimators; Grating, reflection grating; PBS, polarization beam splitter; QWP, quarter wave plates; HWP, half wave plate; ISO, Isolator.
Fig. 3
Fig. 3 The nonlinear phase shift along the fast and slow axis and NPB at the deviation angle of 3° (a), 23° (b) and 43° (c).
Fig. 4
Fig. 4 Simulated time temporal and spectral waveforms in NPE section. (a)-(d) Simulated time domain waveform at position 1, 2, 3, and 4; (e)-(h) Simulated spectrum at position 1, 2, 3, and 4;
Fig. 5
Fig. 5 (a) Simulated temporal profiles of the stable states at the PBS and grating ports; (b). Measured Autocorrelation trace at the PBS port; (c). Simulated spectral profiles of the stable states at the PBS and grating ports; (d). Measured optical spectra at the PBS and grating ports.
Fig. 6
Fig. 6 (a) Measured RF spectrum (span, 0.5 MHz; RBW, 300 Hz) of the 111.087 MHz oscillator (insert: Measured stable pulse trace from the oscilloscope and RF spectrum analyzer); (b) PN power spectral density from 10 Hz to 10 MHz (green, left axis) and integrated PN as computed from the corresponding x-axis value to 10 MHz (blue, right axis); (c) power spectral density of the RIN (green, left axis) and integrated RIN (blue, right axis) at a pulse repetition rate of 111.087 MHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ x ( L )= n x k 0 L+ n ¯ 2 ( 0 z=L a(z,t) | A x (z,t) | 2 + 0 z=L b(z,t) | A y (z,t) | 2 ) k 0 L .
ϕ y ( L )= n y k 0 L+ n ¯ 2 ( 0 z=L a'(z,t) | A y (z,t) | 2 + 0 z=L b'(z,t) | A x (z,t) | 2 ) k 0 L .
Δ ϕ NL = n 2 ( 0 z=L a( z,t ) 0 z=L b( z,t ) ) | A( t ) | 2 k 0 Lcos( 2θ ) .
T={ 1i 2 ( cos( θ ) e i ϕ x ( cos( 2φ )( i+cos( 2ψ ) )+sin( 2φ )sin( 2ψ ) ) +sin( θ ) e i ϕ y ( sin( 2φ )( icos( 2ψ ) )+cos( 2φ )sin( 2ψ ) ) ) } 2 .

Metrics