Abstract

A new photonic scheme for various waveforms generation has been proposed and demonstrated. In the scheme, two cascaded single-drive LiNbO3 Mach-Zehnder modulators serve as pulse shaper and the polarization-dependent character of the modulators is fully exploited and utilized. By arranging the polarization states of the incident light, two different spectra are achieved on two orthogonal polarization components respectively. Finally, the desired waveforms can be obtained by superimposing the photocurrents of the two orthogonal signals on a photodetector. The detailed theoretical analyses and simulations are given. In the experiment, square-shaped waveform, triangular waveform and sawtooth (or reversed-sawtooth) waveform are obtained successfully. Furthermore, an approach to smoothing the sawtooth waveform with fewer harmonics is suggested and verified.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic microwave waveforms generation based on time-domain processing

Yang Jiang, Chuang Ma, Guangfu Bai, Xiaosi Qi, Yanlin Tang, Zhenrong Jia, Yuejiao Zi, Fengqin Huang, and Tingwei Wu
Opt. Express 23(15) 19442-19452 (2015)

Generation of triangular waveforms based on a microwave photonic filter with negative coefficient

Wei Li, Wen Ting Wang, Wen Hui Sun, Wei Yu Wang, and Ning Hua Zhu
Opt. Express 22(12) 14993-15001 (2014)

Frequency-doubled triangular-shaped waveform generation based on spectrum manipulation

Jing Li, Jian Sun, Weiwei Xu, Tigang Ning, Li Pei, Jin Yuan, and Yueqin Li
Opt. Lett. 41(2) 199-202 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. J. P. Yao, “Photonic Generation of Microwave Arbitrary Waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
    [Crossref]
  3. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
    [Crossref]
  4. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [Crossref]
  5. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
    [Crossref] [PubMed]
  6. J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and S. Yao, “Photonic generation of triangular-shaped pulses based on frequency-to-time conversion,” Opt. Lett. 36(8), 1458–1460 (2011).
    [Crossref] [PubMed]
  7. Y. Jiang, C. Ma, G. Bai, X. Qi, Y. Tang, Z. Jia, Y. Zi, F. Huang, and T. Wu, “Photonic microwave waveforms generation based on time-domain processing,” Opt. Express 23(15), 19442–19452 (2015).
    [Crossref] [PubMed]
  8. Y. Jiang, C. Ma, G. F. Bai, Z. R. Jia, Y. J. Zi, S. H. Cai, T. W. Wu, and F. Q. Huang, “Photonic generation of triangular waveform by utilizing time-domain synthesis,” IEEE Photonics Technol. Lett. 27(16), 1725–1728 (2015).
    [Crossref]
  9. G. F. Bai, L. Hu, Y. Jiang, J. Tian, Y. J. Zi, T. W. Wu, and F. Q. Huang, “Versatile photonic microwave waveforms generation using a dual-parallel Mach–Zehnder modulator without other dispersive elements,” Opt. Commun. 396, 134–140 (2017).
    [Crossref]
  10. W. Li, W. T. Wang, and N. H. Zhu, “Photonic Generation of Radio-Frequency Waveforms Based on Dual-Parallel Mach–Zehnder Modulator,” IEEE Photonics J. 6(3), 1–8 (2014).
  11. F. Zhang, X. Ge, and S. Pan, “Triangular pulse generation using a dual-parallel Mach-Zehnder modulator driven by a single-frequency radio frequency signal,” Opt. Lett. 38(21), 4491–4493 (2013).
    [Crossref] [PubMed]
  12. J. Wu, J. Zang, Y. Li, D. Kong, J. Qiu, S. Zhou, J. Shi, and J. Lin, “Investigation on Nyquist pulse generation using a single dual-parallel Mach-Zehnder modulator,” Opt. Express 22(17), 20463–20472 (2014).
    [Crossref] [PubMed]
  13. B. Dai, Z. S. Gao, X. Wang, H. W. Chen, N. Kataoka, and N. Wada, “Generation of Versatile Waveforms From CW Light Using a Dual-Drive Mach-Zehnder Modulator and Employing Chromatic Dispersion,” J. Lightwave Technol. 31(1), 145–151 (2012).
    [Crossref]
  14. W. L. Liu and J. P. Yao, “Photonic Generation of Microwave Waveforms Based on a Polarization Modulator in a Sagnac Loop,” J. Lightwave Technol. 32(20), 3637–3644 (2014).
    [Crossref]
  15. C. Ma, Y. Jiang, G. F. Bai, Y. L. Tang, X. S. Qi, Z. R. Jia, Y. J. Zi, and J. L. Yu, “Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach–Zehnder modulator,” Opt. Commun. 363, 207–210 (2016).
    [Crossref]
  16. A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized Waveguide-Integrated p-i-n Photodetector With 120-GHz Bandwidth and High Responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
    [Crossref]

2017 (1)

G. F. Bai, L. Hu, Y. Jiang, J. Tian, Y. J. Zi, T. W. Wu, and F. Q. Huang, “Versatile photonic microwave waveforms generation using a dual-parallel Mach–Zehnder modulator without other dispersive elements,” Opt. Commun. 396, 134–140 (2017).
[Crossref]

2016 (1)

C. Ma, Y. Jiang, G. F. Bai, Y. L. Tang, X. S. Qi, Z. R. Jia, Y. J. Zi, and J. L. Yu, “Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach–Zehnder modulator,” Opt. Commun. 363, 207–210 (2016).
[Crossref]

2015 (2)

Y. Jiang, C. Ma, G. F. Bai, Z. R. Jia, Y. J. Zi, S. H. Cai, T. W. Wu, and F. Q. Huang, “Photonic generation of triangular waveform by utilizing time-domain synthesis,” IEEE Photonics Technol. Lett. 27(16), 1725–1728 (2015).
[Crossref]

Y. Jiang, C. Ma, G. Bai, X. Qi, Y. Tang, Z. Jia, Y. Zi, F. Huang, and T. Wu, “Photonic microwave waveforms generation based on time-domain processing,” Opt. Express 23(15), 19442–19452 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (1)

2012 (1)

2011 (2)

2010 (1)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

2009 (1)

2007 (1)

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

2005 (1)

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized Waveguide-Integrated p-i-n Photodetector With 120-GHz Bandwidth and High Responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

2004 (1)

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref] [PubMed]

Bach, H. G.

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized Waveguide-Integrated p-i-n Photodetector With 120-GHz Bandwidth and High Responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

Bai, G.

Bai, G. F.

G. F. Bai, L. Hu, Y. Jiang, J. Tian, Y. J. Zi, T. W. Wu, and F. Q. Huang, “Versatile photonic microwave waveforms generation using a dual-parallel Mach–Zehnder modulator without other dispersive elements,” Opt. Commun. 396, 134–140 (2017).
[Crossref]

C. Ma, Y. Jiang, G. F. Bai, Y. L. Tang, X. S. Qi, Z. R. Jia, Y. J. Zi, and J. L. Yu, “Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach–Zehnder modulator,” Opt. Commun. 363, 207–210 (2016).
[Crossref]

Y. Jiang, C. Ma, G. F. Bai, Z. R. Jia, Y. J. Zi, S. H. Cai, T. W. Wu, and F. Q. Huang, “Photonic generation of triangular waveform by utilizing time-domain synthesis,” IEEE Photonics Technol. Lett. 27(16), 1725–1728 (2015).
[Crossref]

Beling, A.

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized Waveguide-Integrated p-i-n Photodetector With 120-GHz Bandwidth and High Responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

Cai, S. H.

Y. Jiang, C. Ma, G. F. Bai, Z. R. Jia, Y. J. Zi, S. H. Cai, T. W. Wu, and F. Q. Huang, “Photonic generation of triangular waveform by utilizing time-domain synthesis,” IEEE Photonics Technol. Lett. 27(16), 1725–1728 (2015).
[Crossref]

Chen, H. W.

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Dai, B.

Felinto, D.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref] [PubMed]

Gao, Z. S.

Ge, X.

Hu, L.

G. F. Bai, L. Hu, Y. Jiang, J. Tian, Y. J. Zi, T. W. Wu, and F. Q. Huang, “Versatile photonic microwave waveforms generation using a dual-parallel Mach–Zehnder modulator without other dispersive elements,” Opt. Commun. 396, 134–140 (2017).
[Crossref]

Huang, C. B.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Huang, F.

Huang, F. Q.

G. F. Bai, L. Hu, Y. Jiang, J. Tian, Y. J. Zi, T. W. Wu, and F. Q. Huang, “Versatile photonic microwave waveforms generation using a dual-parallel Mach–Zehnder modulator without other dispersive elements,” Opt. Commun. 396, 134–140 (2017).
[Crossref]

Y. Jiang, C. Ma, G. F. Bai, Z. R. Jia, Y. J. Zi, S. H. Cai, T. W. Wu, and F. Q. Huang, “Photonic generation of triangular waveform by utilizing time-domain synthesis,” IEEE Photonics Technol. Lett. 27(16), 1725–1728 (2015).
[Crossref]

Jia, Z.

Jia, Z. R.

C. Ma, Y. Jiang, G. F. Bai, Y. L. Tang, X. S. Qi, Z. R. Jia, Y. J. Zi, and J. L. Yu, “Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach–Zehnder modulator,” Opt. Commun. 363, 207–210 (2016).
[Crossref]

Y. Jiang, C. Ma, G. F. Bai, Z. R. Jia, Y. J. Zi, S. H. Cai, T. W. Wu, and F. Q. Huang, “Photonic generation of triangular waveform by utilizing time-domain synthesis,” IEEE Photonics Technol. Lett. 27(16), 1725–1728 (2015).
[Crossref]

Jiang, Y.

G. F. Bai, L. Hu, Y. Jiang, J. Tian, Y. J. Zi, T. W. Wu, and F. Q. Huang, “Versatile photonic microwave waveforms generation using a dual-parallel Mach–Zehnder modulator without other dispersive elements,” Opt. Commun. 396, 134–140 (2017).
[Crossref]

C. Ma, Y. Jiang, G. F. Bai, Y. L. Tang, X. S. Qi, Z. R. Jia, Y. J. Zi, and J. L. Yu, “Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach–Zehnder modulator,” Opt. Commun. 363, 207–210 (2016).
[Crossref]

Y. Jiang, C. Ma, G. F. Bai, Z. R. Jia, Y. J. Zi, S. H. Cai, T. W. Wu, and F. Q. Huang, “Photonic generation of triangular waveform by utilizing time-domain synthesis,” IEEE Photonics Technol. Lett. 27(16), 1725–1728 (2015).
[Crossref]

Y. Jiang, C. Ma, G. Bai, X. Qi, Y. Tang, Z. Jia, Y. Zi, F. Huang, and T. Wu, “Photonic microwave waveforms generation based on time-domain processing,” Opt. Express 23(15), 19442–19452 (2015).
[Crossref] [PubMed]

Jiang, Z.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Kataoka, N.

Kong, D.

Kunkel, R.

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized Waveguide-Integrated p-i-n Photodetector With 120-GHz Bandwidth and High Responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

Lawall, J. R.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref] [PubMed]

Leaird, D. E.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Li, W.

W. Li, W. T. Wang, and N. H. Zhu, “Photonic Generation of Radio-Frequency Waveforms Based on Dual-Parallel Mach–Zehnder Modulator,” IEEE Photonics J. 6(3), 1–8 (2014).

Li, Y.

Lin, J.

Liu, W. L.

Luo, B.

Ma, C.

C. Ma, Y. Jiang, G. F. Bai, Y. L. Tang, X. S. Qi, Z. R. Jia, Y. J. Zi, and J. L. Yu, “Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach–Zehnder modulator,” Opt. Commun. 363, 207–210 (2016).
[Crossref]

Y. Jiang, C. Ma, G. F. Bai, Z. R. Jia, Y. J. Zi, S. H. Cai, T. W. Wu, and F. Q. Huang, “Photonic generation of triangular waveform by utilizing time-domain synthesis,” IEEE Photonics Technol. Lett. 27(16), 1725–1728 (2015).
[Crossref]

Y. Jiang, C. Ma, G. Bai, X. Qi, Y. Tang, Z. Jia, Y. Zi, F. Huang, and T. Wu, “Photonic microwave waveforms generation based on time-domain processing,” Opt. Express 23(15), 19442–19452 (2015).
[Crossref] [PubMed]

Marian, A.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref] [PubMed]

Mekonnen, G. G.

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized Waveguide-Integrated p-i-n Photodetector With 120-GHz Bandwidth and High Responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

Pan, S.

Pan, W.

Qi, X.

Qi, X. S.

C. Ma, Y. Jiang, G. F. Bai, Y. L. Tang, X. S. Qi, Z. R. Jia, Y. J. Zi, and J. L. Yu, “Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach–Zehnder modulator,” Opt. Commun. 363, 207–210 (2016).
[Crossref]

Qiu, J.

Schmidt, D.

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized Waveguide-Integrated p-i-n Photodetector With 120-GHz Bandwidth and High Responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

Shi, J.

Stowe, M. C.

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref] [PubMed]

Tang, Y.

Tang, Y. L.

C. Ma, Y. Jiang, G. F. Bai, Y. L. Tang, X. S. Qi, Z. R. Jia, Y. J. Zi, and J. L. Yu, “Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach–Zehnder modulator,” Opt. Commun. 363, 207–210 (2016).
[Crossref]

Tian, J.

G. F. Bai, L. Hu, Y. Jiang, J. Tian, Y. J. Zi, T. W. Wu, and F. Q. Huang, “Versatile photonic microwave waveforms generation using a dual-parallel Mach–Zehnder modulator without other dispersive elements,” Opt. Commun. 396, 134–140 (2017).
[Crossref]

Wada, N.

Wang, W. T.

W. Li, W. T. Wang, and N. H. Zhu, “Photonic Generation of Radio-Frequency Waveforms Based on Dual-Parallel Mach–Zehnder Modulator,” IEEE Photonics J. 6(3), 1–8 (2014).

Wang, X.

Weiner, A. M.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Wu, J.

Wu, T.

Wu, T. W.

G. F. Bai, L. Hu, Y. Jiang, J. Tian, Y. J. Zi, T. W. Wu, and F. Q. Huang, “Versatile photonic microwave waveforms generation using a dual-parallel Mach–Zehnder modulator without other dispersive elements,” Opt. Commun. 396, 134–140 (2017).
[Crossref]

Y. Jiang, C. Ma, G. F. Bai, Z. R. Jia, Y. J. Zi, S. H. Cai, T. W. Wu, and F. Q. Huang, “Photonic generation of triangular waveform by utilizing time-domain synthesis,” IEEE Photonics Technol. Lett. 27(16), 1725–1728 (2015).
[Crossref]

Yan, L.

Yao, J. P.

Yao, S.

Ye, J.

J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and S. Yao, “Photonic generation of triangular-shaped pulses based on frequency-to-time conversion,” Opt. Lett. 36(8), 1458–1460 (2011).
[Crossref] [PubMed]

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref] [PubMed]

Yi, A.

Yu, J. L.

C. Ma, Y. Jiang, G. F. Bai, Y. L. Tang, X. S. Qi, Z. R. Jia, Y. J. Zi, and J. L. Yu, “Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach–Zehnder modulator,” Opt. Commun. 363, 207–210 (2016).
[Crossref]

Zang, J.

Zhang, F.

Zhou, S.

Zhu, N. H.

W. Li, W. T. Wang, and N. H. Zhu, “Photonic Generation of Radio-Frequency Waveforms Based on Dual-Parallel Mach–Zehnder Modulator,” IEEE Photonics J. 6(3), 1–8 (2014).

Zi, Y.

Zi, Y. J.

G. F. Bai, L. Hu, Y. Jiang, J. Tian, Y. J. Zi, T. W. Wu, and F. Q. Huang, “Versatile photonic microwave waveforms generation using a dual-parallel Mach–Zehnder modulator without other dispersive elements,” Opt. Commun. 396, 134–140 (2017).
[Crossref]

C. Ma, Y. Jiang, G. F. Bai, Y. L. Tang, X. S. Qi, Z. R. Jia, Y. J. Zi, and J. L. Yu, “Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach–Zehnder modulator,” Opt. Commun. 363, 207–210 (2016).
[Crossref]

Y. Jiang, C. Ma, G. F. Bai, Z. R. Jia, Y. J. Zi, S. H. Cai, T. W. Wu, and F. Q. Huang, “Photonic generation of triangular waveform by utilizing time-domain synthesis,” IEEE Photonics Technol. Lett. 27(16), 1725–1728 (2015).
[Crossref]

Zou, X.

IEEE Photonics J. (1)

W. Li, W. T. Wang, and N. H. Zhu, “Photonic Generation of Radio-Frequency Waveforms Based on Dual-Parallel Mach–Zehnder Modulator,” IEEE Photonics J. 6(3), 1–8 (2014).

IEEE Photonics Technol. Lett. (2)

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized Waveguide-Integrated p-i-n Photodetector With 120-GHz Bandwidth and High Responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

Y. Jiang, C. Ma, G. F. Bai, Z. R. Jia, Y. J. Zi, S. H. Cai, T. W. Wu, and F. Q. Huang, “Photonic generation of triangular waveform by utilizing time-domain synthesis,” IEEE Photonics Technol. Lett. 27(16), 1725–1728 (2015).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (2)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Opt. Commun. (3)

J. P. Yao, “Photonic Generation of Microwave Arbitrary Waveforms,” Opt. Commun. 284(15), 3723–3736 (2011).
[Crossref]

G. F. Bai, L. Hu, Y. Jiang, J. Tian, Y. J. Zi, T. W. Wu, and F. Q. Huang, “Versatile photonic microwave waveforms generation using a dual-parallel Mach–Zehnder modulator without other dispersive elements,” Opt. Commun. 396, 134–140 (2017).
[Crossref]

C. Ma, Y. Jiang, G. F. Bai, Y. L. Tang, X. S. Qi, Z. R. Jia, Y. J. Zi, and J. L. Yu, “Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach–Zehnder modulator,” Opt. Commun. 363, 207–210 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Science (1)

A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Diagram of the experimental setup. LD: laser diode, PC: polarization controller, MZM: single-drive LiNbO3 Mach-Zehnder modulator, EDFA: erbium-doped fiber amplifier, OC: optical coupler, ODL: optical delay line, ATT: attenuator, PBS: polarizing beam splitter.
Fig. 2
Fig. 2 (a) The calculated coefficients of the first-, second- and third-order harmonics of the photocurrent. (b) Simulation result of square-shaped waveform generation.
Fig. 3
Fig. 3 Schematic diagram of triangular waveform generation.
Fig. 4
Fig. 4 (a) The calculated coefficients of the first- and third-order harmonics of the photocurrent. (b) Simulation result of triangular waveform synthesis.
Fig. 5
Fig. 5 (a) The calculated coefficient ratio of the first-order harmonic to the third-order of the photocurrent versus the modulation index. (b) The calculated coefficients of the first-, second- and third-order harmonics of the photocurrent versus the bias index with the modulation indices of 1.142 and the incident angle of π/4.
Fig. 6
Fig. 6 Simulation results. (a) The sawtooth waveform synthesis. (b) The reversed-sawtooth waveform synthesis.
Fig. 7
Fig. 7 (a) The calculated coefficient ratio of the first-order harmonic to the second-order of the photocurrent versus the bias index with the modulation index of 1.142. (b) The calculated coefficients of the first-, second- and third-order harmonics of the photocurrent versus the bias index with the modulation indices of 1.142 and the incident angle of π/4.
Fig. 8
Fig. 8 (a) Simulation result of the superposition of the two sawtooth waveforms. (b) Comparison of the sawtooth waveform and the superimposed waveform with a normalized phase and amplitude.
Fig. 9
Fig. 9 Simulation results. (a) The smooth sawtooth waveform synthesis. (b) The smooth reversed-sawtooth waveform synthesis.
Fig. 10
Fig. 10 Experimental results. (a) The OCS spectra of different incident angles. (b) The corresponding waveform with the polarization of the incident light consistent with the principal axis. (c) The corresponding waveform with the polarization of the incident light inconsistent with the principal axis.
Fig. 11
Fig. 11 Measured waveforms and electrical spectra. (a) 3-GHz square-shaped waveform. (b) The corresponding electrical spectrum. (c) 3-GHz triangular waveform with full duty cycle. (d) The corresponding electrical spectrum.
Fig. 12
Fig. 12 Measured waveforms and electrical spectra. (a),(b) The waveforms on the two orthogonal components. (c),(d) 3-GHz sawtooth waveform. (e) The corresponding electrical spectrum. (f),(g) 3-GHz reversed-sawtooth waveform. (h) The corresponding electrical spectrum.
Fig. 13
Fig. 13 Measured waveforms and electrical spectra. (a),(b) The waveforms on the two orthogonal components. (c),(d) 3-GHz smooth sawtooth waveform. (e) The corresponding electrical spectrum. (f),(g) 3-GHz smooth reversed-sawtooth waveform. (h) The corresponding electrical spectrum.

Tables (2)

Tables Icon

Table 1 The calculated parameters and coefficients for sawtooth waveform generation

Tables Icon

Table 2 The calculated parameters and coefficients for smooth sawtooth waveform generation

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E in (t)= E 0 e j ω 0 t
v i = v DC i + v RF i cos( ω m t)= ε i v π + α i v π cos( ω m t), i=1,2
E 1 (t)=[ E 1 X (t) E 1 Y (t) ] =[ cosθ E in (t){cos ϕ 1 cos[ m 1 cos( ω m t)]sin ϕ 1 sin[ m 1 cos( ω m t)]} sinθ E in (t) ]
E 2 (t)=[ E 2 X (t) E 2 Y (t) ]=[ E 1 X (t) E 2 Y (t) ] =[ cosθ E in (t){cos ϕ 1 cos[ m 1 cos( ω m t)]sin ϕ 1 sin[ m 1 cos( ω m t)]} sinθ E in (t){cos ϕ 2 cos[ m 2 cos( ω m t+φ)]sin ϕ 2 sin[ m 2 cos( ω m t+φ)]} ]
E 2 (t)=[ E 2 X (t) E 2 Y (t) ] [ cosθ E in (t)[cos ϕ 1 J 0 ( m 1 )2sin ϕ 1 J 1 ( m 1 )cos( ω m t) 2cos ϕ 1 J 2 ( m 1 )cos(2 ω m t)+2sin ϕ 1 J 3 ( m 1 )cos(3 ω m t)] sinθ E in (t)[cos ϕ 2 J 0 ( m 2 )2sin ϕ 2 J 1 ( m 2 )cos( ω m t+φ) 2cos ϕ 2 J 2 ( m 2 )cos(2 ω m t+2φ)+2sin ϕ 2 J 3 ( m 2 )cos(3 ω m t+3φ)] ].
I(t) | E 2 X (t) | 2 + | E 2 Y (t) | 2 DC+ [ X 1 cos( ω m t)+ Y 1 cos(2 ω m t)+ Z 1 cos(3 ω m t) ] i 1 + [ X 2 cos( ω m t+φ)+ Y 2 cos(2 ω m t+2φ)+ Z 2 cos(3 ω m t+3φ) ] i 2
[ X i Y i Z i ]=[ (2 B i C i 2 A i B i 2 C i D i )[(2i) cos 2 θ+(i1) sin 2 θ] ( B i 2 2 A i C i 2 B i D i )[(2i) cos 2 θ+(i1) sin 2 θ] (2 A i D i +2 B i C i )[(2i) cos 2 θ+(i1) sin 2 θ] ].
[ A i B i C i D i ]=[ cos ϕ i J 0 ( m i ) sin ϕ i J 1 ( m i ) cos ϕ i J 2 ( m i ) sin ϕ i J 3 ( m i ) ].
T sq (t)=DC+ N=1,3,5 1 N sin(N ω m t).
I(t)DC+ X 1 cos( ω m t)+ Y 1 cos(2 ω m t)+ Z 1 cos(3 ω m t) =DC+ X 1 sin( ω m t+ π 2 )+ Y 1 cos(2 ω m t) Z 1 sin(3 ω m t+ 3π 2 ).
T tr (t)=DC+ N=1,3,5 1 N 2 cos(N ω m t).
T tr (t)=DC+cos( ω m t)+ 1 9 cos(3 ω m t).
I(t)DC+ X 2 cos( ω m t+ φ 2 )cos φ 2 +( X 1 X 2 )cos( ω m t) + Y 2 cos(2 ω m t+φ)cosφ+( Y 1 Y 2 )cos(2 ω m t) + Z 2 cos(3 ω m t+ 3φ 2 )cos 3φ 2 +( Z 1 Z 2 )cos(3 ω m t).
I(t)DC+cos π 4 [ X 2 cos( ω m t+ π 4 ) Z 2 cos(3 ω m t+ 3π 4 ) ].
T saw (t)=DC+ N=1 1 N sin(N ω m t).
T saw (t)DC+sin( ω m t)+ 1 2 sin(2 ω m t)+ 1 3 sin(3 ω m t).
I(t)DC+ [ X 1 cos( ω m t)+ Y 2 cos(2 ω m t+ π 2 )+ Z 1 cos(3 ω m t) ] Saw1 + [ X 2 cos( ω m t+ π 4 )+ Y 1 cos(2 ω m t)+ Z 2 cos(3 ω m t+ 3π 4 ) ] Saw2 =DC+ [ X 1 sin( ω m t+ π 2 )+ Y 2 sin(2 ω m t+π) Z 1 sin(3 ω m t+ 3π 2 ) ] Saw1 + [ X 2 sin( ω m t+ 3π 4 ) Y 1 sin(2 ω m t+ 6π 4 ) Z 2 sin(3 ω m t+ 9π 4 ) ] Saw2 .
{ X 1 = X 2 X 1 =2 Y 1 =3 Z 1 X 2 =2 Y 2 =3 Z 2 .
{ X i / Z i =3 X 1 / Y 1 =2 X 2 / Y 2 =+2

Metrics