Abstract

Rayleigh scattering has shown powerful abilities to study electron resonances of nanomaterials regardless of the specific shapes. In analogy to Rayleigh scattering, here we demonstrate that edge optical scattering from two-dimensional(2D) materials also has the similar advantage. Our result shows that, in visible spectral range, as long as the lateral size of a 2D sample is larger than 2 μm, the edge scattering intensity distribution of the high-angle scattering in k space is nearly independent of the lateral size and the shape of the 2D samples. The high-angle edge scattering spectra are purely determined by the intrinsic dielectric properties of the 2D materials. As an example, we experimentally verify this feature in single-layer MoS2, in which A and B excitons are clearly detected in the edge scattering spectra, and the scattering images in k space and real space are consistent with our theoretical model. This study shows that the edge scattering is a highly practical and efficient method for optical studies of various 2D materials as well as thin films with clear edges.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of substrates on the nonlinear optical responses of two-dimensional materials

Jianhua Zeng, Jinxiang Li, Hui Li, Qiaofeng Dai, Shaolong Tie, and Sheng Lan
Opt. Express 23(25) 31817-31827 (2015)

Glass flake reinforced composites as optical materials

Paul N. Dunlap
Appl. Opt. 30(13) 1701-1710 (1991)

Statistical theory of multiple scattering of waves applied to three-dimensional layered photonic crystals

Alina Ponyavina, Svetlana Kachan, and Nikolaj Sil'vanovich
J. Opt. Soc. Am. B 21(10) 1866-1875 (2004)

References

  • View by:
  • |
  • |
  • |

  1. B. Santra, M. N. Shneider, and R. Car, “In situ characterization of nanoparticles using Rayleigh scattering,” Sci. Rep. 7, 40230 (2017).
    [Crossref] [PubMed]
  2. V. E. Bistia, L. V. Kulika, A. S. Zhuravleva, A. O. Shablyab, and I. V. Kukushkin, “Rayleigh scattering of light by two-dimensional electrons in a high magnetic,” Field JETP Lett. 98(12), 778–781 (2014).
    [Crossref]
  3. S. Haacke, “Resonant Rayleigh scattering by Wannier excitons in a two-dimensional disordered potential,” Rep. Prog. Phys. 64(6), 737–776 (2001).
    [Crossref]
  4. M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
    [Crossref] [PubMed]
  5. M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
    [Crossref] [PubMed]
  6. K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
    [Crossref] [PubMed]
  7. K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
    [Crossref] [PubMed]
  8. D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K.-L. Chan, and J. Park, “Single-walled carbon nanotubes as excitonic optical wires,” Nat. Nanotechnol. 6(1), 51–56 (2011).
    [Crossref] [PubMed]
  9. F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
    [Crossref] [PubMed]
  10. C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
    [Crossref]
  11. H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
    [Crossref]
  12. Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
    [Crossref] [PubMed]
  13. S. Funke, B. Miller, E. Parzinger, P. Thiesen, A. W. Holleitner, and U. Wurstbauer, “Imaging spectroscopic ellipsometry of MoS2.,” J. Phys. Condens. Matter 28(38), 385301 (2016).
    [Crossref] [PubMed]
  14. C. Ruppert, O. B. Aslan, and T. F. Heinz, “Optical properties and band gap of single- and few-layer MoTe2 crystals,” Nano Lett. 14(11), 6231–6236 (2014).
    [Crossref] [PubMed]
  15. H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
    [Crossref] [PubMed]
  16. Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, “Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging,” Nanoscale 7(28), 11909–11914 (2015).
    [Crossref] [PubMed]
  17. M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton emission from edges and grain boundaries of triangular WS2 monolayers,” ACS Nano 10(2), 2399–2405 (2016).
    [Crossref] [PubMed]
  18. Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
    [Crossref] [PubMed]
  19. H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous defect domains in single-crystalline hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
    [Crossref] [PubMed]
  20. X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
    [Crossref] [PubMed]

2017 (4)

B. Santra, M. N. Shneider, and R. Car, “In situ characterization of nanoparticles using Rayleigh scattering,” Sci. Rep. 7, 40230 (2017).
[Crossref] [PubMed]

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous defect domains in single-crystalline hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

2016 (2)

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton emission from edges and grain boundaries of triangular WS2 monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

S. Funke, B. Miller, E. Parzinger, P. Thiesen, A. W. Holleitner, and U. Wurstbauer, “Imaging spectroscopic ellipsometry of MoS2.,” J. Phys. Condens. Matter 28(38), 385301 (2016).
[Crossref] [PubMed]

2015 (2)

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, “Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging,” Nanoscale 7(28), 11909–11914 (2015).
[Crossref] [PubMed]

2014 (4)

C. Ruppert, O. B. Aslan, and T. F. Heinz, “Optical properties and band gap of single- and few-layer MoTe2 crystals,” Nano Lett. 14(11), 6231–6236 (2014).
[Crossref] [PubMed]

V. E. Bistia, L. V. Kulika, A. S. Zhuravleva, A. O. Shablyab, and I. V. Kukushkin, “Rayleigh scattering of light by two-dimensional electrons in a high magnetic,” Field JETP Lett. 98(12), 778–781 (2014).
[Crossref]

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

2013 (2)

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

2012 (1)

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

2011 (1)

D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K.-L. Chan, and J. Park, “Single-walled carbon nanotubes as excitonic optical wires,” Nat. Nanotechnol. 6(1), 51–56 (2011).
[Crossref] [PubMed]

2006 (2)

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

2004 (1)

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[Crossref] [PubMed]

2001 (1)

S. Haacke, “Resonant Rayleigh scattering by Wannier excitons in a two-dimensional disordered potential,” Rep. Prog. Phys. 64(6), 737–776 (2001).
[Crossref]

Aloni, S.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

Aslan, O. B.

C. Ruppert, O. B. Aslan, and T. F. Heinz, “Optical properties and band gap of single- and few-layer MoTe2 crystals,” Nano Lett. 14(11), 6231–6236 (2014).
[Crossref] [PubMed]

Aspnes, D. E.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Bai, X.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

Baik, J.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous defect domains in single-crystalline hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Beetz, T.

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

Berkdemir, A.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Bhaskaran, H.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

Bistia, V. E.

V. E. Bistia, L. V. Kulika, A. S. Zhuravleva, A. O. Shablyab, and I. V. Kukushkin, “Rayleigh scattering of light by two-dimensional electrons in a high magnetic,” Field JETP Lett. 98(12), 778–781 (2014).
[Crossref]

Brus, L. E.

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[Crossref] [PubMed]

Cai, Y.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Cao, L.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Capaz, R. B.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

Car, R.

B. Santra, M. N. Shneider, and R. Car, “In situ characterization of nanoparticles using Rayleigh scattering,” Sci. Rep. 7, 40230 (2017).
[Crossref] [PubMed]

Chan, G. K.-L.

D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K.-L. Chan, and J. Park, “Single-walled carbon nanotubes as excitonic optical wires,” Nat. Nanotechnol. 6(1), 51–56 (2011).
[Crossref] [PubMed]

Chuang, C.-C.

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[Crossref] [PubMed]

Crespi, V. H.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Deslippe, J.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

Duesberg, G. S.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Elias, A. L.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

Elías, A. L.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Fang, Y.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Fujisawa, K.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

Funke, S.

S. Funke, B. Miller, E. Parzinger, P. Thiesen, A. W. Holleitner, and U. Wurstbauer, “Imaging spectroscopic ellipsometry of MoS2.,” J. Phys. Condens. Matter 28(38), 385301 (2016).
[Crossref] [PubMed]

Gurarslan, A.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Gutiérrez, H. R.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Haacke, S.

S. Haacke, “Resonant Rayleigh scattering by Wannier excitons in a two-dimensional disordered potential,” Rep. Prog. Phys. 64(6), 737–776 (2001).
[Crossref]

Han, G. H.

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton emission from edges and grain boundaries of triangular WS2 monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, “Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging,” Nanoscale 7(28), 11909–11914 (2015).
[Crossref] [PubMed]

Hao, X.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

He, L.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Heinz, T. F.

C. Ruppert, O. B. Aslan, and T. F. Heinz, “Optical properties and band gap of single- and few-layer MoTe2 crystals,” Nano Lett. 14(11), 6231–6236 (2014).
[Crossref] [PubMed]

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[Crossref] [PubMed]

Herman, L. H.

D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K.-L. Chan, and J. Park, “Single-walled carbon nanotubes as excitonic optical wires,” Nat. Nanotechnol. 6(1), 51–56 (2011).
[Crossref] [PubMed]

Holleitner, A. W.

S. Funke, B. Miller, E. Parzinger, P. Thiesen, A. W. Holleitner, and U. Wurstbauer, “Imaging spectroscopic ellipsometry of MoS2.,” J. Phys. Condens. Matter 28(38), 385301 (2016).
[Crossref] [PubMed]

Hone, J.

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[Crossref] [PubMed]

Hong, X.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

Hsu, C.-L.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Huang, L.

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[Crossref] [PubMed]

Huang, M.

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

Huang, X. M.

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

Huang, X. M. H.

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

Jeong, H. Y.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous defect domains in single-crystalline hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Jin, C.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

Jin, Y.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous defect domains in single-crystalline hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Joh, D. Y.

D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K.-L. Chan, and J. Park, “Single-walled carbon nanotubes as excitonic optical wires,” Nat. Nanotechnol. 6(1), 51–56 (2011).
[Crossref] [PubMed]

Johnson, J. N.

D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K.-L. Chan, and J. Park, “Single-walled carbon nanotubes as excitonic optical wires,” Nat. Nanotechnol. 6(1), 51–56 (2011).
[Crossref] [PubMed]

Ju, S.-Y.

D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K.-L. Chan, and J. Park, “Single-walled carbon nanotubes as excitonic optical wires,” Nat. Nanotechnol. 6(1), 51–56 (2011).
[Crossref] [PubMed]

Keum, D. H.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous defect domains in single-crystalline hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Kim, H.

Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, “Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging,” Nanoscale 7(28), 11909–11914 (2015).
[Crossref] [PubMed]

Kim, J.

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton emission from edges and grain boundaries of triangular WS2 monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, “Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging,” Nanoscale 7(28), 11909–11914 (2015).
[Crossref] [PubMed]

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

Kim, K. K.

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton emission from edges and grain boundaries of triangular WS2 monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Kim, M. S.

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton emission from edges and grain boundaries of triangular WS2 monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Kinder, J.

D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K.-L. Chan, and J. Park, “Single-walled carbon nanotubes as excitonic optical wires,” Nat. Nanotechnol. 6(1), 51–56 (2011).
[Crossref] [PubMed]

Korsunsky, A. M.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

Kuang, C.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Kukushkin, I. V.

V. E. Bistia, L. V. Kulika, A. S. Zhuravleva, A. O. Shablyab, and I. V. Kukushkin, “Rayleigh scattering of light by two-dimensional electrons in a high magnetic,” Field JETP Lett. 98(12), 778–781 (2014).
[Crossref]

Kulika, L. V.

V. E. Bistia, L. V. Kulika, A. S. Zhuravleva, A. O. Shablyab, and I. V. Kukushkin, “Rayleigh scattering of light by two-dimensional electrons in a high magnetic,” Field JETP Lett. 98(12), 778–781 (2014).
[Crossref]

Lee, H. S.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous defect domains in single-crystalline hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Lee, Y.

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton emission from edges and grain boundaries of triangular WS2 monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, “Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging,” Nanoscale 7(28), 11909–11914 (2015).
[Crossref] [PubMed]

Lee, Y. H.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous defect domains in single-crystalline hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton emission from edges and grain boundaries of triangular WS2 monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, “Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging,” Nanoscale 7(28), 11909–11914 (2015).
[Crossref] [PubMed]

Li, H.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Li, J.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

Li, L.-J.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Li, M.-Y.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Li, W.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Lin, Z.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

Liu, H.-L.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Liu, J.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

Liu, K.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

Liu, X.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Liu, Y.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

López-Urías, F.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Louie, S. G.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

Lunney, J. G.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Lv, R.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

McEvoy, N.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Miller, B.

S. Funke, B. Miller, E. Parzinger, P. Thiesen, A. W. Holleitner, and U. Wurstbauer, “Imaging spectroscopic ellipsometry of MoS2.,” J. Phys. Condens. Matter 28(38), 385301 (2016).
[Crossref] [PubMed]

Mirza, I.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Misewich, J. A.

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

Nan, D.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Nguyen, N. V.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

O’Brien, M.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

O’Brien, S.

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

O’brien, S. P.

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[Crossref] [PubMed]

Pang, C.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Park, J.

D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K.-L. Chan, and J. Park, “Single-walled carbon nanotubes as excitonic optical wires,” Nat. Nanotechnol. 6(1), 51–56 (2011).
[Crossref] [PubMed]

Park, S.

Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, “Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging,” Nanoscale 7(28), 11909–11914 (2015).
[Crossref] [PubMed]

Parzinger, E.

S. Funke, B. Miller, E. Parzinger, P. Thiesen, A. W. Holleitner, and U. Wurstbauer, “Imaging spectroscopic ellipsometry of MoS2.,” J. Phys. Condens. Matter 28(38), 385301 (2016).
[Crossref] [PubMed]

Peelaers, H.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Perea-López, N.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Ruppert, C.

C. Ruppert, O. B. Aslan, and T. F. Heinz, “Optical properties and band gap of single- and few-layer MoTe2 crystals,” Nano Lett. 14(11), 6231–6236 (2014).
[Crossref] [PubMed]

Santra, B.

B. Santra, M. N. Shneider, and R. Car, “In situ characterization of nanoparticles using Rayleigh scattering,” Sci. Rep. 7, 40230 (2017).
[Crossref] [PubMed]

Segal, M. A.

D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K.-L. Chan, and J. Park, “Single-walled carbon nanotubes as excitonic optical wires,” Nat. Nanotechnol. 6(1), 51–56 (2011).
[Crossref] [PubMed]

Seo, C.

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton emission from edges and grain boundaries of triangular WS2 monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Sfeir, M. Y.

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[Crossref] [PubMed]

Shablyab, A. O.

V. E. Bistia, L. V. Kulika, A. S. Zhuravleva, A. O. Shablyab, and I. V. Kukushkin, “Rayleigh scattering of light by two-dimensional electrons in a high magnetic,” Field JETP Lett. 98(12), 778–781 (2014).
[Crossref]

Shen, C.-C.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Shen, W.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Sheng, Y.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

Shneider, M. N.

B. Santra, M. N. Shneider, and R. Car, “In situ characterization of nanoparticles using Rayleigh scattering,” Sci. Rep. 7, 40230 (2017).
[Crossref] [PubMed]

Su, S.-H.

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Terrones, H.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Terrones, M.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Thiesen, P.

S. Funke, B. Miller, E. Parzinger, P. Thiesen, A. W. Holleitner, and U. Wurstbauer, “Imaging spectroscopic ellipsometry of MoS2.,” J. Phys. Condens. Matter 28(38), 385301 (2016).
[Crossref] [PubMed]

Van de Walle, C. G.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Wang, B.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Wang, E.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

Wang, F.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[Crossref] [PubMed]

Wang, W.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

Wang, X.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

Warner, J. H.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

Winters, S.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Wu, L.

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

Wu, Y.

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

Wurstbauer, U.

S. Funke, B. Miller, E. Parzinger, P. Thiesen, A. W. Holleitner, and U. Wurstbauer, “Imaging spectroscopic ellipsometry of MoS2.,” J. Phys. Condens. Matter 28(38), 385301 (2016).
[Crossref] [PubMed]

Xiao, F.

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

Xu, P.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Xu, W.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

Xu, Y.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Yang, Q.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Yim, C.

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

Ying, S.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

Yu, C.

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Yun, S. J.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous defect domains in single-crystalline hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton emission from edges and grain boundaries of triangular WS2 monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Zettl, A.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

Zhang, Y. W.

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

Zhao, J.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous defect domains in single-crystalline hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Zhou, Q.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

Zhou, W.

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

Zhou, Y.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

Zhu, Y.

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

Zhuravleva, A. S.

V. E. Bistia, L. V. Kulika, A. S. Zhuravleva, A. O. Shablyab, and I. V. Kukushkin, “Rayleigh scattering of light by two-dimensional electrons in a high magnetic,” Field JETP Lett. 98(12), 778–781 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias, Z. Lin, W. Xu, Y. Zhou, A. M. Korsunsky, H. Bhaskaran, M. Terrones, and J. H. Warner, “Photoluminescence segmentation within individual hexagonal monolayer tungsten disulfide domains grown by chemical vapor deposition,” ACS Appl. Mater. Interfaces 9(17), 15005–15014 (2017).
[Crossref] [PubMed]

ACS Nano (1)

M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, and J. Kim, “Biexciton emission from edges and grain boundaries of triangular WS2 monolayers,” ACS Nano 10(2), 2399–2405 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous defect domains in single-crystalline hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

C. Yim, M. O’Brien, N. McEvoy, S. Winters, I. Mirza, J. G. Lunney, and G. S. Duesberg, “Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry,” Appl. Phys. Lett. 104(10), 103114 (2014).
[Crossref]

H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li, and L.-J. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett. 105(20), 201905 (2014).
[Crossref]

Field JETP Lett. (1)

V. E. Bistia, L. V. Kulika, A. S. Zhuravleva, A. O. Shablyab, and I. V. Kukushkin, “Rayleigh scattering of light by two-dimensional electrons in a high magnetic,” Field JETP Lett. 98(12), 778–781 (2014).
[Crossref]

J. Phys. Condens. Matter (1)

S. Funke, B. Miller, E. Parzinger, P. Thiesen, A. W. Holleitner, and U. Wurstbauer, “Imaging spectroscopic ellipsometry of MoS2.,” J. Phys. Condens. Matter 28(38), 385301 (2016).
[Crossref] [PubMed]

Nano Lett. (2)

C. Ruppert, O. B. Aslan, and T. F. Heinz, “Optical properties and band gap of single- and few-layer MoTe2 crystals,” Nano Lett. 14(11), 6231–6236 (2014).
[Crossref] [PubMed]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13(8), 3447–3454 (2013).
[Crossref] [PubMed]

Nanoscale (1)

Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, “Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging,” Nanoscale 7(28), 11909–11914 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, “An atlas of carbon nanotube optical transitions,” Nat. Nanotechnol. 7(5), 325–329 (2012).
[Crossref] [PubMed]

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li, W. Zhou, J. Liu, E. Wang, A. Zettl, and F. Wang, “High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices,” Nat. Nanotechnol. 8(12), 917–922 (2013).
[Crossref] [PubMed]

D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K.-L. Chan, and J. Park, “Single-walled carbon nanotubes as excitonic optical wires,” Nat. Nanotechnol. 6(1), 51–56 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

F. Wang, M. Y. Sfeir, L. Huang, X. M. Huang, Y. Wu, J. Kim, J. Hone, S. O’Brien, L. E. Brus, and T. F. Heinz, “Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy,” Phys. Rev. Lett. 96(16), 167401 (2006).
[Crossref] [PubMed]

X. Liu, C. Kuang, X. Hao, C. Pang, P. Xu, H. Li, Y. Liu, C. Yu, Y. Xu, D. Nan, W. Shen, Y. Fang, L. He, X. Liu, and Q. Yang, “Fluorescent nanowire ring illumination for wide-field far -field subdiffraction Imaging,” Phys. Rev. Lett. 118(7), 076101 (2017).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

S. Haacke, “Resonant Rayleigh scattering by Wannier excitons in a two-dimensional disordered potential,” Rep. Prog. Phys. 64(6), 737–776 (2001).
[Crossref]

Sci. Rep. (2)

Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D. E. Aspnes, C. G. Van de Walle, N. V. Nguyen, Y. W. Zhang, and L. Cao, “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films,” Sci. Rep. 5(1), 16996 (2015).
[Crossref] [PubMed]

B. Santra, M. N. Shneider, and R. Car, “In situ characterization of nanoparticles using Rayleigh scattering,” Sci. Rep. 7, 40230 (2017).
[Crossref] [PubMed]

Science (2)

M. Y. Sfeir, F. Wang, L. Huang, C.-C. Chuang, J. Hone, S. P. O’brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[Crossref] [PubMed]

M. Y. Sfeir, T. Beetz, F. Wang, L. Huang, X. M. H. Huang, M. Huang, J. Hone, S. O’Brien, J. A. Misewich, T. F. Heinz, L. Wu, Y. Zhu, and L. E. Brus, “Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure,” Science 312(5773), 554–556 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Decomposition of the dipole field. The dipole field (orange arrow) in left graph can be divided to two parts: the reflection part as shown in the upper right graph, and the scattering part in the lower right graph. (b) Scattering distribution in k space when lateral size 2a = 10 (red line) and 20 μm (blue line), respectively. Insert is the enlarged curve of the dashed box in (b). (c) The numerical (orange line) and approximate (green dot line) integrated results as a function of the lateral size 2a. For simplicity, these curves are normalized to the integrated intensity of the approximate result. The integrating range is (10 μm−1, 20 μm−1). (d) The intensity distribution of high-angle scattering in real space for different lateral sizes: black, red, blue, pink and green denotes the case for a = 1, 2.5, 5, 10 and 15μm, respectively. The integrating range is also (10 μm−1, 20 μm−1). (e) Phase distribution of R ( k 1 , k 2 ) (xa) with different lateral sizes.
Fig. 2
Fig. 2 Illustration of edge scattering microscopy of 2D samples with different orientations. (a) Experimental setup and the definition of coordinate system. (b) Sample's edge which parallels to y axis. (c) Sketch of the scattering distribution in k space corresponding to the sample in (b). Blue circle is the collection area of the objective lens. (d) Sample’s edge which has an included angle α to y axis. (e) Sketch of the scattering distribution in k space corresponding to the sample in (d).
Fig. 3
Fig. 3 Experimental results of the edge optical scattering from monolayer MoS2 flakes. (a) Reflection image of several monolayer flakes. (b) The corresponding edge scattering image. Dashed box indicates the aperture allowed accessing area in real space. The scale bar is 20 μm. (c) and (d): The high-angle scattering image of a flake after the aperture (c) in real space and (d) in k ˜ space.
Fig. 4
Fig. 4 (a) s wave (red line) and p wave (blue line) edge scattering spectra from a single flake of monolayer MoS2. (b) Relative normalized value of | χ in ( ω ) | 2 .
Fig. 5
Fig. 5 Amplitude of inverse Fourier transforming of sin(ka)/k with different integration area and sample lateral size, black a = 1μm, red a = 2.5μm, blue a = 5μm, pink a = 10μm and green a = 15μm.
Fig. 6
Fig. 6 (a) Coordinate system of tilt ribbon in real space. (b) Sketch of amplitude distribution in k space of F(kx, ky).
Fig. 7
Fig. 7 Schematic drawing of experiment set up. Lamp is reflected by BS1 and passes object lens to illuminate the sample. Laser beam is obliquely incident on the sample out of object lens. Reflection or scattering image is enlarged by object lens and Lens1, and then projects on CCD1 and aperture plane at the same time with the help of BS2. Aperture plane is imaged on entrance1(E1) of spectrometer by Lens2 and Lens3 and is Fourier transformed to entrance2(E2) of spectrometer by Lens4. Switchable reflector mirror in the spectrometer determines which one enter into CCD2, real space image or k space image.
Fig. 8
Fig. 8 Reflection and scattering light image of samples with different rotation angle. (a-i) the reflection image of ith sample. (b-i) the scattering light image of ith sample in real space recorded by CCD1. All the scale bars are 20 μm. (c-i) the scattering light image that passes through aperture of ith sample in real space recorded by CCD2. Aperture allowed area is labeled in (b-i) by dot box. (d-i) is the scattering light image of ith sample in k space recorded by CCD2.
Fig. 9
Fig. 9 (a) White laser spectrum. (b) Optical loss spectra of optical element in optical path. (c) Angle distribution corrector factor spectrum for θ = 66° and α = 17°.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

D( x )={ 0 |x|>a A |x|<a
F( k )= 1 2π + D( x ) e ikx dx = A 2π a a e ikx dx = A π sin( ka ) k
E( k )=γ ω 2 F( k )=γ ω 2 A π sin( ka ) k
I ( k 1 , k 2 ) = k 1 k 2 |E( k ) | 2 dk = ( γ ω 2 A π ) 2 k 1 k 2 sin 2 ( ka ) k 2 dk ( γ ω 2 A π ) 2 k 1 k 2 1 2 k 2 dk = 1 2 ( 1 π ) 2 ( γ ω 2 χE ) 2 ( 1 k 1 1 k 2 )
R ( k 1 , k 2 ) ( x )=γ ω 2 k 1 k 2 F( k ) e ikx dk =γ ω 2 χE k 1 k 2 sin( ka ) πk e ikx dk
D( x )={ 0 |x|>a A e i k 0 xsinθ |x|<a
( k 0 sinθcosα k 0 N.A . 2 ( sinθsinα ) 2 , k 0 sinθcosα+ k 0 N.A . 2 ( sinθsinα ) 2 )
F( k x , k y )= ( 1 2π ) 2 D( x,y ) e i( k x x+ k y y ) dxdy
I C ( k x , k y )= I V ( k x , k y )|E( k x , k y ) | 2
I V ( k x , k y )= | p | p | × k | k | | 2 = | ( k x 2 + k y 2 ) p z 2 +( k y 2 + k z 2 ) p x 2 +( k z 2 + k x 2 ) p y 2 2( p x p y k x k y + p y p z k y k z + p z p x k z k x ) |/( | p | 2 | k | 2 )
{ p s =( 0,χ E s ,0 ) p p =( χ E p cosθ,0,χ E p sinθ )
I Vs ( k x , k y )=( 1 k y 2 k 0 2 )
I Vp ( k x , k y )=( 1 k x 2 k 0 2 ) cos 2 θ+( 1 k z 2 k 0 2 ) sin 2 θ2cosθsinθ k x k z k 0 2 =1 ( k x k 0 cosθ+ k y k 0 sinθ ) 2
χ=( χ xx χ xy χ xz χ yx χ yy χ yz χ zx χ zy χ zz )
χ=( χ in 0 0 0 χ in 0 0 0 χ out )
p=χE=( χ in E x , χ in E y , χ out E z )
I Vs ( k x , k y )=( 1 k y 2 k 0 2 )
I Vp ( k x , k y )=| ( χ in cosθ ) 2 ( k 0 2 k x 2 )+ ( χ out sinθ ) 2 ( k x 2 + k y 2 )+ χ in χ out sinθcosθ ( ( χ in cosθ ) 2 + ( χ out sinθ ) 2 ) k 0 2 | =| 1 ( k x χ in cosθ+ k z χ out sinθ ) 2 ( ( χ in cosθ ) 2 + ( χ out sinθ ) 2 ) k 0 2 |
I C ( k x , k y )= I V ( k x , k y ) | E( k x , k y ) | 2 = { γ ω 2 ( 1 k y 2 k 0 2 ) | χ in E s F'( k x , k y ) | 2 s wave γ ω 2 | ( ( χ in cosθ ) 2 + ( χ out cosθ ) 2 ( k x k 0 χ in cosθ+ k z k 0 χ out sinθ ) 2 ) E p 2 F ' 2 ( k x , k y ) | p wave
D( x,y )={ A e i k 0 xsinθ | xcosα+ysinα |<a 0 | xcosα+ysinα |>a
{ u=xcosα+ysinα v=xsinα+ycosα
D( x,y )={ A e i k 0 ( ucosαvsinα )sinθ | u |<a 0 | u |>a
F( k x , k y )= ( 1 2π ) 2 D( x,y ) e i( k x x+ k y y ) dxdy
F( k u , k v )= ( 1 2π ) 2 D( u,v ) e i( k u u+ k v v ) dudv= ( 1 2π ) 2 A + e i( k 0 vsinαsinθ k v v ) dv + e i( k 0 usinαsinθ+ k u u ) du = ( 1 2π ) 2 Aδ( k v k 0 sinαsinθ ) 2sin( ( k u + k 0 sinαsinθ )a ) k u + k 0 sinαsinθ
{ k u = k x cosα+ k y sinα k v = k x sinα+ k y cosα
F( k x , k y )= ( 1 2π ) 2 Aδ( k x sinα+ k y cosα k 0 sinαsinθ ) 2sin( ( k x cosα+ k y sinα+ k 0 cosαsinθ )a ) k x cosα+ k y sinα+ k 0 cosαsinθ
I s ( ω )= k x 2 + k y 2 <0.5 k 0 γ ω 2 ( k 0 2 k y 2 ) k 0 2 | χ in ( ω ) E S F'( k x , k y ) | 2 d k x d k y
| χ in ( ω ) | 2 = I s ( ω )/( γ ω 2 E s 2 η )
η= k x 2 + k y 2 <0.5 k 0 ( 1 k y 2 k 0 2 ) | F'( k x , k y ) | 2 d k x d k y

Metrics