Abstract

Two experiments were carried out to study the neutral white and the chromatic adaptation in human vision and color science. After matching neutral whites under different illuminants using both surface and self-luminous colors, the result were used to verify the previous study about the chromatic adaptation. Not all the white illuminants were found neutral even the adaptation time is long. The baseline illuminant of the two-step chromatic adaptation transform was found as the illuminant with the same chromaticity of the neutral white under it and depended on viewing medium in the present study. The results were also used as corresponding colors to derive models of the effective degree of chromatic adaptation, which were found highly associated with the chromaticity of the adapting illuminant.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of chromatic adaptation using memory color matches, Part I: neutral illuminants

Kevin A. G. Smet, Qiyan Zhai, Ming R. Luo, and Peter Hanselaer
Opt. Express 25(7) 7732-7748 (2017)

Study of chromatic adaptation using memory color matches, Part II: colored illuminants

Kevin A. G. Smet, Qiyan Zhai, Ming R. Luo, and Peter Hanselaer
Opt. Express 25(7) 8350-8365 (2017)

Assessment of white for displays under dark- and chromatic-adapted conditions

Kyungah Choi and Hyeon-Jeong Suk
Opt. Express 24(25) 28945-28957 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part I: neutral illuminants,” Opt. Express 25(7), 7732–7748 (2017).
    [Crossref] [PubMed]
  2. CIE 160–2004, “A review of chromatic adaptation transforms” (CIE, Vienna, 2004).
  3. CIE 159–2004, “A colour appearance model for colour management systems: CIECAM02” (CIE, Vienna, 2004).
  4. C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
    [Crossref]
  5. C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
    [Crossref]
  6. M. R. Luo and R. W. G. Hunt, “Testing colour appearance models using corresponding colour and magnitude estimation data sets,” Color Res. Appl. 23(3), 147–153 (1998).
    [Crossref]
  7. K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part II: colored illuminants,” Opt. Express 25(7), 8350–8365 (2017).
    [Crossref] [PubMed]
  8. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
    [Crossref]
  9. Q. Zhai, M. R. Luo, P. Hanselaer, and K. A. G. Smet, “Modelling incomplete chromatic adaptation and colour contrast using memory colours,” in Proceedings of 24th Color Imaging Conference (2016), pp. 82–87.
    [Crossref]
  10. I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
    [Crossref] [PubMed]
  11. M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
    [Crossref]
  12. H. Li, M. R. Luo, X. Y. Liu, B. Y. Wang, and H. Y. Liu, “Evaluation of colour appearance in a real lit room,” Light. Res. Technol. 48(4), 412–432 (2016).
    [Crossref]
  13. Q. Wang, H. Xu, and J. Cai, “Chromaticity of white sensation for LED lighting,” Chin. Opt. Lett. 13(7), 073301 (2015).
    [Crossref]
  14. Y. Ohno and M. Fein, “Vision experiment on white light chromaticity for lighting,” in CIE/USA-CNC/CIE Biennial Joint Meeting, Davis, USA (2013).
  15. Y. Ohno and S. Oh, “Vision experiment II on white light chromaticity for lighting,” in Proceedings of the CIE Lighting Quality and Energy Efficiency (2016).
  16. K. A. G. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in object mode,” Opt. Express 22(21), 25830–25841 (2014).
    [Crossref] [PubMed]
  17. K. A. G. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
    [Crossref] [PubMed]
  18. K. A. G. Smet, “Two neutral white illumination loci based on unique white rating and degree of chromatic adaptation,” Leukos 14(2), 55–67 (2018).
    [Crossref]
  19. K. Choi and H. J. Suk, “Assessment of white for displays under dark- and chromatic-adapted conditions,” Opt. Express 24(25), 28945–28957 (2016).
    [Crossref] [PubMed]
  20. L. E. Arend and R. Goldstein, “Simultaneous constancy, lightness, and brightness,” J. Opt. Soc. Am. A 4(12), 2281–2285 (1987).
    [Crossref] [PubMed]
  21. V. Ekroll and F. Faul, “Basic characteristics of simultaneous color contrast revisited,” Psychol. Sci. 23(10), 1246–1255 (2012).
    [Crossref] [PubMed]
  22. Y. Yamauchi and K. Uchikawa, “Upper-limit luminance for the surface-color mode appearance,” J. Opt. Soc. Am. A 17(11), 1933–1941 (2000).
    [Crossref] [PubMed]
  23. M. D. Fairchild and L. Reniff, “Time course of chromatic adaptation for color-appearance judgments,” J. Opt. Soc. Am. A 12(5), 824–833 (1995).
    [Crossref] [PubMed]
  24. O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40(14), 1813–1826 (2000).
    [Crossref] [PubMed]
  25. R. Berns, “Methods for characterizing CRT displays,” Displays 16(4), 173–182 (1996).
    [Crossref]
  26. T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
    [Crossref] [PubMed]
  27. Y. Zhu, M. R. Luo, S. Fischer, P. Bodrogi, and T. Q. Khanh, “Long-term memory color investigation: culture effect and experimental setting factors,” J. Opt. Soc. Am. A 34(10), 1757–1768 (2017).
    [Crossref] [PubMed]
  28. A. Hurlbert, “Colour vision: Is colour constancy real?” Curr. Biol. 9(15), R558–R561 (1999).
    [Crossref] [PubMed]
  29. M. D. Fairchild, Color appearance models, John Wiley & Sons (2013).
  30. J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. U.S.A. 96(1), 307–312 (1999).
    [Crossref] [PubMed]
  31. A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
    [Crossref] [PubMed]
  32. M. Safdar, G. Cui, Y. J. Kim, and M. R. Luo, “Perceptually uniform color space for image signals including high dynamic range and wide gamut,” Opt. Express 25(13), 15131–15151 (2017).
    [Crossref] [PubMed]

2018 (1)

K. A. G. Smet, “Two neutral white illumination loci based on unique white rating and degree of chromatic adaptation,” Leukos 14(2), 55–67 (2018).
[Crossref]

2017 (5)

2016 (2)

H. Li, M. R. Luo, X. Y. Liu, B. Y. Wang, and H. Y. Liu, “Evaluation of colour appearance in a real lit room,” Light. Res. Technol. 48(4), 412–432 (2016).
[Crossref]

K. Choi and H. J. Suk, “Assessment of white for displays under dark- and chromatic-adapted conditions,” Opt. Express 24(25), 28945–28957 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (2)

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

K. A. G. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in object mode,” Opt. Express 22(21), 25830–25841 (2014).
[Crossref] [PubMed]

2013 (1)

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

2012 (1)

V. Ekroll and F. Faul, “Basic characteristics of simultaneous color contrast revisited,” Psychol. Sci. 23(10), 1246–1255 (2012).
[Crossref] [PubMed]

2011 (1)

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

2006 (1)

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

2002 (1)

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

2000 (2)

Y. Yamauchi and K. Uchikawa, “Upper-limit luminance for the surface-color mode appearance,” J. Opt. Soc. Am. A 17(11), 1933–1941 (2000).
[Crossref] [PubMed]

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref] [PubMed]

1999 (2)

A. Hurlbert, “Colour vision: Is colour constancy real?” Curr. Biol. 9(15), R558–R561 (1999).
[Crossref] [PubMed]

J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. U.S.A. 96(1), 307–312 (1999).
[Crossref] [PubMed]

1998 (1)

M. R. Luo and R. W. G. Hunt, “Testing colour appearance models using corresponding colour and magnitude estimation data sets,” Color Res. Appl. 23(3), 147–153 (1998).
[Crossref]

1996 (1)

R. Berns, “Methods for characterizing CRT displays,” Displays 16(4), 173–182 (1996).
[Crossref]

1995 (1)

1987 (1)

Arend, L. E.

Berns, R.

R. Berns, “Methods for characterizing CRT displays,” Displays 16(4), 173–182 (1996).
[Crossref]

Bodrogi, P.

Brainard, D. H.

J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. U.S.A. 96(1), 307–312 (1999).
[Crossref] [PubMed]

Brill, M. H.

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Cai, J.

Chauhan, T.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Choi, K.

Cui, G.

M. Safdar, G. Cui, Y. J. Kim, and M. R. Luo, “Perceptually uniform color space for image signals including high dynamic range and wide gamut,” Opt. Express 25(13), 15131–15151 (2017).
[Crossref] [PubMed]

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

David, A.

Deconinck, G.

Ekroll, V.

V. Ekroll and F. Faul, “Basic characteristics of simultaneous color contrast revisited,” Psychol. Sci. 23(10), 1246–1255 (2012).
[Crossref] [PubMed]

Fairchild, M. D.

Faul, F.

V. Ekroll and F. Faul, “Basic characteristics of simultaneous color contrast revisited,” Psychol. Sci. 23(10), 1246–1255 (2012).
[Crossref] [PubMed]

Fini, P. T.

Fischer, S.

Freyssinier, J. P.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

Gegenfurtner, K. R.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref] [PubMed]

Goldstein, R.

Hanselaer, P.

Hird, E.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Houser, K. W.

Hunt, R. W. G.

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

M. R. Luo and R. W. G. Hunt, “Testing colour appearance models using corresponding colour and magnitude estimation data sets,” Color Res. Appl. 23(3), 147–153 (1998).
[Crossref]

Hurlbert, A.

A. Hurlbert, “Colour vision: Is colour constancy real?” Curr. Biol. 9(15), R558–R561 (1999).
[Crossref] [PubMed]

Karatzas, D.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Khanh, T. Q.

Kim, Y. J.

Kraft, J. M.

J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. U.S.A. 96(1), 307–312 (1999).
[Crossref] [PubMed]

Kuriki, I.

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

Li, C.

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

Li, H.

H. Li, M. R. Luo, X. Y. Liu, B. Y. Wang, and H. Y. Liu, “Evaluation of colour appearance in a real lit room,” Light. Res. Technol. 48(4), 412–432 (2016).
[Crossref]

Li, Z.

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Liu, H. Y.

H. Li, M. R. Luo, X. Y. Liu, B. Y. Wang, and H. Y. Liu, “Evaluation of colour appearance in a real lit room,” Light. Res. Technol. 48(4), 412–432 (2016).
[Crossref]

Liu, X. Y.

H. Li, M. R. Luo, X. Y. Liu, B. Y. Wang, and H. Y. Liu, “Evaluation of colour appearance in a real lit room,” Light. Res. Technol. 48(4), 412–432 (2016).
[Crossref]

Luo, M. R.

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

M. Safdar, G. Cui, Y. J. Kim, and M. R. Luo, “Perceptually uniform color space for image signals including high dynamic range and wide gamut,” Opt. Express 25(13), 15131–15151 (2017).
[Crossref] [PubMed]

Y. Zhu, M. R. Luo, S. Fischer, P. Bodrogi, and T. Q. Khanh, “Long-term memory color investigation: culture effect and experimental setting factors,” J. Opt. Soc. Am. A 34(10), 1757–1768 (2017).
[Crossref] [PubMed]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part I: neutral illuminants,” Opt. Express 25(7), 7732–7748 (2017).
[Crossref] [PubMed]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part II: colored illuminants,” Opt. Express 25(7), 8350–8365 (2017).
[Crossref] [PubMed]

H. Li, M. R. Luo, X. Y. Liu, B. Y. Wang, and H. Y. Liu, “Evaluation of colour appearance in a real lit room,” Light. Res. Technol. 48(4), 412–432 (2016).
[Crossref]

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

M. R. Luo and R. W. G. Hunt, “Testing colour appearance models using corresponding colour and magnitude estimation data sets,” Color Res. Appl. 23(3), 147–153 (1998).
[Crossref]

Q. Zhai, M. R. Luo, P. Hanselaer, and K. A. G. Smet, “Modelling incomplete chromatic adaptation and colour contrast using memory colours,” in Proceedings of 24th Color Imaging Conference (2016), pp. 82–87.
[Crossref]

Melgosa, M.

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Oh, S.

Y. Ohno and S. Oh, “Vision experiment II on white light chromaticity for lighting,” in Proceedings of the CIE Lighting Quality and Energy Efficiency (2016).

Ohno, Y.

Perales, E.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Pointer, M.

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Pointer, M. R.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Rea, M. S.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

Reniff, L.

Rigg, B.

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

Rinner, O.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref] [PubMed]

Royer, M. P.

Ryckaert, W. R.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Safdar, M.

Smet, K. A. G.

K. A. G. Smet, “Two neutral white illumination loci based on unique white rating and degree of chromatic adaptation,” Leukos 14(2), 55–67 (2018).
[Crossref]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part II: colored illuminants,” Opt. Express 25(7), 8350–8365 (2017).
[Crossref] [PubMed]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part I: neutral illuminants,” Opt. Express 25(7), 7732–7748 (2017).
[Crossref] [PubMed]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref] [PubMed]

K. A. G. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
[Crossref] [PubMed]

K. A. G. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in object mode,” Opt. Express 22(21), 25830–25841 (2014).
[Crossref] [PubMed]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Q. Zhai, M. R. Luo, P. Hanselaer, and K. A. G. Smet, “Modelling incomplete chromatic adaptation and colour contrast using memory colours,” in Proceedings of 24th Color Imaging Conference (2016), pp. 82–87.
[Crossref]

Suk, H. J.

Uchikawa, K.

Wang, B. Y.

H. Li, M. R. Luo, X. Y. Liu, B. Y. Wang, and H. Y. Liu, “Evaluation of colour appearance in a real lit room,” Light. Res. Technol. 48(4), 412–432 (2016).
[Crossref]

Wang, Q.

Wang, Z.

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Wei, M.

Whitehead, L.

Wuerger, S.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Xiao, K.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Xu, H.

Xu, Y.

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

Yamauchi, Y.

Zhai, Q.

Zhu, Y.

Chin. Opt. Lett. (1)

Color Res. Appl. (5)

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

C. Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H. Brill, and M. Pointer, “Comprehensive color solutions: CAM16, CAT16 and CAM16-UCS,” Color Res. Appl. 42(6), 703–718 (2017).
[Crossref]

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, “CMC 2000 chromatic adaptation transform: CMCCAT2000,” Color Res. Appl. 27(1), 49–58 (2002).
[Crossref]

M. R. Luo and R. W. G. Hunt, “Testing colour appearance models using corresponding colour and magnitude estimation data sets,” Color Res. Appl. 23(3), 147–153 (1998).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Curr. Biol. (1)

A. Hurlbert, “Colour vision: Is colour constancy real?” Curr. Biol. 9(15), R558–R561 (1999).
[Crossref] [PubMed]

Displays (1)

R. Berns, “Methods for characterizing CRT displays,” Displays 16(4), 173–182 (1996).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Vis. (1)

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Leukos (1)

K. A. G. Smet, “Two neutral white illumination loci based on unique white rating and degree of chromatic adaptation,” Leukos 14(2), 55–67 (2018).
[Crossref]

Light. Res. Technol. (1)

H. Li, M. R. Luo, X. Y. Liu, B. Y. Wang, and H. Y. Liu, “Evaluation of colour appearance in a real lit room,” Light. Res. Technol. 48(4), 412–432 (2016).
[Crossref]

Opt. Express (7)

Proc. Natl. Acad. Sci. U.S.A. (1)

J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. U.S.A. 96(1), 307–312 (1999).
[Crossref] [PubMed]

Psychol. Sci. (1)

V. Ekroll and F. Faul, “Basic characteristics of simultaneous color contrast revisited,” Psychol. Sci. 23(10), 1246–1255 (2012).
[Crossref] [PubMed]

Vision Res. (2)

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40(14), 1813–1826 (2000).
[Crossref] [PubMed]

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

Other (6)

M. D. Fairchild, Color appearance models, John Wiley & Sons (2013).

CIE 160–2004, “A review of chromatic adaptation transforms” (CIE, Vienna, 2004).

CIE 159–2004, “A colour appearance model for colour management systems: CIECAM02” (CIE, Vienna, 2004).

Q. Zhai, M. R. Luo, P. Hanselaer, and K. A. G. Smet, “Modelling incomplete chromatic adaptation and colour contrast using memory colours,” in Proceedings of 24th Color Imaging Conference (2016), pp. 82–87.
[Crossref]

Y. Ohno and M. Fein, “Vision experiment on white light chromaticity for lighting,” in CIE/USA-CNC/CIE Biennial Joint Meeting, Davis, USA (2013).

Y. Ohno and S. Oh, “Vision experiment II on white light chromaticity for lighting,” in Proceedings of the CIE Lighting Quality and Energy Efficiency (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Test illuminants on CIE 1976 u’ v’ plane.
Fig. 2
Fig. 2 Experiment Setting: (a) NCS color patches array used in Experiment 1 with the NCS numbers; (b) viewing situation of Experiment 1 for surface color; (c) viewing situation of Experiment 2 for self-luminous color.
Fig. 3
Fig. 3 Ellipse distributions with 95% confidence of inter-observer variation on CIE 1976 u’v’ plane with CIE 1964 color matching function for neutral whites under each test illuminant in (a) Experiment 1, surface color, using one standard error; and (b) Experiment 2, self-luminous color, using half of the standard error.
Fig. 4
Fig. 4 Averaged matched chromaticity of neutral white (red dot) under each test illuminant (circle) in (a) Experiment 1, surface color, and (b) Experiment 2, self-luminous color, on CIE 1976 u’v’ plane with CIE 1964 color matching function; each red vector is the neutral white shift under that illuminant from the full adaptation prediction (chromaticity same as the illuminant) to the visual answer; the blue dashed line is the neutral white locus under the illuminants on BBL.
Fig. 5
Fig. 5 Neutral white under each test illuminant in (a) Experiment 1, surface color, and (b) Experiment 2, self-luminous color, transformed into CAM02-UCS with the test illuminant as reference; the solid black curves were fitted the neutral whites under illuminants of same CCT level; the solid white curves are fitted to the ones under illuminants having same Duv levels. The white square is the origin.
Fig. 6
Fig. 6 The values of Di in CAT02 of all test illuminant against their (a) CCT and (b) Duv for surface colors marked as black points and black dashed fitting curves and for self-luminous colors marked as red points and red solid fitting curves. The red dashed curve is the model obtained in the previous study with projected colors and adapting fields [9]. And (c) Di in CAT02 against the chromaticities (CIE1976 u’v’) of test illuminant for self-luminous colors with lighter marker referring to higher value of Di
Fig. 7
Fig. 7 The comparison of BI and the illuminant with highest D for self-luminous colors. (a) The errors of CAT02 with Di using different chromaticities of BI; (b)The D2 values of Eq. (3) is plotted on different illuminants.

Tables (3)

Tables Icon

Table 1 The precise chromaticity (using CIE 1964 color matching functions and shown as CIE1976 u’v’ values) of BI with the valley value of the mean errors achieved using different approaching ways and the errors of CATs with Dg or Di in terms of CIEDE2000 without lightness difference.

Tables Icon

Table 2 The errors of CAT02 with different D values between test illuminants and the BI in terms of CIEDE2000 without lightness differences

Tables Icon

Table 3 The calculation and worked examples of two-step CAT02 / CAT16

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

D=F( 1( 1 3.6 ) exp L a 42 92 ),
D 1 =0.723( 1 1116 CCT +8.46Duv 49266Duv CCT ),CCT>2000K,Duv[ 0.03,0.03 ],
D 2 =28u ' 2 30.19v ' 2 24.11u'v'1.78u'+32.58v',u'[ 0.15,0.30 ],v'[ 0.40,0.55 ],
( R β G β B β )=M( X β Y β Z β ),
( R wβ G wβ B wβ )=M( X wβ Y wβ Z wβ ),
( R wδ G wδ B wδ )=M( X wδ Y wδ Z wδ ),
( R wo G wo B wo )=M( X wo Y wo Z wo ),
D Rβ = D β Y wβ Y wo R wo R wβ +1 D β ,
D Gβ = D β Y wβ Y wo G wo G wβ +1 D β ,
D Bβ = D β Y wβ Y wo B wo B wβ +1 D β ,
D Rδ = D δ Y wδ Y wo R wo R wδ +1 D δ ,
D Gδ = D δ Y wδ Y wo G wo G wδ +1 D δ ,
D Bδ = D δ Y wδ Y wo B wo B wδ +1 D δ ,
D R = D Rβ D Rδ ,
D G = D Gβ D Gδ ,
D B = D Bβ D Bδ .
R δ = D R R β ,
G δ = D G G β ,
B δ = D B B β .
( X δ Y δ Z δ )= M 1 ( R δ G δ B δ ).

Metrics