Abstract

We present a comprehensive approach for tailoring the spectral and angular properties of infrared thermal radiation by using a polymer resonator with molecular vibrational modes, consisting of a polymer thin film on a back-reflective substrate. To precisely design the resonator, we derived the infrared dielectric function of a poly(methyl methacrylate) (PMMA) thin film from the measured reflectance spectrum by fitting it with a Gaussian-convoluted Drude–Lorentz model while accounting for the inhomogeneous broadening caused by the disordered structure of polymers. Our experimental and numerical characterization confirms that the polymer resonator exhibits spectral shaping from quasi-broadband to narrowband due to the intrinsic molecular vibrational absorption of the polymer. The frequency-isolated and strong molecular vibrational absorption of the carbonyl stretching mode at 1730 cm−1 enables the narrowband shaping of the PMMA resonator. In addition, we confirm that the angular-shaping characteristics of this polymer resonator can be tuned, from omnidirectional to strongly angular selective, by changing its polymer film thickness. Modal dispersion analysis reveals that the angle-selectivity of the polymer resonator at an angle of incidence of 80° comes from coupling between the molecular vibrational mode and leaky mode. The proposed infrared radiation management strategy based on molecular vibrational modes of polymers is cost-effective, scalable, and works well with terrestrial matter, including organic compounds and gas molecules, showing promise for applications such as optical gas sensing and radiative thermal management.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs)

Basudev Lahiri, Scott G. McMeekin, Richard M. De La Rue, and Nigel P. Johnson
Opt. Express 21(8) 9343-9352 (2013)

Selective radiative heating of nanostructures using hyperbolic metamaterials

Ding Ding and Austin J Minnich
Opt. Express 23(7) A299-A308 (2015)

Realization of narrowband thermal emission with optical nanostructures

Takuya Inoue, Menaka De Zoysa, Takashi Asano, and Susumu Noda
Optica 2(1) 27-35 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
    [Crossref]
  2. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
    [Crossref]
  3. A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
    [Crossref]
  4. S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
    [Crossref]
  5. K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1 (2015).
    [Crossref]
  6. E. M. Lushiku and C.-G. Granqvist, “Radiative cooling with selectively infrared-emitting gases,” Appl. Opt. 23(11), 1835–1843 (1984).
    [Crossref] [PubMed]
  7. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
    [Crossref]
  8. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  9. H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
    [Crossref]
  10. S. Tsuda, M. Shimizu, F. Iguchi, and H. Yugami, “Enhanced thermal transport in polymers with an infrared-selective thermal emitter for electronics cooling,” Appl. Therm. Eng. 113, 112–119 (2017).
    [Crossref]
  11. Z.-X. Jia, Y. Shuai, and H.-P. Tan, “Radiative flux control via graphene-based spectrum tailoring,” Int. J. Heat Mass Transf. 107, 729–735 (2017).
    [Crossref]
  12. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  13. Y. B. Chen and F. C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express 21(18), 20771–20785 (2013).
    [Crossref] [PubMed]
  14. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
    [Crossref]
  15. L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transf. 52(13-14), 3024–3031 (2009).
    [Crossref]
  16. Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
    [Crossref]
  17. B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
    [Crossref]
  18. Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
    [Crossref]
  19. S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
    [Crossref] [PubMed]
  20. T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
    [Crossref]
  21. Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
    [Crossref]
  22. S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746 (2016).
    [Crossref] [PubMed]
  23. H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(4), 1957–1961 (2000).
    [Crossref]
  24. E. S. Sakr, Z. Zhou, P. Bermel, E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
    [Crossref]
  25. A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
    [Crossref]
  26. T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
    [Crossref] [PubMed]
  27. A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
    [Crossref]
  28. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref] [PubMed]
  29. J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
    [Crossref]
  30. M. F. Modest, Radiative Heat Transfer(Academic, 2013).
  31. N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, 1975).
  32. Z. M. Zhang, Nano/Mircoscale Heat Transfer(McGraw-Hill, 2007).
  33. R. Brendel and D. Bormann, “An infrared dielectric function model for amorphous solids,” J. Appl. Phys. 71(1), 1–6 (1992).
    [Crossref]
  34. A. M. Efimov, Optical Constants of Inorgenic Glasses (CRC, 1995).
  35. D. L. Allara, A. Baca, and C. A. Pryde, “Distortions of band shapes in external reflection infrared spectra of thin polymer films on metal substrates,” Macromolecules 11(6), 1215–1220 (1978).
    [Crossref]
  36. J. P. Long and B. S. Simpkins, “Coherent coupling between a molecular vibration and Fabry−Perot optical cavity to give hybridized states in the strong coupling limit,” ACS Photonics 2(1), 130–136 (2015).
    [Crossref]
  37. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  38. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  39. P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  40. H. Graf, J. L. Koenig, and H. Ishida, “Optical constant determination of thin polymer films in the infrared,” Appl. Spectrosc. 39(3), 405–408 (1985).
    [Crossref]
  41. K. Yamamoto and H. Ishida, “Optical theory applied to infrared spectroscopy,” Vib. Spectrosc. 8(1), 1–36 (1994).
    [Crossref]
  42. A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
    [Crossref] [PubMed]
  43. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  44. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref] [PubMed]
  45. J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
    [Crossref]
  46. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  47. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method,” J. Lightwave Technol. 17(5), 929–941 (1999).
    [Crossref]
  48. M. Neviere, D. Maystre, P. Vincent, R. Reinisch, and M. Neviere, “Brewster phenomena in a lossy waveguide used just under the cut-off thickness,” J. Opt. 11(3), 153–159 (1980).
    [Crossref]
  49. T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J. J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–24303 (2014).
    [Crossref] [PubMed]
  50. M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling and hybridization of molecular vibrations in a low-loss infrared microcavity,” J. Phys. Chem. Lett. 7(11), 2002–2008 (2016).
    [Crossref] [PubMed]
  51. K. Norrman, A. Ghanbari-Siahkali, and N. B. Larsen, “Studies of spin-coated polymer films,” Annu. Rep. Prog. Chem. Sect. C 101, 174–201 (2005).
  52. R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci. Part B Polym. Phys. 51(1), 16–34 (2013).
  53. T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
    [Crossref]
  54. S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
    [Crossref] [PubMed]
  55. M. Madou, Fundamentals of Microfabrication (CRC, 1997).
  56. H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10, 737–746 (1969).
    [Crossref]

2017 (7)

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

S. Tsuda, M. Shimizu, F. Iguchi, and H. Yugami, “Enhanced thermal transport in polymers with an infrared-selective thermal emitter for electronics cooling,” Appl. Therm. Eng. 113, 112–119 (2017).
[Crossref]

Z.-X. Jia, Y. Shuai, and H.-P. Tan, “Radiative flux control via graphene-based spectrum tailoring,” Int. J. Heat Mass Transf. 107, 729–735 (2017).
[Crossref]

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

2016 (4)

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746 (2016).
[Crossref] [PubMed]

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling and hybridization of molecular vibrations in a low-loss infrared microcavity,” J. Phys. Chem. Lett. 7(11), 2002–2008 (2016).
[Crossref] [PubMed]

2015 (5)

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

J. P. Long and B. S. Simpkins, “Coherent coupling between a molecular vibration and Fabry−Perot optical cavity to give hybridized states in the strong coupling limit,” ACS Photonics 2(1), 130–136 (2015).
[Crossref]

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

2014 (9)

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

E. S. Sakr, Z. Zhou, P. Bermel, E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J. J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

2013 (3)

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci. Part B Polym. Phys. 51(1), 16–34 (2013).

Y. B. Chen and F. C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express 21(18), 20771–20785 (2013).
[Crossref] [PubMed]

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

2012 (2)

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

2011 (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

2009 (2)

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transf. 52(13-14), 3024–3031 (2009).
[Crossref]

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

2008 (1)

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

2007 (1)

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

2005 (1)

K. Norrman, A. Ghanbari-Siahkali, and N. B. Larsen, “Studies of spin-coated polymer films,” Annu. Rep. Prog. Chem. Sect. C 101, 174–201 (2005).

2003 (1)

2000 (1)

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(4), 1957–1961 (2000).
[Crossref]

1999 (1)

1998 (1)

1994 (1)

K. Yamamoto and H. Ishida, “Optical theory applied to infrared spectroscopy,” Vib. Spectrosc. 8(1), 1–36 (1994).
[Crossref]

1992 (1)

R. Brendel and D. Bormann, “An infrared dielectric function model for amorphous solids,” J. Appl. Phys. 71(1), 1–6 (1992).
[Crossref]

1985 (1)

1984 (1)

1980 (1)

M. Neviere, D. Maystre, P. Vincent, R. Reinisch, and M. Neviere, “Brewster phenomena in a lossy waveguide used just under the cut-off thickness,” J. Opt. 11(3), 153–159 (1980).
[Crossref]

1978 (1)

D. L. Allara, A. Baca, and C. A. Pryde, “Distortions of band shapes in external reflection infrared spectra of thin polymer films on metal substrates,” Macromolecules 11(6), 1215–1220 (1978).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1969 (1)

H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10, 737–746 (1969).
[Crossref]

Ahn, S. H.

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

Allara, D. L.

D. L. Allara, A. Baca, and C. A. Pryde, “Distortions of band shapes in external reflection infrared spectra of thin polymer films on metal substrates,” Macromolecules 11(6), 1215–1220 (1978).
[Crossref]

Alù, A.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Anemogiannis, E.

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

Argyropoulos, C.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Asano, T.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Baca, A.

D. L. Allara, A. Baca, and C. A. Pryde, “Distortions of band shapes in external reflection infrared spectra of thin polymer films on metal substrates,” Macromolecules 11(6), 1215–1220 (1978).
[Crossref]

Bao, H.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Bermel, P.

E. S. Sakr, Z. Zhou, P. Bermel, E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

E. S. Sakr, Z. Zhou, P. Bermel, E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

Bormann, D.

R. Brendel and D. Bormann, “An infrared dielectric function model for amorphous solids,” J. Appl. Phys. 71(1), 1–6 (1992).
[Crossref]

Brendel, R.

R. Brendel and D. Bormann, “An infrared dielectric function model for amorphous solids,” J. Appl. Phys. 71(1), 1–6 (1992).
[Crossref]

Brener, I.

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Brongersma, M. L.

J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Campione, S.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746 (2016).
[Crossref] [PubMed]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Canetta, C.

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

Catrysse, P. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Cerutti, L.

Chen, K.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Chen, K.-P.

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Chen, Y. B.

Chen, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Chiu, F. C.

Christry, R. W.

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Czapla, B.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

D’Aguanno, G.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Dao, T. D.

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

De Zoysa, M.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Djurišic, A. B.

Dorodnyy, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Du, K.

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Ebbesen, T. W.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Elazar, J. M.

Ellis, A. R.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746 (2016).
[Crossref] [PubMed]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

Fan, S.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

Fang, X.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Fedoryshyn, Y.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Feng, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Fujimura, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Fukushima, N.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Gan, Q.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

Gaylord, T. K.

Genet, C.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

George, J.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Ghanbari-Siahkali, A.

K. Norrman, A. Ghanbari-Siahkali, and N. B. Larsen, “Studies of spin-coated polymer films,” Annu. Rep. Prog. Chem. Sect. C 101, 174–201 (2005).

Glytsis, E. N.

Graf, H.

Granqvist, C.-G.

Greffet, J. J.

Guilengui, V. N.

Guo, L. J.

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

Hafner, C.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Hashimoto, K.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Hasman, E.

J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Hatade, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Hendra, P. J.

H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10, 737–746 (1969).
[Crossref]

Hösel, M.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci. Part B Polym. Phys. 51(1), 16–34 (2013).

Hugonin, J. P.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746 (2016).
[Crossref] [PubMed]

S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Hutchison, J.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Iguchi, F.

S. Tsuda, M. Shimizu, F. Iguchi, and H. Yugami, “Enhanced thermal transport in polymers with an infrared-selective thermal emitter for electronics cooling,” Appl. Therm. Eng. 113, 112–119 (2017).
[Crossref]

Ikeda, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Inoue, Y.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Ishida, H.

K. Yamamoto and H. Ishida, “Optical theory applied to infrared spectroscopy,” Vib. Spectrosc. 8(1), 1–36 (1994).
[Crossref]

H. Graf, J. L. Koenig, and H. Ishida, “Optical constant determination of thin polymer films in the infrared,” Appl. Spectrosc. 39(3), 405–408 (1985).
[Crossref]

Ishii, S.

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Ji, D.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

Jia, Z.-X.

Z.-X. Jia, Y. Shuai, and H.-P. Tan, “Radiative flux control via graphene-based spectrum tailoring,” Int. J. Heat Mass Transf. 107, 729–735 (2017).
[Crossref]

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Jun, Y. C.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

Jurado, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kanakugi, T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Kang, J.

J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Kasaya, T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Kim, H.

J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Kim, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Kimata, M.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Kitagawa, S.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Kitajima, M.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Klem, J. F.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746 (2016).
[Crossref] [PubMed]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

Koch, U.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Koenig, J. L.

Kou, J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Krebs, F. C.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci. Part B Polym. Phys. 51(1), 16–34 (2013).

Larsen, N. B.

K. Norrman, A. Ghanbari-Siahkali, and N. B. Larsen, “Studies of spin-coated polymer films,” Annu. Rep. Prog. Chem. Sect. C 101, 174–201 (2005).

Le, K. Q.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Lee, B. J.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transf. 52(13-14), 3024–3031 (2009).
[Crossref]

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

Leuthold, J.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Li, Q.

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Liu, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Lochbaum, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Long, J. P.

J. P. Long and B. S. Simpkins, “Coherent coupling between a molecular vibration and Fabry−Perot optical cavity to give hybridized states in the strong coupling limit,” ACS Photonics 2(1), 130–136 (2015).
[Crossref]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Luk, T. S.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746 (2016).
[Crossref] [PubMed]

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

Lushiku, E. M.

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Majewski, M. L.

Marquier, F.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746 (2016).
[Crossref] [PubMed]

S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Maruyama, S.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(4), 1957–1961 (2000).
[Crossref]

Mattiucci, N.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

Mayo, J.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

Maystre, D.

M. Neviere, D. Maystre, P. Vincent, R. Reinisch, and M. Neviere, “Brewster phenomena in a lossy waveguide used just under the cut-off thickness,” J. Opt. 11(3), 153–159 (1980).
[Crossref]

Minnich, A. J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Muallem, M.

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling and hybridization of molecular vibrations in a low-loss infrared microcavity,” J. Phys. Chem. Lett. 7(11), 2002–2008 (2016).
[Crossref] [PubMed]

Nabatame, T.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Nagao, T.

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Nakagawa, N.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(4), 1957–1961 (2000).
[Crossref]

Nakamura, K.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(4), 1957–1961 (2000).
[Crossref]

Narayanaswamy, A.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

Nessim, G. D.

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling and hybridization of molecular vibrations in a low-loss infrared microcavity,” J. Phys. Chem. Lett. 7(11), 2002–2008 (2016).
[Crossref] [PubMed]

Neviere, M.

M. Neviere, D. Maystre, P. Vincent, R. Reinisch, and M. Neviere, “Brewster phenomena in a lossy waveguide used just under the cut-off thickness,” J. Opt. 11(3), 153–159 (1980).
[Crossref]

M. Neviere, D. Maystre, P. Vincent, R. Reinisch, and M. Neviere, “Brewster phenomena in a lossy waveguide used just under the cut-off thickness,” J. Opt. 11(3), 153–159 (1980).
[Crossref]

Noda, S.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Norrman, K.

K. Norrman, A. Ghanbari-Siahkali, and N. B. Larsen, “Studies of spin-coated polymer films,” Annu. Rep. Prog. Chem. Sect. C 101, 174–201 (2005).

Ogawa, S.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Ohi, A.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Ohtsubo, H.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(4), 1957–1961 (2000).
[Crossref]

Okada, K.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Okada, M.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Palatnik, A.

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling and hybridization of molecular vibrations in a low-loss infrared microcavity,” J. Phys. Chem. Lett. 7(11), 2002–2008 (2016).
[Crossref] [PubMed]

Pankin, P. S.

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Park, J.

J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Pryde, C. A.

D. L. Allara, A. Baca, and C. A. Pryde, “Distortions of band shapes in external reflection infrared spectra of thin polymer films on metal substrates,” Macromolecules 11(6), 1215–1220 (1978).
[Crossref]

Pupillo, G.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Qiu, M.

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Rakic, A. D.

Raman, A.

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Reinisch, R.

M. Neviere, D. Maystre, P. Vincent, R. Reinisch, and M. Neviere, “Brewster phenomena in a lossy waveguide used just under the cut-off thickness,” J. Opt. 11(3), 153–159 (1980).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Ruan, X.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Sai, H.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(4), 1957–1961 (2000).
[Crossref]

Sakr, E. S.

E. S. Sakr, Z. Zhou, P. Bermel, E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

E. S. Sakr, Z. Zhou, P. Bermel, E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

Schoen, D. T.

J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Shalabney, A.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Shibahara, T.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Shimizu, M.

S. Tsuda, M. Shimizu, F. Iguchi, and H. Yugami, “Enhanced thermal transport in polymers with an infrared-selective thermal emitter for electronics cooling,” Appl. Therm. Eng. 113, 112–119 (2017).
[Crossref]

Shuai, Y.

Z.-X. Jia, Y. Shuai, and H.-P. Tan, “Radiative flux control via graphene-based spectrum tailoring,” Int. J. Heat Mass Transf. 107, 729–735 (2017).
[Crossref]

Simpkins, B. S.

J. P. Long and B. S. Simpkins, “Coherent coupling between a molecular vibration and Fabry−Perot optical cavity to give hybridized states in the strong coupling limit,” ACS Photonics 2(1), 130–136 (2015).
[Crossref]

Sinclair, M. B.

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746 (2016).
[Crossref] [PubMed]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Søndergaard, R. R.

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci. Part B Polym. Phys. 51(1), 16–34 (2013).

Srinivasan, A.

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Suemitsu, M.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Suh, W.

Sun, M.

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Taliercio, T.

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Tan, H.-P.

Z.-X. Jia, Y. Shuai, and H.-P. Tan, “Radiative flux control via graphene-based spectrum tailoring,” Int. J. Heat Mass Transf. 107, 729–735 (2017).
[Crossref]

Tan, Y.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

Timofeev, I. V.

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Tischler, Y. R.

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling and hybridization of molecular vibrations in a low-loss infrared microcavity,” J. Phys. Chem. Lett. 7(11), 2002–2008 (2016).
[Crossref] [PubMed]

Tournié, E.

Tsuda, S.

S. Tsuda, M. Shimizu, F. Iguchi, and H. Yugami, “Enhanced thermal transport in polymers with an infrared-selective thermal emitter for electronics cooling,” Appl. Therm. Eng. 113, 112–119 (2017).
[Crossref]

Tsutsumi, T.

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Vassant, S.

Vasudev, A. P.

J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

Vincent, P.

M. Neviere, D. Maystre, P. Vincent, R. Reinisch, and M. Neviere, “Brewster phenomena in a lossy waveguide used just under the cut-off thickness,” J. Opt. 11(3), 153–159 (1980).
[Crossref]

Wang, B.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Wang, K. X.

Wang, L. P.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transf. 52(13-14), 3024–3031 (2009).
[Crossref]

Wang, X. J.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transf. 52(13-14), 3024–3031 (2009).
[Crossref]

Wang, Z.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

Willis, H. A.

H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10, 737–746 (1969).
[Crossref]

Wright, J. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Yamamoto, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

K. Yamamoto and H. Ishida, “Optical theory applied to infrared spectroscopy,” Vib. Spectrosc. 8(1), 1–36 (1994).
[Crossref]

Yan, C.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yang, Y.

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Yang, Z.

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yokoyama, T.

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Yu, Z.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

Yugami, H.

S. Tsuda, M. Shimizu, F. Iguchi, and H. Yugami, “Enhanced thermal transport in polymers with an infrared-selective thermal emitter for electronics cooling,” Appl. Therm. Eng. 113, 112–119 (2017).
[Crossref]

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(4), 1957–1961 (2000).
[Crossref]

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhang, W.

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Zhang, Z. M.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transf. 52(13-14), 3024–3031 (2009).
[Crossref]

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

Zhao, C. Y.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhou, M.

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

Zhou, Z.

E. S. Sakr, Z. Zhou, P. Bermel, E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

E. S. Sakr, Z. Zhou, P. Bermel, E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

Zichy, V. J. I.

H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10, 737–746 (1969).
[Crossref]

ACS Nano (1)

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

ACS Photonics (6)

J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al2O3-Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-IR optical gas sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

J. P. Long and B. S. Simpkins, “Coherent coupling between a molecular vibration and Fabry−Perot optical cavity to give hybridized states in the strong coupling limit,” ACS Photonics 2(1), 130–136 (2015).
[Crossref]

Annu. Rep. Prog. Chem. Sect. C (1)

K. Norrman, A. Ghanbari-Siahkali, and N. B. Larsen, “Studies of spin-coated polymer films,” Annu. Rep. Prog. Chem. Sect. C 101, 174–201 (2005).

Appl. Opt. (2)

Appl. Phys. Express (1)

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Filter-free nondispersive infrared sensing using narrow-bandwidth mid-infrared thermal emitters,” Appl. Phys. Express 7(1), 012103 (2014).
[Crossref]

Appl. Phys. Lett. (7)

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett. 100(2), 021111 (2012).
[Crossref]

Z. Wang, T. S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, and Z. Yu, “Tunneling-enabled spectrally selective thermal emitter based on flat metallic films,” Appl. Phys. Lett. 106(10), 101104 (2015).
[Crossref]

Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, I. Brener, Y. C. Jun, T. S. Luk, A. R. Ellis, J. F. Klem, and I. Brener, “Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films,” Appl. Phys. Lett. 105(13), 131109 (2014).
[Crossref]

E. S. Sakr, Z. Zhou, P. Bermel, E. S. Sakr, Z. Zhou, and P. Bermel, “High efficiency rare-earth emitter for thermophotovoltaic applications,” Appl. Phys. Lett. 105(11), 111107 (2014).
[Crossref]

A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters with thin films of polar materials,” Appl. Phys. Lett. 104(18), 183107 (2014).
[Crossref]

A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielectric function of polydimethylsiloxane and selective emission behavior,” Appl. Phys. Lett. 109(6), 061905 (2016).
[Crossref]

Appl. Spectrosc. (1)

Appl. Therm. Eng. (1)

S. Tsuda, M. Shimizu, F. Iguchi, and H. Yugami, “Enhanced thermal transport in polymers with an infrared-selective thermal emitter for electronics cooling,” Appl. Therm. Eng. 113, 112–119 (2017).
[Crossref]

IEEE Photonics J. (1)

K. Du, Q. Li, W. Zhang, Y. Yang, and M. Qiu, “Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Int. J. Heat Mass Transf. (2)

Z.-X. Jia, Y. Shuai, and H.-P. Tan, “Radiative flux control via graphene-based spectrum tailoring,” Int. J. Heat Mass Transf. 107, 729–735 (2017).
[Crossref]

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transf. 52(13-14), 3024–3031 (2009).
[Crossref]

J. Appl. Phys. (1)

R. Brendel and D. Bormann, “An infrared dielectric function model for amorphous solids,” J. Appl. Phys. 71(1), 1–6 (1992).
[Crossref]

J. Heat Transfer (1)

B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

M. Neviere, D. Maystre, P. Vincent, R. Reinisch, and M. Neviere, “Brewster phenomena in a lossy waveguide used just under the cut-off thickness,” J. Opt. 11(3), 153–159 (1980).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Lett. (1)

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling and hybridization of molecular vibrations in a low-loss infrared microcavity,” J. Phys. Chem. Lett. 7(11), 2002–2008 (2016).
[Crossref] [PubMed]

J. Polym. Sci. Part B Polym. Phys. (1)

R. R. Søndergaard, M. Hösel, and F. C. Krebs, “Roll-to-roll fabrication of large area functional organic materials,” J. Polym. Sci. Part B Polym. Phys. 51(1), 16–34 (2013).

Jpn. J. Appl. Phys. (1)

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity,” Jpn. J. Appl. Phys. 39(4), 1957–1961 (2000).
[Crossref]

Macromolecules (1)

D. L. Allara, A. Baca, and C. A. Pryde, “Distortions of band shapes in external reflection infrared spectra of thin polymer films on metal substrates,” Macromolecules 11(6), 1215–1220 (1978).
[Crossref]

Nat. Commun. (1)

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Optica (1)

Phys. Rev. B (3)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

P. B. Johnson and R. W. Christry, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Polymer (Guildf.) (1)

H. A. Willis, V. J. I. Zichy, and P. J. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer (Guildf.) 10, 737–746 (1969).
[Crossref]

Sci. Adv. (1)

T. Asano, M. Suemitsu, K. Hashimoto, M. De Zoysa, T. Shibahara, T. Tsutsumi, and S. Noda, “Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor,” Sci. Adv. 2(12), e1600499 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Campione, F. Marquier, J. P. Hugonin, A. R. Ellis, J. F. Klem, M. B. Sinclair, and T. S. Luk, “Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials,” Sci. Rep. 6(1), 34746 (2016).
[Crossref] [PubMed]

Science (1)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Vib. Spectrosc. (1)

K. Yamamoto and H. Ishida, “Optical theory applied to infrared spectroscopy,” Vib. Spectrosc. 8(1), 1–36 (1994).
[Crossref]

Other (8)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

M. Madou, Fundamentals of Microfabrication (CRC, 1997).

A. M. Efimov, Optical Constants of Inorgenic Glasses (CRC, 1995).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

M. F. Modest, Radiative Heat Transfer(Academic, 2013).

N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, 1975).

Z. M. Zhang, Nano/Mircoscale Heat Transfer(McGraw-Hill, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic of the polymer resonator consisting of a poly(methyl methacrylate) (PMMA)thin film on a gold (Au) back-reflective substrate. (b) Chemical structure of PMMA.
Fig. 2
Fig. 2 Dielectric function of the poly(methyl methacrylate) (PMMA) thin film, determined by fitting based on dielectric function modeling. (a)(b)(c) Relative error between the measured and calculated reflectance spectra by using the Drude–Lorentz (DL) model and Gaussian-convoluted Drude–Lorentz (GCDL) model, over various wavelength ranges. (d)(e)(f) Measured and calculated absorptivity spectra of the resonator with the polymer film thickness d = 2099nm. The absorptivity is calculated using the derived dielectric function of PMMA based on the GCDL model. The absorptivity spectrum is extracted from the reflectance spectrum using A=1R. The angle of incidence is 10°.
Fig. 3
Fig. 3 Dielectric function of poly(methyl methacrylate) (PMMA) determined by fitting based on the GCDL dielectric function model. The oscillator parameters are shown in Appendix B [Table 2]. (a) Real part of the dielectric function of PMMA. (b) Imaginary part of the derived dielectric function of PMMA. The gray lines denote the molecular vibrational-mode frequencies of PMMA.
Fig. 4
Fig. 4 Absorptivity of polymer resonators with various film thicknesses. (a) Absorptivity of polymer resonators with various film thicknesses calculated using the derived dielectric function of PMMA in Fig. 3. The angle of incidence is near-normal incidence θi = 10°. (b)(c) Absorptivity spectrum of polymer resonators with d = 691nm and d = 2099nm, respectively. The angle of incidence is near-normal incidence θi = 10°. The scatter plot is the absorptivity spectrum measured using FT-IR. The line plot shows the absorptivity spectrum calculated using the transfer matrix method. In both cases, the strong narrowband absorptivity peak appears at the carbonyl band at 1730 cm−1, while they show different spectral behaviors of background absorptivity, especially in the wavenumber range of 750–1500 cm−1.
Fig. 5
Fig. 5 Temporal coherence function used to evaluate the spectral selectivity of the absorptivity spectrum for polymer resonators with various film thicknesses. The scatter plot is the coherence function determined from the measured absorptivity spectrum. The line plot is the numerically calculated coherence function.
Fig. 6
Fig. 6 Absorption behavior of the polymer resonator near the carbonyl band. (a) Absorptivity spectrum of the polymer resonator at normal incidence, calculated using various methods. The red line is the total absorptivity of the resonator with d = 691nm, calculated using the transfer matrix method. The blue line is the absorptivity of PMMA film, directly calculated from the electric-field distribution in the resonator. The gray line is the single-path absorption (SPA) of the PMMA film, calculated using Beer–Lambert’s law. (b) The electric-field distribution in the polymer resonator with d = 691nm at the frequency of peak absorptivity. The vertical line denotes the interface of mediums.
Fig. 7
Fig. 7 Angular dependence of the absorptivity spectrum for polymer resonators in the s- and p-polarization states, calculated using the transfer matrix method. (a) Angular dependence for the polymer resonator with d = 691nm. For both polarization states, near-omnidirectional behavior appears. The red line shows the molecular vibrational mode of the carbonyl band. (b) Angular dependence for the polymer resonator with d = 214nm. For p-polarization, the angular selective absorption appears near the angle of incidence θi = 80°. (c) Angular distributions of absorptivity at 1727 cm−1 for the polymer resonator with d = 691nm, and that at 1740 cm−1 for the polymer resonator with d = 214nm.
Fig. 8
Fig. 8 (a) Modal dispersion relation and angular absorptivity spectrum for the polymer resonator with d = 214nm in the p-polarization state. The gray solid line is the air-light line. The broken red line denotes the molecular vibrational mode of the carbonyl band of PMMA. The solid red line denotes the modal dispersion line of the polymer resonator. This mode is a leaky mode, which can be excited by free-space radiation. The absorption occurs along these modes. The maximum absorption occurs near the crossing point between the molecular vibrational mode and leaky mode. (b) Permittivity dispersion of the PMMA thin film in the frequency range of interest.
Fig. 9
Fig. 9 Measured angular selective absorption of the polymer resonator with d = 214nm in the s- and p-polarized states. The angle of incidence is 80°. (a) Absorptivity spectrum of the polymer resonator, measured with FT-IR. (b) Calculated absorptivity spectrum of the polymer resonator.
Fig. 10
Fig. 10 Film thickness dependence of the relative error spectrum. Film thicknesses: (a) 2099 nm, (b) 1202 nm, (c) 854 nm, (d) 691 nm, (e) 569 nm, (f) 429 nm, (g) 295 nm, and (h) 214 nm.
Fig. 11
Fig. 11 Film thickness dependence of the absorptivity spectrum of the polymer resonator. Film thicknesses: (a) 2099 nm, (b) 1202 nm, (c) 854 nm, (d) 691 nm, (e) 569 nm, (f) 429 nm, (g) 295 nm, and (h) 214 nm. The angle of incidence is 10°.

Tables (3)

Tables Icon

Table 1 Oscillator parameters of the Drude–Lorentz (DL) model for 23 oscillators. ε =2.162 at the wavelength of 2.5 μm (wavenumber of 4000 cm−1).

Tables Icon

Table 2 Oscillator parameters of the Gaussian-convoluted Drude–Lorentz (GCDL) model for 23 oscillators. ε =2.162 at the wavenumber of 4000 cm−1.

Tables Icon

Table 3 Band assignments for 23 oscillators from the GCDL model given from Willis et al [56].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε + j=1 N s j ω j 2 ω j 2 ω 2 +i γ L, j ω
ε(ω)= ε + j=1 N 2 ln2 π s j ω j 2 γ G exp(4ln2 (x ω j ) 2 / γ G 2 ) x 2 ω 2 +i γ L ω dx
RMSE= 1 ω 2 ω 1 ω 1 ω 2 [ R m (ω) R c (ω) ] 2 dω
Φ= A max ( ω 0 ) A mean (ω) A max ( ω 0 )+ A mean (ω)

Metrics