Abstract

Wavelength-selective metamaterial absorbers in the mid-infrared range are demonstrated by using multiple tungsten cross resonators. By adjusting the geometrical parameters of cross resonators in single-sized unit cells, near-perfect absorption with single absorption peak tunable from 3.5 µm to 5.5 µm is realized. The combination of two, three, or four cross resonators of different sizes in one unit cell enables broadband near-perfect absorption at mid-infrared range. The obtained absorption spectra exhibit omnidirectionality and weak dependence on incident polarization. The underlying mechanism of near-perfect absorption with cross resonators is further explained by the optical mode analysis, dispersion relation and equivalent RLC circuit model. Moreover, thermal analysis is performed to study the heat generation and temperature increase in the cross resonator absorbers, while the energy conversion efficiency is calculated for the thermophotovoltaic system made of the cross resonator thermal emitters and low-bandgap semiconductors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Perfect selective metamaterial solar absorbers

Hao Wang and Liping Wang
Opt. Express 21(S6) A1078-A1093 (2013)

Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators

Wei Ma, Yongzheng Wen, and Xiaomei Yu
Opt. Express 21(25) 30724-30730 (2013)

Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters

Enas Sakr and Peter Bermel
Opt. Express 25(20) A880-A895 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
    [Crossref]
  2. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  3. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  4. H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
    [Crossref] [PubMed]
  5. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
    [Crossref]
  6. H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
    [Crossref]
  7. A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
    [Crossref]
  8. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref] [PubMed]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  10. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
    [Crossref]
  11. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
    [Crossref] [PubMed]
  12. J.-J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law,” J. Opt. Soc. Am. A 15(10), 2735–2744 (1998).
    [Crossref]
  13. H. Deng, T. Wang, J. Gao, X. Yang, D. Huixu, W. Tianchen, G. Jie, and Y. Xiaodong, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 35102 (2014).
    [Crossref]
  14. H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
    [Crossref]
  15. D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105(8), 081110 (2014).
    [Crossref]
  16. D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
    [Crossref]
  17. H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride-based integrated plasmonic absorber / emitter for solar thermophotovoltaic application,” Photon. Res. 3(6), 329–334 (2015).
    [Crossref]
  18. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98 (2012).
  19. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27–35 (2015).
    [Crossref]
  20. K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
    [Crossref]
  21. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
    [Crossref] [PubMed]
  22. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [Crossref] [PubMed]
  23. L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(S2), A126–A135 (2011).
    [Crossref] [PubMed]
  24. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 10–14 (2013).
    [Crossref]
  25. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  26. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  27. Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [Crossref]
  28. A. Lefebvre, D. Costantini, I. Doyen, Q. Lévesque, E. Lorent, D. Jacolin, J.-J. Greffet, S. Boutami, and H. Benisty, “CMOS compatible metal-insulator-metal plasmonic perfect absorbers,” Opt. Mater. Express 6(7), 2389 (2016).
    [Crossref]
  29. Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
    [Crossref] [PubMed]
  30. N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85, 075120 (2012).
  31. C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [Crossref] [PubMed]
  32. A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6(1), 20347 (2016).
    [Crossref] [PubMed]
  33. H. Deng, L. Stan, D. A. Czaplewski, J. Gao, and X. Yang, “Broadband infrared absorbers with stacked double chromium ring resonators,” Opt. Express 25(23), 28295–28304 (2017).
    [Crossref]
  34. S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
    [Crossref]
  35. D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
    [Crossref] [PubMed]
  36. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
    [Crossref] [PubMed]
  37. S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband Solar Thermal Absorber Based on Optical Metamaterials for High-Temperature Applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
    [Crossref]
  38. J. Zeng, L. Li, X. Yang, and J. Gao, “Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces,” Nano Lett. 16(5), 3101–3108 (2016).
    [Crossref] [PubMed]
  39. L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91(19), 195147 (2015).
    [Crossref]
  40. Z. Li, W. Wang, D. Rosenmann, D. A. Czaplewski, X. Yang, and J. Gao, “All-metal structural color printing based on aluminum plasmonic metasurfaces,” Opt. Express 24(18), 20472–20480 (2016).
    [Crossref] [PubMed]
  41. W. Wang, D. Rosenmann, D. A. Czaplewski, X. Yang, and J. Gao, “Realizing structural color generation with aluminum plasmonic V-groove metasurfaces,” Opt. Express 25(17), 20454–20465 (2017).
    [Crossref] [PubMed]
  42. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  43. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  44. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  45. B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67, 637–645 (2013).
    [Crossref]
  46. A. Barbara, S. Collin, C. Sauvan, J. Le Perchec, C. Maxime, J.-L. Pelouard, and P. Quémerais, “Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating,” Opt. Express 18(14), 14913–14925 (2010).
    [Crossref] [PubMed]
  47. Y. B. Chen and C. J. Chen, “Interaction between the magnetic polariton and surface plasmon polariton,” Opt. Commun. 297, 169–175 (2013).
    [Crossref]
  48. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
    [Crossref]
  49. A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
    [Crossref]
  50. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  51. H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1985).
  52. G. Baffou, R. Quidant, and F. J. García De Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” in ACS Nano (ACS, 2010), Vol. 4, pp. 709–716.
  53. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
    [Crossref] [PubMed]
  54. I. Stark, M. Stordeur, and F. Syrowatka, “Thermal conductivity of thin amorphous alumina films,” Thin Solid Films 226(1), 185–190 (1993).
    [Crossref]
  55. R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates,” Science 303(5660), 989–990 (2004).
    [Crossref] [PubMed]
  56. J. Martan, N. Semmar, C. Boulmer-Leborgne, P. Plantin, and E. Le Menn, “Thermal Characterization of Tungsten Thin Films by Pulsed Photothermal Radiometry,” Nanoscale Microscale Thermophys. Eng. 10(4), 333–344 (2006).
    [Crossref]
  57. C. Ferrari, F. Melino, M. Pinelli, P. R. Spina, and M. Venturini, “Overview and status of thermophotovoltaic systems,” Energy Procedia 45, 160–169 (2014).
    [Crossref]
  58. A. Krier, M. Yin, A. R. J. Marshall, and S. E. Krier, “Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion,” J. Electron. Mater. 45(6), 2826–2830 (2016).
    [Crossref]
  59. C. Liu, Y. Li, and Y. Zeng, “Progress in Antimonide Based III-V Compound Semiconductors and Devices,” Engineering 2(8), 617–624 (2010).
    [Crossref]
  60. M. V. Kovalenko, W. Heiss, E. V. Shevchenko, J. S. Lee, H. Schwinghammer, A. P. Alivisatos, and D. V. Talapin, “SnTe nanocrystals: A new example of narrow-gap semiconductor quantum dots,” J. Am. Chem. Soc. 129(37), 11354–11355 (2007).
    [Crossref] [PubMed]
  61. S.-H. Wei and A. Zunger, “Electronic and structural anomalies in lead chalcogenides,” Phys. Rev. B 55(20), 13605–13610 (1997).
    [Crossref]
  62. W. H. Strehlow and E. L. Cook, “Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators,” J. Phys. Chem. Ref. Data 2(1), 163–200 (1973).
    [Crossref]
  63. J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: Fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
    [Crossref] [PubMed]
  64. M. G. Mauk and V. M. Andreev, “GaSb-related materials for TPV cells,” Semicond. Sci. Technol. 18(5), S191–S201 (2003).
    [Crossref]
  65. K. J. Cheetham, P. J. Carrington, N. B. Cook, and A. Krier, “Low bandgap GaInAsSbP pentanary thermophotovoltaic diodes,” Sol. Energy Mater. Sol. Cells 95(2), 534–537 (2011).
    [Crossref]
  66. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]

2017 (3)

2016 (7)

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband Solar Thermal Absorber Based on Optical Metamaterials for High-Temperature Applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

J. Zeng, L. Li, X. Yang, and J. Gao, “Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces,” Nano Lett. 16(5), 3101–3108 (2016).
[Crossref] [PubMed]

Z. Li, W. Wang, D. Rosenmann, D. A. Czaplewski, X. Yang, and J. Gao, “All-metal structural color printing based on aluminum plasmonic metasurfaces,” Opt. Express 24(18), 20472–20480 (2016).
[Crossref] [PubMed]

A. Krier, M. Yin, A. R. J. Marshall, and S. E. Krier, “Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion,” J. Electron. Mater. 45(6), 2826–2830 (2016).
[Crossref]

A. Lefebvre, D. Costantini, I. Doyen, Q. Lévesque, E. Lorent, D. Jacolin, J.-J. Greffet, S. Boutami, and H. Benisty, “CMOS compatible metal-insulator-metal plasmonic perfect absorbers,” Opt. Mater. Express 6(7), 2389 (2016).
[Crossref]

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

2015 (6)

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
[Crossref] [PubMed]

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride-based integrated plasmonic absorber / emitter for solar thermophotovoltaic application,” Photon. Res. 3(6), 329–334 (2015).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27–35 (2015).
[Crossref]

L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91(19), 195147 (2015).
[Crossref]

2014 (10)

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

C. Ferrari, F. Melino, M. Pinelli, P. R. Spina, and M. Venturini, “Overview and status of thermophotovoltaic systems,” Energy Procedia 45, 160–169 (2014).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105(8), 081110 (2014).
[Crossref]

H. Deng, T. Wang, J. Gao, X. Yang, D. Huixu, W. Tianchen, G. Jie, and Y. Xiaodong, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 35102 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

2013 (7)

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
[Crossref] [PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 10–14 (2013).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67, 637–645 (2013).
[Crossref]

Y. B. Chen and C. J. Chen, “Interaction between the magnetic polariton and surface plasmon polariton,” Opt. Commun. 297, 169–175 (2013).
[Crossref]

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

2012 (7)

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85, 075120 (2012).

C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98 (2012).

2011 (5)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(S2), A126–A135 (2011).
[Crossref] [PubMed]

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: Fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

K. J. Cheetham, P. J. Carrington, N. B. Cook, and A. Krier, “Low bandgap GaInAsSbP pentanary thermophotovoltaic diodes,” Sol. Energy Mater. Sol. Cells 95(2), 534–537 (2011).
[Crossref]

2010 (3)

C. Liu, Y. Li, and Y. Zeng, “Progress in Antimonide Based III-V Compound Semiconductors and Devices,” Engineering 2(8), 617–624 (2010).
[Crossref]

A. Barbara, S. Collin, C. Sauvan, J. Le Perchec, C. Maxime, J.-L. Pelouard, and P. Quémerais, “Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating,” Opt. Express 18(14), 14913–14925 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

2007 (1)

M. V. Kovalenko, W. Heiss, E. V. Shevchenko, J. S. Lee, H. Schwinghammer, A. P. Alivisatos, and D. V. Talapin, “SnTe nanocrystals: A new example of narrow-gap semiconductor quantum dots,” J. Am. Chem. Soc. 129(37), 11354–11355 (2007).
[Crossref] [PubMed]

2006 (1)

J. Martan, N. Semmar, C. Boulmer-Leborgne, P. Plantin, and E. Le Menn, “Thermal Characterization of Tungsten Thin Films by Pulsed Photothermal Radiometry,” Nanoscale Microscale Thermophys. Eng. 10(4), 333–344 (2006).
[Crossref]

2004 (2)

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (1)

M. G. Mauk and V. M. Andreev, “GaSb-related materials for TPV cells,” Semicond. Sci. Technol. 18(5), S191–S201 (2003).
[Crossref]

2002 (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

1998 (2)

1997 (1)

S.-H. Wei and A. Zunger, “Electronic and structural anomalies in lead chalcogenides,” Phys. Rev. B 55(20), 13605–13610 (1997).
[Crossref]

1993 (1)

I. Stark, M. Stordeur, and F. Syrowatka, “Thermal conductivity of thin amorphous alumina films,” Thin Solid Films 226(1), 185–190 (1993).
[Crossref]

1973 (1)

W. H. Strehlow and E. L. Cook, “Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators,” J. Phys. Chem. Ref. Data 2(1), 163–200 (1973).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Abbas, M. N.

Aleksandrova, A.

Alivisatos, A. P.

M. V. Kovalenko, W. Heiss, E. V. Shevchenko, J. S. Lee, H. Schwinghammer, A. P. Alivisatos, and D. V. Talapin, “SnTe nanocrystals: A new example of narrow-gap semiconductor quantum dots,” J. Am. Chem. Soc. 129(37), 11354–11355 (2007).
[Crossref] [PubMed]

Andreev, V. M.

M. G. Mauk and V. M. Andreev, “GaSb-related materials for TPV cells,” Semicond. Sci. Technol. 18(5), S191–S201 (2003).
[Crossref]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27–35 (2015).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 10–14 (2013).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Azad, A. K.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Bao, F.

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

Barbara, A.

Belov, P. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Benisty, H.

A. Lefebvre, D. Costantini, I. Doyen, Q. Lévesque, E. Lorent, D. Jacolin, J.-J. Greffet, S. Boutami, and H. Benisty, “CMOS compatible metal-insulator-metal plasmonic perfect absorbers,” Opt. Mater. Express 6(7), 2389 (2016).
[Crossref]

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Bermel, P.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Bethke, D. T.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105(8), 081110 (2014).
[Crossref]

Biswas, R.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Bossard, J. A.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Boulmer-Leborgne, C.

J. Martan, N. Semmar, C. Boulmer-Leborgne, P. Plantin, and E. Le Menn, “Thermal Characterization of Tungsten Thin Films by Pulsed Photothermal Radiometry,” Nanoscale Microscale Thermophys. Eng. 10(4), 333–344 (2006).
[Crossref]

Boutami, S.

A. Lefebvre, D. Costantini, I. Doyen, Q. Lévesque, E. Lorent, D. Jacolin, J.-J. Greffet, S. Boutami, and H. Benisty, “CMOS compatible metal-insulator-metal plasmonic perfect absorbers,” Opt. Mater. Express 6(7), 2389 (2016).
[Crossref]

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Cahill, D. G.

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

Carrington, P. J.

K. J. Cheetham, P. J. Carrington, N. B. Cook, and A. Krier, “Low bandgap GaInAsSbP pentanary thermophotovoltaic diodes,” Sol. Energy Mater. Sol. Cells 95(2), 534–537 (2011).
[Crossref]

Cederberg, J. G.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105(8), 081110 (2014).
[Crossref]

Celanovic, I.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Chan, W. R.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Chang, Y.-C.

Chashnikova, M.

Cheetham, K. J.

K. J. Cheetham, P. J. Carrington, N. B. Cook, and A. Krier, “Low bandgap GaInAsSbP pentanary thermophotovoltaic diodes,” Sol. Energy Mater. Sol. Cells 95(2), 534–537 (2011).
[Crossref]

Chen, C. J.

Y. B. Chen and C. J. Chen, “Interaction between the magnetic polariton and surface plasmon polariton,” Opt. Commun. 297, 169–175 (2013).
[Crossref]

Chen, H. T.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Chen, Q.

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Chen, Y. B.

Y. B. Chen and C. J. Chen, “Interaction between the magnetic polariton and surface plasmon polariton,” Opt. Commun. 297, 169–175 (2013).
[Crossref]

Cheng, C.-W.

Chiu, C.-W.

Choi, B.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Collin, S.

Cook, E. L.

W. H. Strehlow and E. L. Cook, “Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators,” J. Phys. Chem. Ref. Data 2(1), 163–200 (1973).
[Crossref]

Cook, N. B.

K. J. Cheetham, P. J. Carrington, N. B. Cook, and A. Krier, “Low bandgap GaInAsSbP pentanary thermophotovoltaic diodes,” Sol. Energy Mater. Sol. Cells 95(2), 534–537 (2011).
[Crossref]

Costa, F.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Costantini, D.

A. Lefebvre, D. Costantini, I. Doyen, Q. Lévesque, E. Lorent, D. Jacolin, J.-J. Greffet, S. Boutami, and H. Benisty, “CMOS compatible metal-insulator-metal plasmonic perfect absorbers,” Opt. Mater. Express 6(7), 2389 (2016).
[Crossref]

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Costescu, R. M.

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

Coutrot, A.-L.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Czaplewski, D.

Czaplewski, D. A.

Dalvit, D. A. R.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27–35 (2015).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 10–14 (2013).
[Crossref]

Deng, H.

Dewalt, C. J.

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

Djurisic, A. B.

Dorodnyy, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Doyen, I.

Elazar, J. M.

El-Kady, I.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Fabreguette, F. H.

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

Fan, S.

Fang, N. X.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Fedoryshyn, Y.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Fedosenko, O.

Ferrari, C.

C. Ferrari, F. Melino, M. Pinelli, P. R. Spina, and M. Venturini, “Overview and status of thermophotovoltaic systems,” Energy Procedia 45, 160–169 (2014).
[Crossref]

Fleming, J. G.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Flores, Y.

Fujimura, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

Gan, Q.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

Gao, J.

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Genovesi, S.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

George, S. M.

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

Ghebrebrhan, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Glybovski, S. B.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Greffet, J.-J.

Grine, A. D.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105(8), 081110 (2014).
[Crossref]

Gruska, B.

Guo, Y.

Hafner, C.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Han, S.

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband Solar Thermal Absorber Based on Optical Metamaterials for High-Temperature Applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

Hatade, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

He, S.

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Heiss, W.

M. V. Kovalenko, W. Heiss, E. V. Shevchenko, J. S. Lee, H. Schwinghammer, A. P. Alivisatos, and D. V. Talapin, “SnTe nanocrystals: A new example of narrow-gap semiconductor quantum dots,” J. Am. Chem. Soc. 129(37), 11354–11355 (2007).
[Crossref] [PubMed]

Hensley, J.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105(8), 081110 (2014).
[Crossref]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Hu, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

Hu, X.

Hugonin, J.-P.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Huixu, D.

H. Deng, T. Wang, J. Gao, X. Yang, D. Huixu, W. Tianchen, G. Jie, and Y. Xiaodong, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 35102 (2014).
[Crossref]

Hung Fung, K.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Ikeda, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27–35 (2015).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 10–14 (2013).
[Crossref]

Inoue, Y.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

Iwanaga, M.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Jacob, Z.

Jacolin, D.

Ji, D.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

Jie, G.

H. Deng, T. Wang, J. Gao, X. Yang, D. Huixu, W. Tianchen, G. Jie, and Y. Xiaodong, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 35102 (2014).
[Crossref]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Joannopoulos, J. D.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Jung, P.-H.

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband Solar Thermal Absorber Based on Optical Metamaterials for High-Temperature Applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

Kafesaki, M.

N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85, 075120 (2012).

Kanakugi, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

Kasaya, T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

Kischkat, J.

Kitagawa, S.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

Kivshar, Y. S.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Klinkmüller, M.

Koch, U.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Kort-Kamp, W. J. M.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Koschny, T.

N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85, 075120 (2012).

Kovalenko, M. V.

M. V. Kovalenko, W. Heiss, E. V. Shevchenko, J. S. Lee, H. Schwinghammer, A. P. Alivisatos, and D. V. Talapin, “SnTe nanocrystals: A new example of narrow-gap semiconductor quantum dots,” J. Am. Chem. Soc. 129(37), 11354–11355 (2007).
[Crossref] [PubMed]

Krier, A.

A. Krier, M. Yin, A. R. J. Marshall, and S. E. Krier, “Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion,” J. Electron. Mater. 45(6), 2826–2830 (2016).
[Crossref]

K. J. Cheetham, P. J. Carrington, N. B. Cook, and A. Krier, “Low bandgap GaInAsSbP pentanary thermophotovoltaic diodes,” Sol. Energy Mater. Sol. Cells 95(2), 534–537 (2011).
[Crossref]

Krier, S. E.

A. Krier, M. Yin, A. R. J. Marshall, and S. E. Krier, “Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion,” J. Electron. Mater. 45(6), 2826–2830 (2016).
[Crossref]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Kumar, A.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Lai, K.-T.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Le Menn, E.

J. Martan, N. Semmar, C. Boulmer-Leborgne, P. Plantin, and E. Le Menn, “Thermal Characterization of Tungsten Thin Films by Pulsed Photothermal Radiometry,” Nanoscale Microscale Thermophys. Eng. 10(4), 333–344 (2006).
[Crossref]

Le Perchec, J.

Lee, B. J.

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband Solar Thermal Absorber Based on Optical Metamaterials for High-Temperature Applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

Lee, H.

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband Solar Thermal Absorber Based on Optical Metamaterials for High-Temperature Applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

Lee, J. S.

M. V. Kovalenko, W. Heiss, E. V. Shevchenko, J. S. Lee, H. Schwinghammer, A. P. Alivisatos, and D. V. Talapin, “SnTe nanocrystals: A new example of narrow-gap semiconductor quantum dots,” J. Am. Chem. Soc. 129(37), 11354–11355 (2007).
[Crossref] [PubMed]

Lefebvre, A.

A. Lefebvre, D. Costantini, I. Doyen, Q. Lévesque, E. Lorent, D. Jacolin, J.-J. Greffet, S. Boutami, and H. Benisty, “CMOS compatible metal-insulator-metal plasmonic perfect absorbers,” Opt. Mater. Express 6(7), 2389 (2016).
[Crossref]

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Leuthold, J.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Lévesque, Q.

Li, L.

J. Zeng, L. Li, X. Yang, and J. Gao, “Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces,” Nano Lett. 16(5), 3101–3108 (2016).
[Crossref] [PubMed]

Li, Y.

C. Liu, Y. Li, and Y. Zeng, “Progress in Antimonide Based III-V Compound Semiconductors and Devices,” Engineering 2(8), 617–624 (2010).
[Crossref]

Li, Z.

Lin, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Lin, S. Y.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Liu, C.

C. Liu, Y. Li, and Y. Zeng, “Progress in Antimonide Based III-V Compound Semiconductors and Devices,” Engineering 2(8), 617–624 (2010).
[Crossref]

Liu, K.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

Liu, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98 (2012).

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Lochbaum, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Lorent, E.

Luk, T. S.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91(19), 195147 (2015).
[Crossref]

Machulik, S.

Majewski, M. L.

Manara, G.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Marquier, F.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Marshall, A. R. J.

A. Krier, M. Yin, A. R. J. Marshall, and S. E. Krier, “Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion,” J. Electron. Mater. 45(6), 2826–2830 (2016).
[Crossref]

Martan, J.

J. Martan, N. Semmar, C. Boulmer-Leborgne, P. Plantin, and E. Le Menn, “Thermal Characterization of Tungsten Thin Films by Pulsed Photothermal Radiometry,” Nanoscale Microscale Thermophys. Eng. 10(4), 333–344 (2006).
[Crossref]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Masselink, W. T.

Mauk, M. G.

M. G. Mauk and V. M. Andreev, “GaSb-related materials for TPV cells,” Semicond. Sci. Technol. 18(5), S191–S201 (2003).
[Crossref]

Maxime, C.

Mayer, T. S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Melino, F.

C. Ferrari, F. Melino, M. Pinelli, P. R. Spina, and M. Venturini, “Overview and status of thermophotovoltaic systems,” Energy Procedia 45, 160–169 (2014).
[Crossref]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Mitchell, A.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

Mo, L.

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Moldovan-Doyen, I.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Molesky, S.

Monastyrskyi, G.

Monorchio, A.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Nieto-Vesperinas, M.

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of narrowband thermal emission with optical nanostructures,” Optica 2(1), 27–35 (2015).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 10–14 (2013).
[Crossref]

Okada, M.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98 (2012).

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pelouard, J.-L.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Peters, S.

Phelan, P.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Pinelli, M.

C. Ferrari, F. Melino, M. Pinelli, P. R. Spina, and M. Venturini, “Overview and status of thermophotovoltaic systems,” Energy Procedia 45, 160–169 (2014).
[Crossref]

Plantin, P.

J. Martan, N. Semmar, C. Boulmer-Leborgne, P. Plantin, and E. Le Menn, “Thermal Characterization of Tungsten Thin Films by Pulsed Photothermal Radiometry,” Nanoscale Microscale Thermophys. Eng. 10(4), 333–344 (2006).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Prasad Sivan, V.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Quémerais, P.

Rakic, A. D.

Rephaeli, E.

Rosengarten, G.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Rosenmann, D.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sakoda, K.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Sakurai, A.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

Sargent, E. H.

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: Fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

Sauvan, C.

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Schwinghammer, H.

M. V. Kovalenko, W. Heiss, E. V. Shevchenko, J. S. Lee, H. Schwinghammer, A. P. Alivisatos, and D. V. Talapin, “SnTe nanocrystals: A new example of narrow-gap semiconductor quantum dots,” J. Am. Chem. Soc. 129(37), 11354–11355 (2007).
[Crossref] [PubMed]

Sechrist, Z. A.

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

Semmar, N.

J. Martan, N. Semmar, C. Boulmer-Leborgne, P. Plantin, and E. Le Menn, “Thermal Characterization of Tungsten Thin Films by Pulsed Photothermal Radiometry,” Nanoscale Microscale Thermophys. Eng. 10(4), 333–344 (2006).
[Crossref]

Semtsiv, M.

Shaner, E. A.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105(8), 081110 (2014).
[Crossref]

Shen, N. H.

N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85, 075120 (2012).

Shevchenko, E. V.

M. V. Kovalenko, W. Heiss, E. V. Shevchenko, J. S. Lee, H. Schwinghammer, A. P. Alivisatos, and D. V. Talapin, “SnTe nanocrystals: A new example of narrow-gap semiconductor quantum dots,” J. Am. Chem. Soc. 129(37), 11354–11355 (2007).
[Crossref] [PubMed]

Shih, M.-H.

Shin, J.-H.

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband Solar Thermal Absorber Based on Optical Metamaterials for High-Temperature Applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Shuai, Y.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67, 637–645 (2013).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Simovski, C. R.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Soljacic, M.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Song, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

Song, S.

Soukoulis, C. M.

N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85, 075120 (2012).

Spina, P. R.

C. Ferrari, F. Melino, M. Pinelli, P. R. Spina, and M. Venturini, “Overview and status of thermophotovoltaic systems,” Energy Procedia 45, 160–169 (2014).
[Crossref]

Stan, L.

Stark, I.

I. Stark, M. Stordeur, and F. Syrowatka, “Thermal conductivity of thin amorphous alumina films,” Thin Solid Films 226(1), 185–190 (1993).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Stordeur, M.

I. Stark, M. Stordeur, and F. Syrowatka, “Thermal conductivity of thin amorphous alumina films,” Thin Solid Films 226(1), 185–190 (1993).
[Crossref]

Strehlow, W. H.

W. H. Strehlow and E. L. Cook, “Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators,” J. Phys. Chem. Ref. Data 2(1), 163–200 (1973).
[Crossref]

Sugimoto, Y.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Sun, L.

L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91(19), 195147 (2015).
[Crossref]

Sykora, M.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Syrowatka, F.

I. Stark, M. Stordeur, and F. Syrowatka, “Thermal conductivity of thin amorphous alumina films,” Thin Solid Films 226(1), 185–190 (1993).
[Crossref]

Talapin, D. V.

M. V. Kovalenko, W. Heiss, E. V. Shevchenko, J. S. Lee, H. Schwinghammer, A. P. Alivisatos, and D. V. Talapin, “SnTe nanocrystals: A new example of narrow-gap semiconductor quantum dots,” J. Am. Chem. Soc. 129(37), 11354–11355 (2007).
[Crossref] [PubMed]

Tang, J.

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: Fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

Taylor, A. J.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Tianchen, W.

H. Deng, T. Wang, J. Gao, X. Yang, D. Huixu, W. Tianchen, G. Jie, and Y. Xiaodong, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 35102 (2014).
[Crossref]

Tretyakov, S. A.

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Venturini, M.

C. Ferrari, F. Melino, M. Pinelli, P. R. Spina, and M. Venturini, “Overview and status of thermophotovoltaic systems,” Energy Procedia 45, 160–169 (2014).
[Crossref]

Wang, H.

H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride-based integrated plasmonic absorber / emitter for solar thermophotovoltaic application,” Photon. Res. 3(6), 329–334 (2015).
[Crossref]

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

Wang, L.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67, 637–645 (2013).
[Crossref]

Wang, L. P.

Wang, T.

H. Deng, T. Wang, J. Gao, X. Yang, D. Huixu, W. Tianchen, G. Jie, and Y. Xiaodong, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 35102 (2014).
[Crossref]

Wang, W.

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98 (2012).

Wei, S.-H.

S.-H. Wei and A. Zunger, “Electronic and structural anomalies in lead chalcogenides,” Phys. Rev. B 55(20), 13605–13610 (1997).
[Crossref]

Weisse-Bernstein, N. R.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Wen, L.

Werner, D. H.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Woolf, D.

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105(8), 081110 (2014).
[Crossref]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Xiaodong, Y.

H. Deng, T. Wang, J. Gao, X. Yang, D. Huixu, W. Tianchen, G. Jie, and Y. Xiaodong, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 35102 (2014).
[Crossref]

Xu, G.

Xu, J.

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Yamamoto, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, X.

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yeng, Y. X.

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Yin, M.

A. Krier, M. Yin, A. R. J. Marshall, and S. E. Krier, “Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion,” J. Electron. Mater. 45(6), 2826–2830 (2016).
[Crossref]

Yun, S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Zeng, J.

J. Zeng, L. Li, X. Yang, and J. Gao, “Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces,” Nano Lett. 16(5), 3101–3108 (2016).
[Crossref] [PubMed]

Zeng, X.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

Zeng, Y.

C. Liu, Y. Li, and Y. Zeng, “Progress in Antimonide Based III-V Compound Semiconductors and Devices,” Engineering 2(8), 617–624 (2010).
[Crossref]

Zhang, N.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

Zhang, Z. M.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67, 637–645 (2013).
[Crossref]

L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(S2), A126–A135 (2011).
[Crossref] [PubMed]

Zhao, B.

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67, 637–645 (2013).
[Crossref]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Zunger, A.

S.-H. Wei and A. Zunger, “Electronic and structural anomalies in lead chalcogenides,” Phys. Rev. B 55(20), 13605–13610 (1997).
[Crossref]

ACS Nano (2)

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-Chip Narrowband Thermal Emitter for Mid-IR Optical Gas Sensing,” ACS Photonics 4(6), 1371–1380 (2017).
[Crossref]

Adv. Mater. (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98 (2012).

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: Fundamentals and recent progress,” Adv. Mater. 23(1), 12–29 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband Solar Thermal Absorber Based on Optical Metamaterials for High-Temperature Applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 2006–2009 (2008).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 10–14 (2013).
[Crossref]

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

D. Woolf, J. Hensley, J. G. Cederberg, D. T. Bethke, A. D. Grine, and E. A. Shaner, “Heterogeneous metasurface for high temperature selective emission,” Appl. Phys. Lett. 105(8), 081110 (2014).
[Crossref]

Energy Procedia (1)

C. Ferrari, F. Melino, M. Pinelli, P. R. Spina, and M. Venturini, “Overview and status of thermophotovoltaic systems,” Energy Procedia 45, 160–169 (2014).
[Crossref]

Engineering (1)

C. Liu, Y. Li, and Y. Zeng, “Progress in Antimonide Based III-V Compound Semiconductors and Devices,” Engineering 2(8), 617–624 (2010).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Int. J. Heat Mass Transf. (1)

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int. J. Heat Mass Transf. 67, 637–645 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

M. V. Kovalenko, W. Heiss, E. V. Shevchenko, J. S. Lee, H. Schwinghammer, A. P. Alivisatos, and D. V. Talapin, “SnTe nanocrystals: A new example of narrow-gap semiconductor quantum dots,” J. Am. Chem. Soc. 129(37), 11354–11355 (2007).
[Crossref] [PubMed]

J. Appl. Phys. (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

J. Electron. Mater. (1)

A. Krier, M. Yin, A. R. J. Marshall, and S. E. Krier, “Low Bandgap InAs-Based Thermophotovoltaic Cells for Heat-Electricity Conversion,” J. Electron. Mater. 45(6), 2826–2830 (2016).
[Crossref]

J. Opt. (2)

H. Deng, T. Wang, J. Gao, X. Yang, D. Huixu, W. Tianchen, G. Jie, and Y. Xiaodong, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 35102 (2014).
[Crossref]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Ref. Data (1)

W. H. Strehlow and E. L. Cook, “Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators,” J. Phys. Chem. Ref. Data 2(1), 163–200 (1973).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. Sakurai, B. Zhao, and Z. M. Zhang, “Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model,” J. Quant. Spectrosc. Radiat. Transf. 149, 33–40 (2014).
[Crossref]

Laser Photonics Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Nano Lett. (1)

J. Zeng, L. Li, X. Yang, and J. Gao, “Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces,” Nano Lett. 16(5), 3101–3108 (2016).
[Crossref] [PubMed]

Nanoscale Microscale Thermophys. Eng. (1)

J. Martan, N. Semmar, C. Boulmer-Leborgne, P. Plantin, and E. Le Menn, “Thermal Characterization of Tungsten Thin Films by Pulsed Photothermal Radiometry,” Nanoscale Microscale Thermophys. Eng. 10(4), 333–344 (2006).
[Crossref]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Nature (1)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. B. Chen and C. J. Chen, “Interaction between the magnetic polariton and surface plasmon polariton,” Opt. Commun. 297, 169–175 (2013).
[Crossref]

Opt. Express (10)

A. Barbara, S. Collin, C. Sauvan, J. Le Perchec, C. Maxime, J.-L. Pelouard, and P. Quémerais, “Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating,” Opt. Express 18(14), 14913–14925 (2010).
[Crossref] [PubMed]

Z. Li, W. Wang, D. Rosenmann, D. A. Czaplewski, X. Yang, and J. Gao, “All-metal structural color printing based on aluminum plasmonic metasurfaces,” Opt. Express 24(18), 20472–20480 (2016).
[Crossref] [PubMed]

W. Wang, D. Rosenmann, D. A. Czaplewski, X. Yang, and J. Gao, “Realizing structural color generation with aluminum plasmonic V-groove metasurfaces,” Opt. Express 25(17), 20454–20465 (2017).
[Crossref] [PubMed]

L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(S2), A126–A135 (2011).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

H. Deng, L. Stan, D. A. Czaplewski, J. Gao, and X. Yang, “Broadband infrared absorbers with stacked double chromium ring resonators,” Opt. Express 25(23), 28295–28304 (2017).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1), A96–A110 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (1)

Photon. Res. (1)

Phys. Rep. (1)

S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Phys. Rep. 634, 1–72 (2016).
[Crossref]

Phys. Rev. Appl. (1)

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Phys. Rev. B (3)

N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85, 075120 (2012).

L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91(19), 195147 (2015).
[Crossref]

S.-H. Wei and A. Zunger, “Electronic and structural anomalies in lead chalcogenides,” Phys. Rev. B 55(20), 13605–13610 (1997).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

S. He, F. Ding, L. Mo, and F. Bao, “Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films,” Prog. Electromagnetics Res. 147, 69–79 (2014).
[Crossref]

Sci. Rep. (2)

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface Broadband Solar Absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Science (2)

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

M. G. Mauk and V. M. Andreev, “GaSb-related materials for TPV cells,” Semicond. Sci. Technol. 18(5), S191–S201 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

K. J. Cheetham, P. J. Carrington, N. B. Cook, and A. Krier, “Low bandgap GaInAsSbP pentanary thermophotovoltaic diodes,” Sol. Energy Mater. Sol. Cells 95(2), 534–537 (2011).
[Crossref]

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Thin Solid Films (1)

I. Stark, M. Stordeur, and F. Syrowatka, “Thermal conductivity of thin amorphous alumina films,” Thin Solid Films 226(1), 185–190 (1993).
[Crossref]

Other (3)

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1985).

G. Baffou, R. Quidant, and F. J. García De Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” in ACS Nano (ACS, 2010), Vol. 4, pp. 709–716.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematics of the unit cells of wavelength-selective metamaterial absorbers with tungsten cross resonators. (a) Single-sized unit cells of cross resonators A, B, C and D with the same period P and arm width w but different arm length L. (b - d) The combination of two, three or four cross resonators of different sizes in one double-sized unit cell, forming the patterns of ADAD, ABCC, and ABCD, respectively.
Fig. 2
Fig. 2 Simulated polarization-averaged absorption spectra of metamaterial absorbers as functions of geometrical parameters at normal incidence, for single-sized unit cells with varying (a) period P, (b) arm length L and (c) arm width w, and for double-sized unit cells of (d) ADAD, (e) ABCC and (f) ABCD with varying period P.
Fig. 3
Fig. 3 SEM images of the fabricated metamaterial absorbers, showing the cross resonator arrays for unit cell patterns of (a) C, (b) ADAD, (c) ABCC and (d) ABCD. The scale bar inside the insert image is 1 µm.
Fig. 4
Fig. 4 Experimental (unpolarized) and simulated (polarization-averaged) absorption spectra at normal incidence for cross resonator arrays with different unit cell patterns. (a) A, B, C and D with P = 1500 nm and w = 450 nm but L = 0.87P, 0.77P, 0.67P and 0.57P, respectively. (b) ADAD with P = 1100 nm, 1300 nm and 1500 nm. (c) ABCC with different w but same P and L. (d) ABCD with different P The scale bar of the SEM image is 1 µm.
Fig. 5
Fig. 5 Cross section view of the normalized magnetic field Hy distribution at different resonance wavelengths under TM polarization at normal incidence for the designed unit cell patterns of (a1 - a3) C, (b1 - b2) ADAD, (c1 - c3) ABCC and (c1 - c4) ABCD. The black arrows represent the induced current density. (e1 - e4) Schematics of the locations of cross sections in the designed unit cells.
Fig. 6
Fig. 6 Dispersion relation of unit cell patterns of A, D, and ABCD under (a1 - c1) TM and (a2 - c2) TE polarization, respectively. The white dashed lines are obtained from the grating dispersion relations at different diffraction orders.
Fig. 7
Fig. 7 Equivalent RLC circuit model of the designed unit cells of cross resonators. (a) Single-sized unit cell of C. (b) Double-sized unit cell pattern of ABCD. (c) Unpolarized absorption spectra obtained from experiment and equivalent RLC model at normal incidence for unit cell patterns of C, ADAD, ABCD and ABCD. (d) The real and imaginary parts of normalized impedance calculated from equivalent RLC model. The dashed line is at the impedance of 1.
Fig. 8
Fig. 8 Time-averaged optical power dissipation density Qh (W/m3) distributions at the cross section (x-y plane) of top W layer for unit cell patterns of (a1, a3) C, (b1, b2) ADAD, (c1 - c3) ABCC and (d1 - d4) ABCD at different resonance wavelengths under normal incidence. Cross section (x-z plane) of single-sized unit cell pattern of C is shown in (a2) and (a4). Green arrows show the direction and magnitude of Poynting vector.
Fig. 9
Fig. 9 Temperature distributions for unit cell patterns of (a1, a2) C, (b1, b2) ADAD, (c1 - c3) ABCC and (d1 - d4) ABCD at different resonance wavelengths under TM polarized normal incidence. It is noted that the incident optical power density is 22.2 µW/µm2 and the 100 µm-thick silicon substrate is not shown.
Fig. 10
Fig. 10 Ultimate conversion efficiency (U) as the function of thermal emitter temperature and the semiconductor band gap energy for unit cell patterns of (a1) A, (b1) D and (c1) ABCD. Overall conversion efficiency (η) of the TPV system for unit cell patterns of (a2) A, (b2) D and (c2) ABCD.

Tables (1)

Tables Icon

Table 1 Physical properties of materials for heat transfer analysis

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U( T, E g )= 0 π/2 dθsin( 2θ ) E g dζ E m ( ζ,θ ) I BB (ζ, T e ) E g /ζ 0 π/2 dθsin( 2θ ) 0 dζ E m ( ζ,θ ) I BB (ζ, T e )
 ν( T, E g )= V op  /  V g = V c  /  V g ln[ f Q e (T, E g )/ Q c ( T c , E g ) ]
Q e / Q c =[ 0 π/2 dθsin( 2θ ) E g dζπ E m ( ζ,θ ) I BB (ζ, T e )/ζ ]/[ E g dζπ I BB (ζ, T c )/ζ ] 
M= z m 2 /[ (1+ z m e z m )( z m +ln(1+ z m )) ]

Metrics