Abstract

We demonstrate a 2.8 μm gas Raman laser in a methane-filled hollow-core negative-curvature fiber with average power of 113 mW, pulse energy of 113 μJ and estimated peak power of 9.5 MW. Raman quantum efficiency of 40% has been reached from the pump source at 1.064 μm to the 2nd order vibrational Stokes at 2.812 μm using 1.8 MPa methane gas. To our knowledge, this is the first high peak power fiber-based gas Raman laser in mid-infrared region and a range of applications in supercontinuum generation, laser surgery, molecular tracing and gas detection are in prospect.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source

Zefeng Wang, Bo Gu, Yubin Chen, Zhixian Li, and Xiaoming Xi
Appl. Opt. 56(27) 7657-7661 (2017)

Efficient high power, narrow linewidth 1.9  μm fiber hydrogen Raman amplifier

Zhixian Li, Wei Huang, Yulong Cui, and Zefeng Wang
Appl. Opt. 57(14) 3902-3906 (2018)

0.83 W, single-pass, 1.54 μm gas Raman source generated in a CH4-filled hollow-core fiber operating at atmospheric pressure

Zhixian Li, Wei Huang, Yulong Cui, Zefeng Wang, and Wuming Wu
Opt. Express 26(10) 12522-12529 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
    [Crossref]
  3. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
    [Crossref]
  4. R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
    [Crossref] [PubMed]
  5. J. Tafoya, J. Pierce, R. K. Jain, and B. Wong, “Efficient and compact high-power mid-IR (3µm) lasers for surgical applications,” Proc. SPIE 5312, 218–222 (2004).
    [Crossref]
  6. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
    [Crossref] [PubMed]
  7. S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS One 5(9), e13053 (2010).
    [Crossref] [PubMed]
  8. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
    [Crossref]
  9. D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
    [Crossref]
  10. M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. Wu, and R. McClintock, “Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices [Invited],” Appl. Opt. 56(31), H30–H44 (2017).
    [Crossref] [PubMed]
  11. C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25(16), 19170–19178 (2017).
    [Crossref] [PubMed]
  12. S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3(12), 1373–1376 (2016).
    [Crossref]
  13. S. Duval, J.-C. Gauthier, L.-R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm,” Opt. Lett. 41(22), 5294–5297 (2016).
    [Crossref] [PubMed]
  14. V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
    [Crossref] [PubMed]
  15. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  16. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
    [Crossref]
  17. M. Xu, F. Yu, and J. Knight, “Mid-infrared 1 W hollow-core fiber gas laser source,” Opt. Lett. 42(20), 4055–4058 (2017).
    [Crossref] [PubMed]
  18. N. Dadashzadeh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Express 25(12), 13351–13358 (2017).
    [Crossref] [PubMed]
  19. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  20. Y. Y. Wang, F. Couny, P. S. Light, B. J. Mangan, and F. Benabid, “Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF,” Opt. Lett. 35(8), 1127–1129 (2010).
    [Crossref] [PubMed]
  21. Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth,” Opt. Lett. 41(21), 5118–5121 (2016).
    [Crossref] [PubMed]
  22. Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9um emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
    [Crossref]
  23. Z. Wang, B. Gu, Y. Chen, Z. Li, and X. Xi, “Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source,” Appl. Opt. 56(27), 7657–7661 (2017).
    [Crossref] [PubMed]
  24. A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
    [Crossref]
  25. A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
    [Crossref]
  26. Y. Y. Wang and W. Ding, “Confinement loss in hollow-core negative curvature fiber: A multi-layered model,” Opt. Express 25(26), 33122–33133 (2017).
    [Crossref]
  27. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  28. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
    [Crossref] [PubMed]
  29. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  30. Y. H. Park, D. W. Lee, H. J. Kong, and Y. S. Kim, “Development of the 2.8 μm emission doubly shifted Raman laser using stimulated Brillouin scattering in a cascaded cavity,” Appl. Opt. 47(20), 3646–3650 (2008).
    [Crossref] [PubMed]
  31. D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen, Deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
    [Crossref]
  32. F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26(6), 1209–1215 (2009).
    [Crossref]
  33. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [Crossref] [PubMed]
  34. M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B 29(7), 1563–1568 (2012).
    [Crossref]

2017 (10)

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

N. Dadashzadeh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. Debord, M. Chafer, F. Gerome, F. Benabid, B. R. Washburn, and K. L. Corwin, “Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR,” Opt. Express 25(12), 13351–13358 (2017).
[Crossref] [PubMed]

C. Wei, H. Shi, H. Luo, H. Zhang, Y. Lyu, and Y. Liu, “34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express 25(16), 19170–19178 (2017).
[Crossref] [PubMed]

M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. Wu, and R. McClintock, “Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices [Invited],” Appl. Opt. 56(31), H30–H44 (2017).
[Crossref] [PubMed]

Z. Wang, B. Gu, Y. Chen, Z. Li, and X. Xi, “Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source,” Appl. Opt. 56(27), 7657–7661 (2017).
[Crossref] [PubMed]

D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
[Crossref]

M. Xu, F. Yu, and J. Knight, “Mid-infrared 1 W hollow-core fiber gas laser source,” Opt. Lett. 42(20), 4055–4058 (2017).
[Crossref] [PubMed]

Y. Y. Wang and W. Ding, “Confinement loss in hollow-core negative curvature fiber: A multi-layered model,” Opt. Express 25(26), 33122–33133 (2017).
[Crossref]

2016 (3)

2015 (1)

2014 (2)

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref] [PubMed]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9um emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (1)

2010 (3)

Y. Y. Wang, F. Couny, P. S. Light, B. J. Mangan, and F. Benabid, “Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF,” Opt. Lett. 35(8), 1127–1129 (2010).
[Crossref] [PubMed]

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS One 5(9), e13053 (2010).
[Crossref] [PubMed]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

2004 (3)

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

J. Tafoya, J. Pierce, R. K. Jain, and B. Wong, “Efficient and compact high-power mid-IR (3µm) lasers for surgical applications,” Proc. SPIE 5312, 218–222 (2004).
[Crossref]

2002 (2)

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

1994 (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

1986 (1)

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen, Deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
[Crossref]

Abdolvand, A.

Abeeluck, A. K.

Alamgir, I.

Alman, B. A.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS One 5(9), e13053 (2010).
[Crossref] [PubMed]

Amini-Nik, S.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS One 5(9), e13053 (2010).
[Crossref] [PubMed]

Amraoui, M. E.

Antipov, S.

Astapovich, M. S.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

Bah, S. T.

Bekman, H. H. P. Th.

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Benabid, F.

Bernier, M.

Biriukov, A. S.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Bragagna, T.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Bufetov, I. A.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

Carraz, O.

Chafer, M.

Chen, Y.

Corwin, K. L.

Couny, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

Y. Y. Wang, F. Couny, P. S. Light, B. J. Mangan, and F. Benabid, “Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF,” Opt. Lett. 35(8), 1127–1129 (2010).
[Crossref] [PubMed]

F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26(6), 1209–1215 (2009).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Cowan, M. L.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS One 5(9), e13053 (2010).
[Crossref] [PubMed]

Dadashzadeh, N.

Debord, B.

Dianov, E. M.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Ding, W.

Duval, S.

Eggleton, B. J.

El-Amraoui, M.

Fortin, V.

Fuerbach, A.

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Gauthier, J.-C.

Gerome, F.

Gladyshev, A. V.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Gu, B.

Gunaratne, K.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS One 5(9), e13053 (2010).
[Crossref] [PubMed]

Hanna, D. C.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen, Deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
[Crossref]

Hartmann, A.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Headley, C.

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Hibst, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Hu, J.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Hu, T.

Hudson, D. D.

Jackson, S. D.

Jain, R. K.

J. Tafoya, J. Pierce, R. K. Jain, and B. Wong, “Efficient and compact high-power mid-IR (3µm) lasers for surgical applications,” Proc. SPIE 5312, 218–222 (2004).
[Crossref]

Janker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Kaufmann, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Khudyakov, M. M.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Kim, Y. S.

Knight, J.

Knight, J. C.

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9um emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Kolyadin, A. N.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Kong, H. J.

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Kosolapov, A. F.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Kraemer, D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS One 5(9), e13053 (2010).
[Crossref] [PubMed]

Krylov, A. A.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Lee, D. W.

Li, L.

Li, Z.

Light, P. S.

Y. Y. Wang, F. Couny, P. S. Light, B. J. Mangan, and F. Benabid, “Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF,” Opt. Lett. 35(8), 1127–1129 (2010).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Likhachev, M. E.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

Litchinitser, N. M.

Liu, Y.

Lu, Q.

Lu, Q. Y.

Luo, H.

Lyu, Y.

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Mangan, B. J.

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

McClintock, R.

Menyuk, C. R.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Messaddeq, Y.

Miller, R. J. D.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS One 5(9), e13053 (2010).
[Crossref] [PubMed]

Mucke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Nadesan, P.

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS One 5(9), e13053 (2010).
[Crossref] [PubMed]

Nyga, P.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Olivier, M.

Paradis, P.

Park, Y. H.

Piché, M.

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Pierce, J.

J. Tafoya, J. Pierce, R. K. Jain, and B. Wong, “Efficient and compact high-power mid-IR (3µm) lasers for surgical applications,” Proc. SPIE 5312, 218–222 (2004).
[Crossref]

Pointer, D. J.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen, Deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
[Crossref]

Pratt, D. J.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen, Deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
[Crossref]

Pryamikov, A. D.

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Razeghi, M.

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Robichaud, L.-R.

Rochette, M.

Russell, P. S. J.

Russell, P. St. J.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Schleijpen, R.

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Shi, H.

Skorczakowski, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Slivken, S.

Swiderski, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Tafoya, J.

J. Tafoya, J. Pierce, R. K. Jain, and B. Wong, “Efficient and compact high-power mid-IR (3µm) lasers for surgical applications,” Proc. SPIE 5312, 218–222 (2004).
[Crossref]

Thirugnanasambandam, M. P.

Vallée, R.

van den Heuvel, J. C.

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

van Putten, F. J. M.

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Wadsworth, W. J.

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9um emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

Walser, A. M.

Wang, Y. Y.

Wang, Z.

Washburn, B. R.

Weerasinghe, H. W. K.

Wei, C.

Weiblen, R. J.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Wheeler, N. V.

Wong, B.

J. Tafoya, J. Pierce, R. K. Jain, and B. Wong, “Efficient and compact high-power mid-IR (3µm) lasers for surgical applications,” Proc. SPIE 5312, 218–222 (2004).
[Crossref]

Wu, D.

Xi, X.

Xu, M.

Yatsenko, Yu. P.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Yu, F.

Zajac, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Zhang, H.

Zhou, W.

Ziemienczuk, M.

Adv. Opt. Photonics (1)

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

D. C. Hanna, D. J. Pointer, and D. J. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen, Deuterium, and Methane,” IEEE J. Quantum Electron. 22(2), 332–336 (1986).
[Crossref]

J. Dermatol. Surg. Oncol. (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (2)

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9um emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid‐infrared Q‐switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2–3), 101–114 (2002).
[Crossref]

Opt. Lett. (8)

Y. Y. Wang, F. Couny, P. S. Light, B. J. Mangan, and F. Benabid, “Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF,” Opt. Lett. 35(8), 1127–1129 (2010).
[Crossref] [PubMed]

Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth,” Opt. Lett. 41(21), 5118–5121 (2016).
[Crossref] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

M. Xu, F. Yu, and J. Knight, “Mid-infrared 1 W hollow-core fiber gas laser source,” Opt. Lett. 42(20), 4055–4058 (2017).
[Crossref] [PubMed]

S. Duval, J.-C. Gauthier, L.-R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm,” Opt. Lett. 41(22), 5294–5297 (2016).
[Crossref] [PubMed]

V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
[Crossref] [PubMed]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. Lett. (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

PLoS One (1)

S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS One 5(9), e13053 (2010).
[Crossref] [PubMed]

Proc. SPIE (2)

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

J. Tafoya, J. Pierce, R. K. Jain, and B. Wong, “Efficient and compact high-power mid-IR (3µm) lasers for surgical applications,” Proc. SPIE 5312, 218–222 (2004).
[Crossref]

Quantum Electron. (2)

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. D. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov, and E. M. Dianov, “4.4-μm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, A. N. Kolyadin, M. S. Astapovich, A. D. Pryamikov, M. E. Likhachev, and I. A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) SEM image of the HC-NCF and its glass membrane. (b) Transmission and attenuation spectra of the HC-NCF. The green curve is the measured transmission spectrum from 800 nm to 1700 nm; the blue curve is the measured attenuation spectrum from 1.55 μm to 3.35 μm with an uncertainty within 6%; the black curve is the simulated loss including the confinement loss and the material absorption loss of the HC-NCF. Inset: the silica bulk material loss spectrum from Heraeus datasheet.
Fig. 2
Fig. 2 Experimental setup of the gas Raman laser. λ/2, half-wave plate; PBS, polarization beam splitter; λ/4, quarter-wave plate; Lens1, 50 mm coated plano convex lens; HC-NCF, hollow-core negative curvature fiber; Lens2, 150 mm CaF2 plano convex lens; Filter, bandpass filters at 1550 nm and 2750 nm.
Fig. 3
Fig. 3 Raman spectrum at input coupled pump power of 381 mW and pressure of 1.5 MPa, inset: the near field mode profile at 1.064 μm, 1.544 μm and 2.812 μm respectively.
Fig. 4
Fig. 4 (a) Normalized output powers of the residual pump, first Stokes and second Stokes as a function of the coupled input pump power. They are normalized to the total transmitted power. (b) Quantum conversion efficiencies versus the coupled input power at first and second Stokes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E p,tr threshold (τ) A eff 8Γ g ss L int ( G th + α S L+ln[4πΓτ]+2Γτ) 2 .

Metrics