Abstract

We demonstrate experimentally a generic method for the synthesis of optical femtosecond pulses based on Gaussian, Airy and Hermite-Gauss functions, which are transformed to exhibit fringes with tunable width. The width of the fringes is set in some cases to be much narrower than the inverse of the spectral bandwidth. Such pulses might be useful for ultrafast spectroscopy, coherent control and nonlinear optics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Vectorial design of super-oscillatory lens

Tao Liu, Jiubin Tan, Jian Liu, and Hongting Wang
Opt. Express 21(13) 15090-15101 (2013)

Reflection confocal nanoscopy using a super-oscillatory lens

Arvind Nagarajan, L. Pjotr Stoevelaar, Fabrizio Silvestri, Marijn Siemons, Venu Gopal Achanta, Stefan M. B. Bäumer, and Giampiero Gerini
Opt. Express 27(14) 20012-20027 (2019)

Exact solutions for linear propagation of chirped pulses using a chirped Gauss–Hermite orthogonal basis

P. Lazaridis, G. Debarge, and P. Gallion
Opt. Lett. 22(10) 685-687 (1997)

References

  • View by:
  • |
  • |
  • |

  1. T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, “Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a fourier pulse shaper,” J. Opt. Soc. Am. B 19, 2795–2802 (2002).
    [Crossref]
  2. H. Sardesai, C. Chang, and A. Weiner, “A femtosecond code-division multiple-access communication system test bed,” J. Lightwave Technol. 16, 1953–1964 (1998).
    [Crossref]
  3. D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
    [Crossref]
  4. C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
    [Crossref] [PubMed]
  5. M. Berry, “Faster than fourier,” Quantum Coherence and Reality: In Celebration of the 60th Birthday of Yakir Aharonov, Proceedings of the International Conference on Fundamental Aspects of Quantum Theory p. 55 (1994).
  6. G. T. Di Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento (1943–1954) 9, 426–438 (1952).
    [Crossref]
  7. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).
    [Crossref] [PubMed]
  8. E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
    [Crossref] [PubMed]
  9. A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
    [Crossref] [PubMed]
  10. G. Yuan, E. T. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
    [Crossref] [PubMed]
  11. E. T. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15, 094008 (2013).
    [Crossref]
  12. R. Remez and A. Arie, “Super-narrow frequency conversion,” Optica 2, 472–475 (2015).
    [Crossref]
  13. Y. Eliezer and A. Bahabad, “Super-oscillating airy pattern,” ACS Photonics 3, 1053–1059 (2016).
    [Crossref]
  14. B. K. Singh, R. Remez, Y. Tsur, and A. Arie, “Super-airy beam: self-accelerating beam with intensified main lobe,” Opt. Lett. 40, 4703–4706 (2015).
    [Crossref] [PubMed]
  15. E. Greenfield, R. Schley, I. Hurwitz, J. Nemirovsky, K. G. Makris, and M. Segev, “Experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams,” Opt. Express 21, 13425–13435 (2013).
    [Crossref] [PubMed]
  16. K. G. Makris and D. Psaltis, “Superoscillatory diffraction-free beams,” Opt. Lett. 36, 4335–4337 (2011).
    [Crossref] [PubMed]
  17. R. Remez, Y. Tsur, P.-H. Lu, A. H. Tavabi, R. E. Dunin-Borkowski, and A. Arie, “Superoscillating electron wave functions with subdiffraction spots,” Phys. Rev. A 95, 031802 (2017).
    [Crossref]
  18. B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light Sci. Appl. 6, e17050 (2017).
    [Crossref]
  19. O. Boyko, C. Valentin, G. Rey, L. Antonucci, P. Balcou, and S. Coudreau, “Temporal superresolution of ultrashort laser pulses,” Opt. Express 13, 8222–8230 (2005).
    [Crossref] [PubMed]
  20. T. Binhammer, E. Rittweger, U. Morgner, R. Ell, and F. X. Kartner, “Spectral phase control and temporal superresolution toward the single-cycle pulse,” Opt. Lett. 31, 1552–1554 (2006).
    [Crossref] [PubMed]
  21. Y. Eliezer and A. Bahabad, “Super-transmission: the delivery of superoscillations through the absorbing resonance of a dielectric medium,” Opt. Express 22, 31212–31226 (2014).
    [Crossref]
  22. H. Chenglong, H. Li, X. Yu, Y. Zhang, C. Yu, and C. Qiu, “Temporal Superoscillatory Pulse Generation,” in Frontiers in Optics 2016, OSA Technical Digest, LF2G.4 (2016).
  23. Y. Eliezer, L. Hareli, L. Lobachinsky, S. Froim, and A. Bahabad, “Breaking the temporal resolution limit by superoscillating optical beats,” Phys. Rev. Lett. 119, 043903 (2017).
    [Crossref]
  24. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
    [Crossref]
  25. M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
    [Crossref]
  26. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
    [Crossref]
  27. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
    [Crossref]
  28. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum 68, 3277–3295 (1997).
    [Crossref]
  29. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
    [Crossref]

2017 (3)

R. Remez, Y. Tsur, P.-H. Lu, A. H. Tavabi, R. E. Dunin-Borkowski, and A. Arie, “Superoscillating electron wave functions with subdiffraction spots,” Phys. Rev. A 95, 031802 (2017).
[Crossref]

B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light Sci. Appl. 6, e17050 (2017).
[Crossref]

Y. Eliezer, L. Hareli, L. Lobachinsky, S. Froim, and A. Bahabad, “Breaking the temporal resolution limit by superoscillating optical beats,” Phys. Rev. Lett. 119, 043903 (2017).
[Crossref]

2016 (1)

Y. Eliezer and A. Bahabad, “Super-oscillating airy pattern,” ACS Photonics 3, 1053–1059 (2016).
[Crossref]

2015 (2)

2014 (2)

Y. Eliezer and A. Bahabad, “Super-transmission: the delivery of superoscillations through the absorbing resonance of a dielectric medium,” Opt. Express 22, 31212–31226 (2014).
[Crossref]

G. Yuan, E. T. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

2013 (3)

E. T. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15, 094008 (2013).
[Crossref]

A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

E. Greenfield, R. Schley, I. Hurwitz, J. Nemirovsky, K. G. Makris, and M. Segev, “Experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams,” Opt. Express 21, 13425–13435 (2013).
[Crossref] [PubMed]

2012 (1)

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref] [PubMed]

2011 (2)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

K. G. Makris and D. Psaltis, “Superoscillatory diffraction-free beams,” Opt. Lett. 36, 4335–4337 (2011).
[Crossref] [PubMed]

2010 (2)

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[Crossref]

2003 (1)

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
[Crossref]

2002 (1)

1999 (1)

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum 68, 3277–3295 (1997).
[Crossref]

1988 (2)

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
[Crossref]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).
[Crossref] [PubMed]

1952 (1)

G. T. Di Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento (1943–1954) 9, 426–438 (1952).
[Crossref]

Adamo, G.

G. Yuan, E. T. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Aharonov, Y.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).
[Crossref] [PubMed]

Akturk, S.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Albert, D. Z.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).
[Crossref] [PubMed]

Antonucci, L.

Arie, A.

R. Remez, Y. Tsur, P.-H. Lu, A. H. Tavabi, R. E. Dunin-Borkowski, and A. Arie, “Superoscillating electron wave functions with subdiffraction spots,” Phys. Rev. A 95, 031802 (2017).
[Crossref]

B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light Sci. Appl. 6, e17050 (2017).
[Crossref]

R. Remez and A. Arie, “Super-narrow frequency conversion,” Optica 2, 472–475 (2015).
[Crossref]

B. K. Singh, R. Remez, Y. Tsur, and A. Arie, “Super-airy beam: self-accelerating beam with intensified main lobe,” Opt. Lett. 40, 4703–4706 (2015).
[Crossref] [PubMed]

Bahabad, A.

Y. Eliezer, L. Hareli, L. Lobachinsky, S. Froim, and A. Bahabad, “Breaking the temporal resolution limit by superoscillating optical beats,” Phys. Rev. Lett. 119, 043903 (2017).
[Crossref]

Y. Eliezer and A. Bahabad, “Super-oscillating airy pattern,” ACS Photonics 3, 1053–1059 (2016).
[Crossref]

Y. Eliezer and A. Bahabad, “Super-transmission: the delivery of superoscillations through the absorbing resonance of a dielectric medium,” Opt. Express 22, 31212–31226 (2014).
[Crossref]

Balcou, P.

Bardeen, C. J.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[Crossref] [PubMed]

Berry, M.

M. Berry, “Faster than fourier,” Quantum Coherence and Reality: In Celebration of the 60th Birthday of Yakir Aharonov, Proceedings of the International Conference on Fundamental Aspects of Quantum Theory p. 55 (1994).

Binhammer, T.

Bowlan, P.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Boyko, O.

Cagigal, M. P.

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[Crossref]

Canales, V. F.

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[Crossref]

Carpenter, S. D.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[Crossref] [PubMed]

Chad, J. E.

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref] [PubMed]

Chang, C.

Chenglong, H.

H. Chenglong, H. Li, X. Yu, Y. Zhang, C. Yu, and C. Qiu, “Temporal Superoscillatory Pulse Generation,” in Frontiers in Optics 2016, OSA Technical Digest, LF2G.4 (2016).

Chong, A.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

Christodoulides, D. N.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

Coudreau, S.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum 68, 3277–3295 (1997).
[Crossref]

Dennis, M. R.

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref] [PubMed]

Di Francia, G. T.

G. T. Di Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento (1943–1954) 9, 426–438 (1952).
[Crossref]

Dunin-Borkowski, R. E.

R. Remez, Y. Tsur, P.-H. Lu, A. H. Tavabi, R. E. Dunin-Borkowski, and A. Arie, “Superoscillating electron wave functions with subdiffraction spots,” Phys. Rev. A 95, 031802 (2017).
[Crossref]

Eleftheriades, G. V.

A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

Eliezer, Y.

Y. Eliezer, L. Hareli, L. Lobachinsky, S. Froim, and A. Bahabad, “Breaking the temporal resolution limit by superoscillating optical beats,” Phys. Rev. Lett. 119, 043903 (2017).
[Crossref]

Y. Eliezer and A. Bahabad, “Super-oscillating airy pattern,” ACS Photonics 3, 1053–1059 (2016).
[Crossref]

Y. Eliezer and A. Bahabad, “Super-transmission: the delivery of superoscillations through the absorbing resonance of a dielectric medium,” Opt. Express 22, 31212–31226 (2014).
[Crossref]

Ell, R.

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum 68, 3277–3295 (1997).
[Crossref]

Froim, S.

Y. Eliezer, L. Hareli, L. Lobachinsky, S. Froim, and A. Bahabad, “Breaking the temporal resolution limit by superoscillating optical beats,” Phys. Rev. Lett. 119, 043903 (2017).
[Crossref]

Goswami, D.

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
[Crossref]

Greenfield, E.

Gu, X.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

Hareli, L.

Y. Eliezer, L. Hareli, L. Lobachinsky, S. Froim, and A. Bahabad, “Breaking the temporal resolution limit by superoscillating optical beats,” Phys. Rev. Lett. 119, 043903 (2017).
[Crossref]

Heritage, J. P.

Hurwitz, I.

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum 68, 3277–3295 (1997).
[Crossref]

Kannari, F.

Kartner, F. X.

Kirschner, E. M.

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum 68, 3277–3295 (1997).
[Crossref]

Li, H.

H. Chenglong, H. Li, X. Yu, Y. Zhang, C. Yu, and C. Qiu, “Temporal Superoscillatory Pulse Generation,” in Frontiers in Optics 2016, OSA Technical Digest, LF2G.4 (2016).

Lindberg, J.

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref] [PubMed]

Lobachinsky, L.

Y. Eliezer, L. Hareli, L. Lobachinsky, S. Froim, and A. Bahabad, “Breaking the temporal resolution limit by superoscillating optical beats,” Phys. Rev. Lett. 119, 043903 (2017).
[Crossref]

Lu, P.-H.

R. Remez, Y. Tsur, P.-H. Lu, A. H. Tavabi, R. E. Dunin-Borkowski, and A. Arie, “Superoscillating electron wave functions with subdiffraction spots,” Phys. Rev. A 95, 031802 (2017).
[Crossref]

Makris, K. G.

Morgner, U.

Nagar, H.

B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light Sci. Appl. 6, e17050 (2017).
[Crossref]

Nemirovsky, J.

Oti, J. E.

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[Crossref]

Psaltis, D.

Qiu, C.

H. Chenglong, H. Li, X. Yu, Y. Zhang, C. Yu, and C. Qiu, “Temporal Superoscillatory Pulse Generation,” in Frontiers in Optics 2016, OSA Technical Digest, LF2G.4 (2016).

Remez, R.

Renninger, W. H.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

Rey, G.

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum 68, 3277–3295 (1997).
[Crossref]

Rittweger, E.

Rogers, E. T.

G. Yuan, E. T. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

E. T. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15, 094008 (2013).
[Crossref]

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref] [PubMed]

Roichman, Y.

B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light Sci. Appl. 6, e17050 (2017).
[Crossref]

Roy, T.

G. Yuan, E. T. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref] [PubMed]

Sardesai, H.

Savo, S.

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref] [PubMed]

Schley, R.

Segev, M.

Shen, Z.

G. Yuan, E. T. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Singh, B. K.

B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light Sci. Appl. 6, e17050 (2017).
[Crossref]

B. K. Singh, R. Remez, Y. Tsur, and A. Arie, “Super-airy beam: self-accelerating beam with intensified main lobe,” Opt. Lett. 40, 4703–4706 (2015).
[Crossref] [PubMed]

Squier, J. A.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[Crossref] [PubMed]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum 68, 3277–3295 (1997).
[Crossref]

Tanabe, H.

Tanabe, T.

Tavabi, A. H.

R. Remez, Y. Tsur, P.-H. Lu, A. H. Tavabi, R. E. Dunin-Borkowski, and A. Arie, “Superoscillating electron wave functions with subdiffraction spots,” Phys. Rev. A 95, 031802 (2017).
[Crossref]

Teramura, Y.

Trebino, R.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum 68, 3277–3295 (1997).
[Crossref]

Tsur, Y.

R. Remez, Y. Tsur, P.-H. Lu, A. H. Tavabi, R. E. Dunin-Borkowski, and A. Arie, “Superoscillating electron wave functions with subdiffraction spots,” Phys. Rev. A 95, 031802 (2017).
[Crossref]

B. K. Singh, R. Remez, Y. Tsur, and A. Arie, “Super-airy beam: self-accelerating beam with intensified main lobe,” Opt. Lett. 40, 4703–4706 (2015).
[Crossref] [PubMed]

Vaidman, L.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).
[Crossref] [PubMed]

Valentin, C.

Valle, P. J.

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[Crossref]

Weber, P. M.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[Crossref] [PubMed]

Weiner, A.

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
[Crossref]

Wilson, K. R.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[Crossref] [PubMed]

Wise, F. W.

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

Wong, A. M.

A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

Yakovlev, V. V.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[Crossref] [PubMed]

Yu, C.

H. Chenglong, H. Li, X. Yu, Y. Zhang, C. Yu, and C. Qiu, “Temporal Superoscillatory Pulse Generation,” in Frontiers in Optics 2016, OSA Technical Digest, LF2G.4 (2016).

Yu, X.

H. Chenglong, H. Li, X. Yu, Y. Zhang, C. Yu, and C. Qiu, “Temporal Superoscillatory Pulse Generation,” in Frontiers in Optics 2016, OSA Technical Digest, LF2G.4 (2016).

Yuan, G.

G. Yuan, E. T. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Zhang, Y.

H. Chenglong, H. Li, X. Yu, Y. Zhang, C. Yu, and C. Qiu, “Temporal Superoscillatory Pulse Generation,” in Frontiers in Optics 2016, OSA Technical Digest, LF2G.4 (2016).

Zheludev, N. I.

G. Yuan, E. T. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

E. T. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15, 094008 (2013).
[Crossref]

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

Y. Eliezer and A. Bahabad, “Super-oscillating airy pattern,” ACS Photonics 3, 1053–1059 (2016).
[Crossref]

Il Nuovo Cimento (1943–1954) (1)

G. T. Di Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento (1943–1954) 9, 426–438 (1952).
[Crossref]

J. Biomed. Opt. (1)

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. (2)

E. T. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15, 094008 (2013).
[Crossref]

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 093001 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

Light Sci. Appl. (1)

B. K. Singh, H. Nagar, Y. Roichman, and A. Arie, “Particle manipulation beyond the diffraction limit using structured super-oscillating light beams,” Light Sci. Appl. 6, e17050 (2017).
[Crossref]

Nat. Mater. (1)

E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy–bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[Crossref]

Opt. Commun. (2)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

M. P. Cagigal, J. E. Oti, V. F. Canales, and P. J. Valle, “Analytical design of superresolving phase filters,” Opt. Commun. 241, 249–253 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (1)

Phys. Rep. (1)

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
[Crossref]

Phys. Rev. A (1)

R. Remez, Y. Tsur, P.-H. Lu, A. H. Tavabi, R. E. Dunin-Borkowski, and A. Arie, “Superoscillating electron wave functions with subdiffraction spots,” Phys. Rev. A 95, 031802 (2017).
[Crossref]

Phys. Rev. Lett. (2)

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351 (1988).
[Crossref] [PubMed]

Y. Eliezer, L. Hareli, L. Lobachinsky, S. Froim, and A. Bahabad, “Breaking the temporal resolution limit by superoscillating optical beats,” Phys. Rev. Lett. 119, 043903 (2017).
[Crossref]

Rev. Sci. Instrum (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum 68, 3277–3295 (1997).
[Crossref]

Sci. Rep. (2)

A. M. Wong and G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013).
[Crossref] [PubMed]

G. Yuan, E. T. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Other (2)

M. Berry, “Faster than fourier,” Quantum Coherence and Reality: In Celebration of the 60th Birthday of Yakir Aharonov, Proceedings of the International Conference on Fundamental Aspects of Quantum Theory p. 55 (1994).

H. Chenglong, H. Li, X. Yu, Y. Zhang, C. Yu, and C. Qiu, “Temporal Superoscillatory Pulse Generation,” in Frontiers in Optics 2016, OSA Technical Digest, LF2G.4 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 π phase modulated Gaussian pulse. (a) Zero-centered Gaussian spectral distribution (left) and its corresponding Gaussian pulse envelope in time (right). (b) Subtracted low frequencies band (left), corresponding to a subtracted wide function in time (right). (c) Spectral distribution after subtraction of the low frequencies band (left) and the corresponding super oscillatory function in time (right). Note that much of the function is now shifted below zero due to the negative low frequencies band (purple areas) leading to the generation of a superoscillatory region (red area). (d) Spectral shifting the spectrum to frequency ω0 (left) modulates the envelope in the time domain with a carrier frequency (right). Red dashed lines show the absolute value of the envelope in the time domain.
Fig. 2
Fig. 2 Gaussian pulse with different π phase modulation widths Δλπ,G - theory (left) vs. measurement (right) (a) No π phase modulation. (b) Δλπ,G = 5.5 ± 1nm. (c) Δλπ,G = 7.4 ± 1nm. (d) Δλπ,G = 8.1 ± 1nm. (e) Δλπ,G = 25.2 ± 1nm. In the frequency domain - amplitude is shown with a continuous blue line and phase with a dotted red line.
Fig. 3
Fig. 3 HG10 Hermite-Gauss and Airy pulses with different π phase modulation widths Δλπ - theory (left) vs. measurement (right) (a) HG10, No π phase modulation. (b) HG10, Δλπ,HG = 9.8 ± 1nm. (c) Airy, No π phase modulation. (d) Airy, Δλπ,A = 5.5 ± 1nm. In the frequency domain - amplitude is shown with a continuous blue line and phase with a dotted red line.
Fig. 4
Fig. 4 Short-time Fourier transform analysis to verify the emergence of super-oscillatory features. (left) Original normalized Gaussian (a) Hermite-Gauss (b) and Airy (c) pulses in time domain (dot-dashed blue line), corresponding normalized π modulated pulses (continuous black line) and the applied Gaussian window (dotted red line) used in the short time Fourier transform. (middle) Normalized pulse after the application of the Gaussian window. (right) Frequency domain representation of the Gaussian-cut functions. The bandwidth’s full width half maximum for all initial pulses were: FWHMG = 17nm (for the Gaussian pulse), FWHMHG = 38nm (for the Hermite-Gaussian pulse) and FWHMA = 60nm (for the Airy pulse) while the π phase modulation width applied for the different cases were: Δλπ,G = 7nm, Δλπ,HG = 23nm and Δλπ,A = 22nm correspondingly.
Fig. 5
Fig. 5 Experimental setup. The pulses emitted by an ultra-fast laser oscillator are shaped in a 4f Fourier domain pulse shaper. The shaped pulses amplitude and phase are retrieved through a measurement in a FROG apparatus. M=Mirror, CM=Cylindrical Mirror, G=Grating, BS=Beam Splitter, PM=Off-axis Parabolic Mirror, SHGC=Second-Harmonic-Generation Crystal, B=Beam Blocker.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ M ( ω ) = { π , | ω ω 0 | < ω π 0 , else ,
F ( ω ) exp ( i ϕ M ( ω ) ) = F ( ω ) [ 1 2 π ϕ M ( ω ) ] .
F G ( ω ) = exp ( ( ω ω 0 ) 2 σ G 2 ) ,
F HG ( ω ) = H 1 ( 2 ( ω ω 0 ) σ H ) exp ( ( ω ω 0 ) 2 σ H 2 ) ,
F A ( ω ) = Rect ( ω ω 0 , ω R ) exp ( i k A ( ω ω 0 ) 3 ) ,

Metrics