Abstract

We introduce a broadband single-pixel spectro-temporal fluorescence detector, combining time-correlated single photon counting (TCSPC) with Fourier transform (FT) spectroscopy. A birefringent common-path interferometer (CPI) generates two time-delayed replicas of the sample’s fluorescence. Via FT of their interference signal at the detector, we obtain a two-dimensional map of the fluorescence as a function of detection wavelength and emission time, with high temporal and spectral resolution. Our instrument is remarkably simple, as it only requires the addition of a CPI to a standard single-pixel TCSPC system, and it shows a readily adjustable spectral resolution with inherently broad bandwidth coverage.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer

Antonio Perri, Fabrizio Preda, Cosimo D’Andrea, Erling Thyrhaug, Giulio Cerullo, Dario Polli, and Jürgen Hauer
Opt. Express 25(12) A483-A490 (2017)

Time-domain measurement of optical activity by an ultrastable common-path interferometer

Fabrizio Preda, Antonio Perri, Julien Réhault, Biplab Dutta, Jan Helbing, Giulio Cerullo, and Dario Polli
Opt. Lett. 43(8) 1882-1885 (2018)

Broadband stimulated Raman scattering with Fourier-transform detection

Julien Réhault, Francesco Crisafi, Vikas Kumar, Gustavo Ciardi, Marco Marangoni, Giulio Cerullo, and Dario Polli
Opt. Express 23(19) 25235-25246 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science & Business Media, 2007).
  2. C. Klingshirn, Semiconductor Optics (Springer, 1995).
  3. J. L. McHale, Molecular Spectroscopy (Prentice-Hall, 1999).
  4. G. A. Wagnières, W. M. Star, and B. C. Wilson, “In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
    [Crossref] [PubMed]
  5. R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002).
    [Crossref]
  6. J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
    [Crossref] [PubMed]
  7. P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51(4), 325–346 (1996).
    [Crossref]
  8. K. Virkler and I. K. Lednev, “Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene,” Forensic Sci. Int. 188(1-3), 1–17 (2009).
    [Crossref] [PubMed]
  9. D. Comelli, C. D’Andrea, G. Valentini, R. Cubeddu, C. Colombo, and L. Toniolo, “Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art,” Appl. Opt. 43(10), 2175–2183 (2004).
    [Crossref] [PubMed]
  10. J. Shah, “Ultrafast luminescence spectroscopy using sum frequency generation,” IEEE J. Quantum Electron. 24(2), 276–288 (1988).
    [Crossref]
  11. X. X. Zhang, C. Würth, L. Zhao, U. Resch-Genger, N. P. Ernsting, and M. Sajadi, “Femtosecond Broadband Fluorescence Upconversion Spectroscopy: Improved Setup and Photometric Correction,” Rev. Sci. Instrum. 82(6), 063108 (2011).
    [Crossref] [PubMed]
  12. J. Conyard, K. Addison, I. A. Heisler, A. Cnossen, W. R. Browne, B. L. Feringa, and S. R. Meech, “Ultrafast dynamics in the power stroke of a molecular rotary motor,” Nat. Chem. 4(7), 547–551 (2012).
    [Crossref] [PubMed]
  13. B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A Broadband Kerr Shutter for Femtosecond Fluorescence Spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
    [Crossref]
  14. K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient Grating Photoluminescence Spectroscopy: An Ultrafast Method of Gating Broadband Spectra,” J. Phys. Chem. Lett. 5(10), 1732–1737 (2014).
    [Crossref] [PubMed]
  15. A. J. Campillo and S. L. Shapiro, “Picosecond streak camera fluorometry - A review,” IEEE J. Quantum Electron. 19(4), 585–603 (1983).
    [Crossref]
  16. B. Gobets, I. H. M. van Stokkum, M. Rögner, J. Kruip, E. Schlodder, N. V. Karapetyan, J. P. Dekker, and R. van Grondelle, “Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model,” Biophys. J. 81(1), 407–424 (2001).
    [Crossref] [PubMed]
  17. D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, 1984).
  18. W. Becker, Advanced time-correlated single photon counting techniques (Springer Series in Chemical Physics, Springer-Verlag, 2005).
  19. W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
    [Crossref] [PubMed]
  20. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).
  21. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).
  22. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
    [Crossref] [PubMed]
  23. A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
    [Crossref] [PubMed]
  24. A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), A483–A490 (2017).
    [Crossref] [PubMed]
  25. F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
    [Crossref]
  26. J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
    [Crossref] [PubMed]
  27. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
    [Crossref] [PubMed]
  28. J. Mooney and P. Kambhampati, “Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra,” J. Phys. Chem. Lett. 4(19), 3316–3318 (2013).
    [Crossref] [PubMed]
  29. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (J. Wiley & Sons, Inc., 2007).
  30. I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophysica Acta (BBA) - Bioenergetics 1657(2), 82–104 (2004).
    [Crossref]
  31. G. Peers, T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. Niyogi, “An ancient light-harvesting protein is critical for the regulation of algal photosynthesis,” Nature 462(7272), 518–521 (2009).
    [Crossref] [PubMed]
  32. M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. Niyogi, “Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii,” J. Biol. Chem. 291(14), 7334–7346 (2016).
    [Crossref] [PubMed]
  33. G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi, “Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii,” PLoS Biol. 9(1), e1000577 (2011).
    [Crossref] [PubMed]
  34. M. Françon and S. Mallick, Polarization interferometers: applications in microscopy and macroscopy, (Wiley-Interscience, 1971).

2017 (2)

A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), A483–A490 (2017).
[Crossref] [PubMed]

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

2016 (2)

A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
[Crossref] [PubMed]

M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. Niyogi, “Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii,” J. Biol. Chem. 291(14), 7334–7346 (2016).
[Crossref] [PubMed]

2014 (2)

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient Grating Photoluminescence Spectroscopy: An Ultrafast Method of Gating Broadband Spectra,” J. Phys. Chem. Lett. 5(10), 1732–1737 (2014).
[Crossref] [PubMed]

2013 (1)

J. Mooney and P. Kambhampati, “Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra,” J. Phys. Chem. Lett. 4(19), 3316–3318 (2013).
[Crossref] [PubMed]

2012 (2)

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

J. Conyard, K. Addison, I. A. Heisler, A. Cnossen, W. R. Browne, B. L. Feringa, and S. R. Meech, “Ultrafast dynamics in the power stroke of a molecular rotary motor,” Nat. Chem. 4(7), 547–551 (2012).
[Crossref] [PubMed]

2011 (2)

X. X. Zhang, C. Würth, L. Zhao, U. Resch-Genger, N. P. Ernsting, and M. Sajadi, “Femtosecond Broadband Fluorescence Upconversion Spectroscopy: Improved Setup and Photometric Correction,” Rev. Sci. Instrum. 82(6), 063108 (2011).
[Crossref] [PubMed]

G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi, “Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii,” PLoS Biol. 9(1), e1000577 (2011).
[Crossref] [PubMed]

2009 (2)

G. Peers, T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. Niyogi, “An ancient light-harvesting protein is critical for the regulation of algal photosynthesis,” Nature 462(7272), 518–521 (2009).
[Crossref] [PubMed]

K. Virkler and I. K. Lednev, “Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene,” Forensic Sci. Int. 188(1-3), 1–17 (2009).
[Crossref] [PubMed]

2007 (1)

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[Crossref] [PubMed]

2006 (1)

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

2004 (2)

D. Comelli, C. D’Andrea, G. Valentini, R. Cubeddu, C. Colombo, and L. Toniolo, “Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art,” Appl. Opt. 43(10), 2175–2183 (2004).
[Crossref] [PubMed]

I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophysica Acta (BBA) - Bioenergetics 1657(2), 82–104 (2004).
[Crossref]

2003 (1)

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A Broadband Kerr Shutter for Femtosecond Fluorescence Spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

2002 (1)

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002).
[Crossref]

2001 (1)

B. Gobets, I. H. M. van Stokkum, M. Rögner, J. Kruip, E. Schlodder, N. V. Karapetyan, J. P. Dekker, and R. van Grondelle, “Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model,” Biophys. J. 81(1), 407–424 (2001).
[Crossref] [PubMed]

1998 (1)

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
[Crossref] [PubMed]

1996 (2)

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51(4), 325–346 (1996).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

1988 (1)

J. Shah, “Ultrafast luminescence spectroscopy using sum frequency generation,” IEEE J. Quantum Electron. 24(2), 276–288 (1988).
[Crossref]

1983 (1)

A. J. Campillo and S. L. Shapiro, “Picosecond streak camera fluorometry - A review,” IEEE J. Quantum Electron. 19(4), 585–603 (1983).
[Crossref]

Addison, K.

J. Conyard, K. Addison, I. A. Heisler, A. Cnossen, W. R. Browne, B. L. Feringa, and S. R. Meech, “Ultrafast dynamics in the power stroke of a molecular rotary motor,” Nat. Chem. 4(7), 547–551 (2012).
[Crossref] [PubMed]

Ahn, T. K.

G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi, “Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii,” PLoS Biol. 9(1), e1000577 (2011).
[Crossref] [PubMed]

Ballottari, M.

M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. Niyogi, “Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii,” J. Biol. Chem. 291(14), 7334–7346 (2016).
[Crossref] [PubMed]

G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi, “Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii,” PLoS Biol. 9(1), e1000577 (2011).
[Crossref] [PubMed]

Barker, A. J.

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient Grating Photoluminescence Spectroscopy: An Ultrafast Method of Gating Broadband Spectra,” J. Phys. Chem. Lett. 5(10), 1732–1737 (2014).
[Crossref] [PubMed]

Bassi, R.

M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. Niyogi, “Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii,” J. Biol. Chem. 291(14), 7334–7346 (2016).
[Crossref] [PubMed]

G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi, “Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii,” PLoS Biol. 9(1), e1000577 (2011).
[Crossref] [PubMed]

Becker, W.

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[Crossref] [PubMed]

Bergmann, A.

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[Crossref] [PubMed]

Biskup, C.

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[Crossref] [PubMed]

Bonente, G.

G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi, “Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii,” PLoS Biol. 9(1), e1000577 (2011).
[Crossref] [PubMed]

Brida, D.

Bro, R.

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

Browne, W. R.

J. Conyard, K. Addison, I. A. Heisler, A. Cnossen, W. R. Browne, B. L. Feringa, and S. R. Meech, “Ultrafast dynamics in the power stroke of a molecular rotary motor,” Nat. Chem. 4(7), 547–551 (2012).
[Crossref] [PubMed]

Busch, A.

G. Peers, T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. Niyogi, “An ancient light-harvesting protein is critical for the regulation of algal photosynthesis,” Nature 462(7272), 518–521 (2009).
[Crossref] [PubMed]

Campillo, A. J.

A. J. Campillo and S. L. Shapiro, “Picosecond streak camera fluorometry - A review,” IEEE J. Quantum Electron. 19(4), 585–603 (1983).
[Crossref]

Cerullo, G.

Chen, K.

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient Grating Photoluminescence Spectroscopy: An Ultrafast Method of Gating Broadband Spectra,” J. Phys. Chem. Lett. 5(10), 1732–1737 (2014).
[Crossref] [PubMed]

Christensen, J.

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

Cnossen, A.

J. Conyard, K. Addison, I. A. Heisler, A. Cnossen, W. R. Browne, B. L. Feringa, and S. R. Meech, “Ultrafast dynamics in the power stroke of a molecular rotary motor,” Nat. Chem. 4(7), 547–551 (2012).
[Crossref] [PubMed]

Coble, P. G.

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51(4), 325–346 (1996).
[Crossref]

Colombo, C.

Comelli, D.

D. Comelli, C. D’Andrea, G. Valentini, R. Cubeddu, C. Colombo, and L. Toniolo, “Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art,” Appl. Opt. 43(10), 2175–2183 (2004).
[Crossref] [PubMed]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002).
[Crossref]

Conyard, J.

J. Conyard, K. Addison, I. A. Heisler, A. Cnossen, W. R. Browne, B. L. Feringa, and S. R. Meech, “Ultrafast dynamics in the power stroke of a molecular rotary motor,” Nat. Chem. 4(7), 547–551 (2012).
[Crossref] [PubMed]

Cova, S.

Cubeddu, R.

D. Comelli, C. D’Andrea, G. Valentini, R. Cubeddu, C. Colombo, and L. Toniolo, “Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art,” Appl. Opt. 43(10), 2175–2183 (2004).
[Crossref] [PubMed]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002).
[Crossref]

D’Andrea, C.

De Re, E.

M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. Niyogi, “Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii,” J. Biol. Chem. 291(14), 7334–7346 (2016).
[Crossref] [PubMed]

Dekker, J. P.

B. Gobets, I. H. M. van Stokkum, M. Rögner, J. Kruip, E. Schlodder, N. V. Karapetyan, J. P. Dekker, and R. van Grondelle, “Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model,” Biophys. J. 81(1), 407–424 (2001).
[Crossref] [PubMed]

Elrad, D.

G. Peers, T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. Niyogi, “An ancient light-harvesting protein is critical for the regulation of algal photosynthesis,” Nature 462(7272), 518–521 (2009).
[Crossref] [PubMed]

Engelsen, S. B.

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

Erickson, E.

M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. Niyogi, “Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii,” J. Biol. Chem. 291(14), 7334–7346 (2016).
[Crossref] [PubMed]

Ernsting, N. P.

X. X. Zhang, C. Würth, L. Zhao, U. Resch-Genger, N. P. Ernsting, and M. Sajadi, “Femtosecond Broadband Fluorescence Upconversion Spectroscopy: Improved Setup and Photometric Correction,” Rev. Sci. Instrum. 82(6), 063108 (2011).
[Crossref] [PubMed]

Feringa, B. L.

J. Conyard, K. Addison, I. A. Heisler, A. Cnossen, W. R. Browne, B. L. Feringa, and S. R. Meech, “Ultrafast dynamics in the power stroke of a molecular rotary motor,” Nat. Chem. 4(7), 547–551 (2012).
[Crossref] [PubMed]

Ferrari, A. C.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

Fleming, G. R.

M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. Niyogi, “Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii,” J. Biol. Chem. 291(14), 7334–7346 (2016).
[Crossref] [PubMed]

G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi, “Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii,” PLoS Biol. 9(1), e1000577 (2011).
[Crossref] [PubMed]

Gallaher, J. K.

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient Grating Photoluminescence Spectroscopy: An Ultrafast Method of Gating Broadband Spectra,” J. Phys. Chem. Lett. 5(10), 1732–1737 (2014).
[Crossref] [PubMed]

Ghioni, M.

Gilch, P.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A Broadband Kerr Shutter for Femtosecond Fluorescence Spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

Gobets, B.

B. Gobets, I. H. M. van Stokkum, M. Rögner, J. Kruip, E. Schlodder, N. V. Karapetyan, J. P. Dekker, and R. van Grondelle, “Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model,” Biophys. J. 81(1), 407–424 (2001).
[Crossref] [PubMed]

Grossman, A. R.

G. Peers, T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. Niyogi, “An ancient light-harvesting protein is critical for the regulation of algal photosynthesis,” Nature 462(7272), 518–521 (2009).
[Crossref] [PubMed]

Hauer, J.

Heisler, I. A.

J. Conyard, K. Addison, I. A. Heisler, A. Cnossen, W. R. Browne, B. L. Feringa, and S. R. Meech, “Ultrafast dynamics in the power stroke of a molecular rotary motor,” Nat. Chem. 4(7), 547–551 (2012).
[Crossref] [PubMed]

Hippler, M.

G. Peers, T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. Niyogi, “An ancient light-harvesting protein is critical for the regulation of algal photosynthesis,” Nature 462(7272), 518–521 (2009).
[Crossref] [PubMed]

Hodgkiss, J. M.

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient Grating Photoluminescence Spectroscopy: An Ultrafast Method of Gating Broadband Spectra,” J. Phys. Chem. Lett. 5(10), 1732–1737 (2014).
[Crossref] [PubMed]

Kambhampati, P.

J. Mooney and P. Kambhampati, “Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra,” J. Phys. Chem. Lett. 4(19), 3316–3318 (2013).
[Crossref] [PubMed]

Karapetyan, N. V.

B. Gobets, I. H. M. van Stokkum, M. Rögner, J. Kruip, E. Schlodder, N. V. Karapetyan, J. P. Dekker, and R. van Grondelle, “Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model,” Biophys. J. 81(1), 407–424 (2001).
[Crossref] [PubMed]

Kruip, J.

B. Gobets, I. H. M. van Stokkum, M. Rögner, J. Kruip, E. Schlodder, N. V. Karapetyan, J. P. Dekker, and R. van Grondelle, “Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model,” Biophys. J. 81(1), 407–424 (2001).
[Crossref] [PubMed]

Lacaita, A.

Laimgruber, S.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A Broadband Kerr Shutter for Femtosecond Fluorescence Spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

Larsen, D. S.

I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophysica Acta (BBA) - Bioenergetics 1657(2), 82–104 (2004).
[Crossref]

Lednev, I. K.

K. Virkler and I. K. Lednev, “Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene,” Forensic Sci. Int. 188(1-3), 1–17 (2009).
[Crossref] [PubMed]

Lombardi, L.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

Maiuri, M.

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Manzoni, C.

Meech, S. R.

J. Conyard, K. Addison, I. A. Heisler, A. Cnossen, W. R. Browne, B. L. Feringa, and S. R. Meech, “Ultrafast dynamics in the power stroke of a molecular rotary motor,” Nat. Chem. 4(7), 547–551 (2012).
[Crossref] [PubMed]

Mooney, J.

J. Mooney and P. Kambhampati, “Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra,” J. Phys. Chem. Lett. 4(19), 3316–3318 (2013).
[Crossref] [PubMed]

Morosinotto, T.

G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi, “Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii,” PLoS Biol. 9(1), e1000577 (2011).
[Crossref] [PubMed]

Niyogi, K. K.

M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. Niyogi, “Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii,” J. Biol. Chem. 291(14), 7334–7346 (2016).
[Crossref] [PubMed]

G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi, “Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii,” PLoS Biol. 9(1), e1000577 (2011).
[Crossref] [PubMed]

G. Peers, T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. Niyogi, “An ancient light-harvesting protein is critical for the regulation of algal photosynthesis,” Nature 462(7272), 518–521 (2009).
[Crossref] [PubMed]

Nørgaard, L.

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

Oriana, A.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Ostendorf, E.

G. Peers, T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. Niyogi, “An ancient light-harvesting protein is critical for the regulation of algal photosynthesis,” Nature 462(7272), 518–521 (2009).
[Crossref] [PubMed]

Peers, G.

G. Peers, T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. Niyogi, “An ancient light-harvesting protein is critical for the regulation of algal photosynthesis,” Nature 462(7272), 518–521 (2009).
[Crossref] [PubMed]

Perri, A.

Polli, D.

Preda, F.

Réhault, J.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

Resch-Genger, U.

X. X. Zhang, C. Würth, L. Zhao, U. Resch-Genger, N. P. Ernsting, and M. Sajadi, “Femtosecond Broadband Fluorescence Upconversion Spectroscopy: Improved Setup and Photometric Correction,” Rev. Sci. Instrum. 82(6), 063108 (2011).
[Crossref] [PubMed]

Rögner, M.

B. Gobets, I. H. M. van Stokkum, M. Rögner, J. Kruip, E. Schlodder, N. V. Karapetyan, J. P. Dekker, and R. van Grondelle, “Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model,” Biophys. J. 81(1), 407–424 (2001).
[Crossref] [PubMed]

Sajadi, M.

X. X. Zhang, C. Würth, L. Zhao, U. Resch-Genger, N. P. Ernsting, and M. Sajadi, “Femtosecond Broadband Fluorescence Upconversion Spectroscopy: Improved Setup and Photometric Correction,” Rev. Sci. Instrum. 82(6), 063108 (2011).
[Crossref] [PubMed]

Samori, C.

Schlodder, E.

B. Gobets, I. H. M. van Stokkum, M. Rögner, J. Kruip, E. Schlodder, N. V. Karapetyan, J. P. Dekker, and R. van Grondelle, “Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model,” Biophys. J. 81(1), 407–424 (2001).
[Crossref] [PubMed]

Schmidt, B.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A Broadband Kerr Shutter for Femtosecond Fluorescence Spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

Shah, J.

J. Shah, “Ultrafast luminescence spectroscopy using sum frequency generation,” IEEE J. Quantum Electron. 24(2), 276–288 (1988).
[Crossref]

Shapiro, S. L.

A. J. Campillo and S. L. Shapiro, “Picosecond streak camera fluorometry - A review,” IEEE J. Quantum Electron. 19(4), 585–603 (1983).
[Crossref]

Star, W. M.

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
[Crossref] [PubMed]

Stella, G. R.

M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. Niyogi, “Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii,” J. Biol. Chem. 291(14), 7334–7346 (2016).
[Crossref] [PubMed]

Taroni, P.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002).
[Crossref]

Thyrhaug, E.

Toniolo, L.

Truong, T. B.

M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. Niyogi, “Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii,” J. Biol. Chem. 291(14), 7334–7346 (2016).
[Crossref] [PubMed]

G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi, “Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii,” PLoS Biol. 9(1), e1000577 (2011).
[Crossref] [PubMed]

G. Peers, T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. Niyogi, “An ancient light-harvesting protein is critical for the regulation of algal photosynthesis,” Nature 462(7272), 518–521 (2009).
[Crossref] [PubMed]

Valentini, G.

D. Comelli, C. D’Andrea, G. Valentini, R. Cubeddu, C. Colombo, and L. Toniolo, “Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art,” Appl. Opt. 43(10), 2175–2183 (2004).
[Crossref] [PubMed]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002).
[Crossref]

van Grondelle, R.

I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophysica Acta (BBA) - Bioenergetics 1657(2), 82–104 (2004).
[Crossref]

B. Gobets, I. H. M. van Stokkum, M. Rögner, J. Kruip, E. Schlodder, N. V. Karapetyan, J. P. Dekker, and R. van Grondelle, “Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model,” Biophys. J. 81(1), 407–424 (2001).
[Crossref] [PubMed]

van Stokkum, I. H. M.

I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophysica Acta (BBA) - Bioenergetics 1657(2), 82–104 (2004).
[Crossref]

B. Gobets, I. H. M. van Stokkum, M. Rögner, J. Kruip, E. Schlodder, N. V. Karapetyan, J. P. Dekker, and R. van Grondelle, “Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model,” Biophys. J. 81(1), 407–424 (2001).
[Crossref] [PubMed]

Virkler, K.

K. Virkler and I. K. Lednev, “Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene,” Forensic Sci. Int. 188(1-3), 1–17 (2009).
[Crossref] [PubMed]

Wagnières, G. A.

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
[Crossref] [PubMed]

Wilson, B. C.

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
[Crossref] [PubMed]

Würth, C.

X. X. Zhang, C. Würth, L. Zhao, U. Resch-Genger, N. P. Ernsting, and M. Sajadi, “Femtosecond Broadband Fluorescence Upconversion Spectroscopy: Improved Setup and Photometric Correction,” Rev. Sci. Instrum. 82(6), 063108 (2011).
[Crossref] [PubMed]

Zappa, F.

Zhang, X. X.

X. X. Zhang, C. Würth, L. Zhao, U. Resch-Genger, N. P. Ernsting, and M. Sajadi, “Femtosecond Broadband Fluorescence Upconversion Spectroscopy: Improved Setup and Photometric Correction,” Rev. Sci. Instrum. 82(6), 063108 (2011).
[Crossref] [PubMed]

Zhao, L.

X. X. Zhang, C. Würth, L. Zhao, U. Resch-Genger, N. P. Ernsting, and M. Sajadi, “Femtosecond Broadband Fluorescence Upconversion Spectroscopy: Improved Setup and Photometric Correction,” Rev. Sci. Instrum. 82(6), 063108 (2011).
[Crossref] [PubMed]

Zinth, W.

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A Broadband Kerr Shutter for Femtosecond Fluorescence Spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

B. Schmidt, S. Laimgruber, W. Zinth, and P. Gilch, “A Broadband Kerr Shutter for Femtosecond Fluorescence Spectroscopy,” Appl. Phys. B 76(8), 809–814 (2003).
[Crossref]

Biochimica et Biophysica Acta (BBA) - Bioenergetics (1)

I. H. M. van Stokkum, D. S. Larsen, and R. van Grondelle, “Global and target analysis of time-resolved spectra,” Biochimica et Biophysica Acta (BBA) - Bioenergetics 1657(2), 82–104 (2004).
[Crossref]

Biophys. J. (1)

B. Gobets, I. H. M. van Stokkum, M. Rögner, J. Kruip, E. Schlodder, N. V. Karapetyan, J. P. Dekker, and R. van Grondelle, “Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: A unified compartmental model,” Biophys. J. 81(1), 407–424 (2001).
[Crossref] [PubMed]

Chem. Rev. (1)

J. Christensen, L. Nørgaard, R. Bro, and S. B. Engelsen, “Multivariate autofluorescence of intact food systems,” Chem. Rev. 106(6), 1979–1994 (2006).
[Crossref] [PubMed]

Forensic Sci. Int. (1)

K. Virkler and I. K. Lednev, “Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene,” Forensic Sci. Int. 188(1-3), 1–17 (2009).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (2)

J. Shah, “Ultrafast luminescence spectroscopy using sum frequency generation,” IEEE J. Quantum Electron. 24(2), 276–288 (1988).
[Crossref]

A. J. Campillo and S. L. Shapiro, “Picosecond streak camera fluorometry - A review,” IEEE J. Quantum Electron. 19(4), 585–603 (1983).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

J. Biol. Chem. (1)

M. Ballottari, T. B. Truong, E. De Re, E. Erickson, G. R. Stella, G. R. Fleming, R. Bassi, and K. K. Niyogi, “Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii,” J. Biol. Chem. 291(14), 7334–7346 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Lett. (2)

J. Mooney and P. Kambhampati, “Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra,” J. Phys. Chem. Lett. 4(19), 3316–3318 (2013).
[Crossref] [PubMed]

K. Chen, J. K. Gallaher, A. J. Barker, and J. M. Hodgkiss, “Transient Grating Photoluminescence Spectroscopy: An Ultrafast Method of Gating Broadband Spectra,” J. Phys. Chem. Lett. 5(10), 1732–1737 (2014).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D Appl. Phys. 35(9), R61–R76 (2002).
[Crossref]

Mar. Chem. (1)

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51(4), 325–346 (1996).
[Crossref]

Microsc. Res. Tech. (1)

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[Crossref] [PubMed]

Nat. Chem. (1)

J. Conyard, K. Addison, I. A. Heisler, A. Cnossen, W. R. Browne, B. L. Feringa, and S. R. Meech, “Ultrafast dynamics in the power stroke of a molecular rotary motor,” Nat. Chem. 4(7), 547–551 (2012).
[Crossref] [PubMed]

Nature (1)

G. Peers, T. B. Truong, E. Ostendorf, A. Busch, D. Elrad, A. R. Grossman, M. Hippler, and K. K. Niyogi, “An ancient light-harvesting protein is critical for the regulation of algal photosynthesis,” Nature 462(7272), 518–521 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Photochem. Photobiol. (1)

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications,” Photochem. Photobiol. 68(5), 603–632 (1998).
[Crossref] [PubMed]

PLoS Biol. (1)

G. Bonente, M. Ballottari, T. B. Truong, T. Morosinotto, T. K. Ahn, G. R. Fleming, K. K. Niyogi, and R. Bassi, “Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii,” PLoS Biol. 9(1), e1000577 (2011).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

J. Réhault, M. Maiuri, A. Oriana, and G. Cerullo, “Two-dimensional electronic spectroscopy with birefringent wedges,” Rev. Sci. Instrum. 85(12), 123107 (2014).
[Crossref] [PubMed]

X. X. Zhang, C. Würth, L. Zhao, U. Resch-Genger, N. P. Ernsting, and M. Sajadi, “Femtosecond Broadband Fluorescence Upconversion Spectroscopy: Improved Setup and Photometric Correction,” Rev. Sci. Instrum. 82(6), 063108 (2011).
[Crossref] [PubMed]

Other (9)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science & Business Media, 2007).

C. Klingshirn, Semiconductor Optics (Springer, 1995).

J. L. McHale, Molecular Spectroscopy (Prentice-Hall, 1999).

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic, 2001).

D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, 1984).

W. Becker, Advanced time-correlated single photon counting techniques (Springer Series in Chemical Physics, Springer-Verlag, 2005).

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (J. Wiley & Sons, Inc., 2007).

M. Françon and S. Mallick, Polarization interferometers: applications in microscopy and macroscopy, (Wiley-Interscience, 1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Sketch of the experimental setup. Lens 1 focuses the narrowband excitation light onto the sample. Lens 2 images the emitted fluorescence (with low spatial coherence, as depicted by distorted wavefronts) on the small aperture of a pinhole, enhancing its spatial coherence. A SPAD measures the temporal dynamics of the fluorescence as a function of the position x of the TWINS interferometer. An FT of this signal with respect to x provides two-dimensional time-resolved fluorescence spectra. Yellow arrow and dots indicate the orientation of the optical axes of the birefringent crystals.
Fig. 2
Fig. 2 Time- and wavelength-resolved fluorescence signal of Rhodamine B dye in acetone solution. (a) 2D fluorescence map as a function of emission time and wedge position x of the interferometer. (b) In solid blue, the fluorescence interferogram as a function of x, obtained by integrating the map in (a) along the temporal axis. The orange circles indicate the undersampled interferogram composed of 40 data points. (c) Fluorescence as a function of detection wavelength and emission time, where the former is obtained by FT of (a). (d,e) Marginals of (c), obtained by integrating the map along the horizontal and vertical directions, respectively, showing the overall fluorescence spectrum and decay dynamics. The orange dashed and the blue solid curves are related to the complete and to the underdamped data set, respectively, and they agree very well.
Fig. 3
Fig. 3 Fluorescence maps FL(λ,T) as a function of detection wavelength λ and emission time T for a mixture of Rhodamine B and Nile Red in acetone solution, acquired with (a) a single-pixel SPAD detector and the TWINS birefringent interferometer and (b) an L16 spectrometer equipped with a multi-channel array of 16 photomultipliers. (c) Semi-log plots of fluorescence decay traces at ≈575 nm (blue curves) and ≈675 nm (red curves) for the TWINS (solid curve) and L16 (dashed curve). (d) Comparison of the integrated fluorescence spectra for the TWINS (gray area) and L16 (open circles) together with the integrated spectra of the two fluorophores computed from the correspondent DAS and lifetimes (scaled to fit the integrated fluorescence spectrum).
Fig. 4
Fig. 4 (a) Fluorescence map FL(λ,T) as a function of wavelength λ and decay time T for the LHCSR3 complex from C. reinhardtii; (b-c) Marginals of (a), obtained by integrating the map along the horizontal and vertical directions, respectively, showing the overall fluorescence spectrum and decay dynamics.

Metrics