Abstract

Integrating an absorbing thin film into a resonant cavity is the most practical way to achieve perfect absorption of light at a selected wavelength in the mid-to-far infrared, as required to target blackbody radiation or molecular fingerprints. The cavity is designed to resonate and enable perfect absorption in the film at the chosen wavelength λ. However, in current state-of-the-art designs, a still large absorbing film thickness (∼λ/50) is needed and tuning the perfect absorption wavelength over a broad range requires changing the cavity materials. Here, we introduce a new resonant cavity concept to achieve perfect absorption of infrared light in much thinner and thus, really nanoscale films, with a broad wavelength tenability by using a single set of cavity materials. It requires a nanofilm with giant refractive index and small extinction coefficient (found in emerging semi-metals, semi-conductors and topological insulators) backed by a transparent spacer and a metal mirror. The nanofilm acts both as absorber and multiple reflector for the internal cavity waves, which after escaping follow a fractal phasor trajectory. This enables a totally destructive optical interference for a nanofilm thickness more than 2 orders of magnitude smaller than λ. With this remarkable effect, we demonstrate angle-insensitive perfect absorption in sub - λ/100 bismuth nanofilms, at a wavelength tunable from 3 to 20 μm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Lithography-free thin-titanium-nanocone metamaterial perfect absorbers using ZnO nanostructures

Albert Lin, Parag Parashar, Chih-Chieh Yang, Ding Rung Jian, Wei-Ming Huang, Yi-Wen Huang, and Tseung-Yuen Tseng
Opt. Mater. Express 7(10) 3608-3617 (2017)

Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies

Jie Xu, Ziyi Zhao, Haochi Yu, Le Yang, Peng Gou, Jun Cao, Yuexin Zou, Jie Qian, Tianjun Shi, Qijun Ren, and Zhenghua An
Opt. Express 24(22) 25742-25751 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
    [Crossref]
  2. A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
    [Crossref] [PubMed]
  3. J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
    [Crossref] [PubMed]
  4. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  5. H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
    [Crossref] [PubMed]
  6. J. K. Pradhan, S. Anantha Ramakrishna, B. Rajeswaran, A. M. Umarji, V. G. Achanta, A. K. Agarwal, and A. Ghosh, “High contrast switchability of VO2 based metamaterial absorbers with ITO ground plane,” Opt. Express 25(8), 9116–9121 (2017).
    [Crossref] [PubMed]
  7. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
    [Crossref] [PubMed]
  8. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
    [Crossref] [PubMed]
  9. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [Crossref]
  10. A. M. Shaltout, J. Kim, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Ultrathin and multicolour optical cavities with embedded metasurfaces,” Nat. Commun. 9(1), 2673 (2018).
    [Crossref] [PubMed]
  11. S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
    [Crossref] [PubMed]
  12. S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
    [Crossref] [PubMed]
  13. Y.-C. Chang, A. V. Kildishev, E. E. Narimanov, and T. B. Norris, “Metasurface perfect absorber based on guided resonance of a photonic hypercrystal,” Phys. Rev. B 94(15), 155430 (2016).
    [Crossref]
  14. X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
    [Crossref] [PubMed]
  15. Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
    [Crossref]
  16. W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide band gap phase change tuned visible photonics,” arXiv:1808.06459 (2018).
  17. K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), e1706696 (2018).
    [Crossref] [PubMed]
  18. H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
    [Crossref] [PubMed]
  19. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
    [Crossref] [PubMed]
  20. C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5(20), 1700368 (2017).
    [Crossref]
  21. M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
    [Crossref]
  22. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  23. J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
    [Crossref]
  24. J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
    [Crossref] [PubMed]
  25. W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
    [Crossref] [PubMed]
  26. G. Baraldi, M. García Pardo, J. Gonzalo, R. Serna, and J. Toudert, “Self-assembled nanostructured photonic-plasmonic metasurfaces for high-resolution optical thermometry,” Adv. Mater. Interfaces 5(12), 1800241 (2018).
    [Crossref]
  27. K. V. Sreekanth, S. Sreejith, S. Han, A. Mishra, X. Chen, H. Sun, C. T. Lim, and R. Singh, “Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity,” Nat. Commun. 9(1), 369 (2018).
    [Crossref] [PubMed]
  28. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235137 (2015).
    [Crossref]
  29. J. Toudert and R. Serna, “Interband transitions in semi-metals, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics,” Opt. Mater. Express 7(7), 2299–2325 (2017).
    [Crossref]
  30. J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
    [Crossref]
  31. M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
    [Crossref] [PubMed]
  32. T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17(6), 3940–3945 (2017).
    [Crossref] [PubMed]
  33. L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
    [Crossref] [PubMed]
  34. J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
    [Crossref]
  35. G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sens. 1(12), 1403–1407 (2016).
    [Crossref]
  36. J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5(1), 5139 (2014).
    [Crossref] [PubMed]
  37. W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
    [Crossref] [PubMed]
  38. J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. Chong, N. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” NPG Asia Mater. 9(8), e425 (2017).
    [Crossref]
  39. D. Piccinotti, B. Gholipour, J. Yao, K. F. Macdonald, B. E. Hayden, and N. I. Zheludev, “Compositionally controlled plasmonics in amorphous semiconductor metasurfaces,” Opt. Express 26(16), 20861–20867 (2018).
    [Crossref] [PubMed]
  40. K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic materials, structures and devices for Reststrahlen optics,” Opt. Express 23(24), A1418–A1433 (2015).
    [Crossref] [PubMed]
  41. L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films,” Appl. Phys. Lett. 111(9), 091105 (2017).
    [Crossref]
  42. X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
    [Crossref]
  43. J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
    [Crossref]
  44. S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayers stacks,” Sci. Rep. 7(1), 14872 (2017).
    [Crossref] [PubMed]
  45. H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5(1), 8157 (2015).
    [Crossref] [PubMed]

2018 (6)

A. M. Shaltout, J. Kim, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Ultrathin and multicolour optical cavities with embedded metasurfaces,” Nat. Commun. 9(1), 2673 (2018).
[Crossref] [PubMed]

K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), e1706696 (2018).
[Crossref] [PubMed]

G. Baraldi, M. García Pardo, J. Gonzalo, R. Serna, and J. Toudert, “Self-assembled nanostructured photonic-plasmonic metasurfaces for high-resolution optical thermometry,” Adv. Mater. Interfaces 5(12), 1800241 (2018).
[Crossref]

K. V. Sreekanth, S. Sreejith, S. Han, A. Mishra, X. Chen, H. Sun, C. T. Lim, and R. Singh, “Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity,” Nat. Commun. 9(1), 369 (2018).
[Crossref] [PubMed]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

D. Piccinotti, B. Gholipour, J. Yao, K. F. Macdonald, B. E. Hayden, and N. I. Zheludev, “Compositionally controlled plasmonics in amorphous semiconductor metasurfaces,” Opt. Express 26(16), 20861–20867 (2018).
[Crossref] [PubMed]

2017 (12)

J. K. Pradhan, S. Anantha Ramakrishna, B. Rajeswaran, A. M. Umarji, V. G. Achanta, A. K. Agarwal, and A. Ghosh, “High contrast switchability of VO2 based metamaterial absorbers with ITO ground plane,” Opt. Express 25(8), 9116–9121 (2017).
[Crossref] [PubMed]

J. Toudert and R. Serna, “Interband transitions in semi-metals, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics,” Opt. Mater. Express 7(7), 2299–2325 (2017).
[Crossref]

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17(6), 3940–3945 (2017).
[Crossref] [PubMed]

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. Chong, N. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” NPG Asia Mater. 9(8), e425 (2017).
[Crossref]

L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films,” Appl. Phys. Lett. 111(9), 091105 (2017).
[Crossref]

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayers stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5(20), 1700368 (2017).
[Crossref]

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

2016 (4)

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

Y.-C. Chang, A. V. Kildishev, E. E. Narimanov, and T. B. Norris, “Metasurface perfect absorber based on guided resonance of a photonic hypercrystal,” Phys. Rev. B 94(15), 155430 (2016).
[Crossref]

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sens. 1(12), 1403–1407 (2016).
[Crossref]

2015 (7)

K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic materials, structures and devices for Reststrahlen optics,” Opt. Express 23(24), A1418–A1433 (2015).
[Crossref] [PubMed]

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235137 (2015).
[Crossref]

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5(1), 8157 (2015).
[Crossref] [PubMed]

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref] [PubMed]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

2014 (5)

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5(1), 5139 (2014).
[Crossref] [PubMed]

2013 (5)

W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
[Crossref] [PubMed]

J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
[Crossref] [PubMed]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

2012 (2)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

2011 (3)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Abedini Dereshgi, S.

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayers stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

Achanta, V. G.

Adamo, G.

J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. Chong, N. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” NPG Asia Mater. 9(8), e425 (2017).
[Crossref]

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5(1), 5139 (2014).
[Crossref] [PubMed]

Agarwal, A. K.

An, S.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Anantha Ramakrishna, S.

Atwater, H. A.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Ayas, S.

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sens. 1(12), 1403–1407 (2016).
[Crossref]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref] [PubMed]

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5(1), 8157 (2015).
[Crossref] [PubMed]

Bakan, G.

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sens. 1(12), 1403–1407 (2016).
[Crossref]

Bao, Q.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Baraldi, G.

G. Baraldi, M. García Pardo, J. Gonzalo, R. Serna, and J. Toudert, “Self-assembled nanostructured photonic-plasmonic metasurfaces for high-resolution optical thermometry,” Adv. Mater. Interfaces 5(12), 1800241 (2018).
[Crossref]

Basov, D. N.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Boltasseva, A.

A. M. Shaltout, J. Kim, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Ultrathin and multicolour optical cavities with embedded metasurfaces,” Nat. Commun. 9(1), 2673 (2018).
[Crossref] [PubMed]

Boreman, G. D.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235137 (2015).
[Crossref]

Bosman, M.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Brar, V. W.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Butakov, N. A.

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17(6), 3940–3945 (2017).
[Crossref] [PubMed]

Butun, B.

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayers stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

Butun, S.

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5(1), 8157 (2015).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref] [PubMed]

Camps, I.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Capasso, F.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Celebi, K.

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sens. 1(12), 1403–1407 (2016).
[Crossref]

Chang, Y.-C.

Y.-C. Chang, A. V. Kildishev, E. E. Narimanov, and T. B. Norris, “Metasurface perfect absorber based on guided resonance of a photonic hypercrystal,” Phys. Rev. B 94(15), 155430 (2016).
[Crossref]

Chen, X.

K. V. Sreekanth, S. Sreejith, S. Han, A. Mishra, X. Chen, H. Sun, C. T. Lim, and R. Singh, “Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity,” Nat. Commun. 9(1), 369 (2018).
[Crossref] [PubMed]

Chong, Y.

J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. Chong, N. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” NPG Asia Mater. 9(8), e425 (2017).
[Crossref]

Cleary, J. W.

Cui, L.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

D’Archangel, J.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235137 (2015).
[Crossref]

Dai, X.

Dana, A.

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sens. 1(12), 1403–1407 (2016).
[Crossref]

Davoyan, A. R.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Deng, L.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Ding, J.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Dominguez, O.

L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films,” Appl. Phys. Lett. 111(9), 091105 (2017).
[Crossref]

Du, Q.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Dubrovkin, A. M.

J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. Chong, N. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” NPG Asia Mater. 9(8), e425 (2017).
[Crossref]

Evans, H. A.

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17(6), 3940–3945 (2017).
[Crossref] [PubMed]

Ezquerra, T. A.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Fang, Z.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films,” Appl. Phys. Lett. 111(9), 091105 (2017).
[Crossref]

Feng, K.

L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films,” Appl. Phys. Lett. 111(9), 091105 (2017).
[Crossref]

K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic materials, structures and devices for Reststrahlen optics,” Opt. Express 23(24), A1418–A1433 (2015).
[Crossref] [PubMed]

Fu, D.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref] [PubMed]

Gan, Q.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Gao, N.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

García Pardo, M.

G. Baraldi, M. García Pardo, J. Gonzalo, R. Serna, and J. Toudert, “Self-assembled nanostructured photonic-plasmonic metasurfaces for high-resolution optical thermometry,” Adv. Mater. Interfaces 5(12), 1800241 (2018).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Ghobadi, A.

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayers stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

Gholipour, B.

D. Piccinotti, B. Gholipour, J. Yao, K. F. Macdonald, B. E. Hayden, and N. I. Zheludev, “Compositionally controlled plasmonics in amorphous semiconductor metasurfaces,” Opt. Express 26(16), 20861–20867 (2018).
[Crossref] [PubMed]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Ghosh, A.

Giessen, H.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Gonzalo, J.

G. Baraldi, M. García Pardo, J. Gonzalo, R. Serna, and J. Toudert, “Self-assembled nanostructured photonic-plasmonic metasurfaces for high-resolution optical thermometry,” Adv. Mater. Interfaces 5(12), 1800241 (2018).
[Crossref]

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

Gu, T.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Guo, J.

Guo, L.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Guo, L. J.

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5(20), 1700368 (2017).
[Crossref]

Hahn, J. W.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Hajian, H.

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayers stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

Han, K.

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Han, S.

K. V. Sreekanth, S. Sreejith, S. Han, A. Mishra, X. Chen, H. Sun, C. T. Lim, and R. Singh, “Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity,” Nat. Commun. 9(1), 369 (2018).
[Crossref] [PubMed]

K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), e1706696 (2018).
[Crossref] [PubMed]

Hayden, B. E.

He, K.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Hendrickson, J. R.

Hoffman, A. J.

L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films,” Appl. Phys. Lett. 111(9), 091105 (2017).
[Crossref]

K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic materials, structures and devices for Reststrahlen optics,” Opt. Express 23(24), A1418–A1433 (2015).
[Crossref] [PubMed]

Hu, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Hu, J.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Jacobs, T.

Ji, C.

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5(20), 1700368 (2017).
[Crossref]

Ji, D.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Jiang, S.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Jiang, X.

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Jiménez de Castro, M.

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Kats, M. A.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Kildishev, A. V.

A. M. Shaltout, J. Kim, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Ultrathin and multicolour optical cavities with embedded metasurfaces,” Nat. Commun. 9(1), 2673 (2018).
[Crossref] [PubMed]

Y.-C. Chang, A. V. Kildishev, E. E. Narimanov, and T. B. Norris, “Metasurface perfect absorber based on guided resonance of a photonic hypercrystal,” Phys. Rev. B 94(15), 155430 (2016).
[Crossref]

Kilpatrick, T.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Kim, J.

A. M. Shaltout, J. Kim, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Ultrathin and multicolour optical cavities with embedded metasurfaces,” Nat. Commun. 9(1), 2673 (2018).
[Crossref] [PubMed]

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

Kocer, H.

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5(1), 8157 (2015).
[Crossref] [PubMed]

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref] [PubMed]

Kong, J.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Krishnamoorthy, H. N. S.

J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. Chong, N. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” NPG Asia Mater. 9(8), e425 (2017).
[Crossref]

Law, S.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
[Crossref] [PubMed]

Lee, K. T.

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5(20), 1700368 (2017).
[Crossref]

Lewi, T.

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17(6), 3940–3945 (2017).
[Crossref] [PubMed]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5(1), 8157 (2015).
[Crossref] [PubMed]

Lim, C. T.

K. V. Sreekanth, S. Sreejith, S. Han, A. Mishra, X. Chen, H. Sun, C. T. Lim, and R. Singh, “Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity,” Nat. Commun. 9(1), 369 (2018).
[Crossref] [PubMed]

Lin, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Liu, K.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Liu, Z.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref] [PubMed]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Loh, K. P.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Macdonald, K. F.

Mascher, P.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Maukonen, D.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Michel, A.-K. U.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Michon, J.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Mishra, A.

K. V. Sreekanth, S. Sreejith, S. Han, A. Mishra, X. Chen, H. Sun, C. T. Lim, and R. Singh, “Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity,” Nat. Commun. 9(1), 369 (2018).
[Crossref] [PubMed]

Morea, R.

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

Narimanov, E. E.

Y.-C. Chang, A. V. Kildishev, E. E. Narimanov, and T. B. Norris, “Metasurface perfect absorber based on guided resonance of a photonic hypercrystal,” Phys. Rev. B 94(15), 155430 (2016).
[Crossref]

Nath, J.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

Neubrech, F.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Nordin, L.

L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films,” Appl. Phys. Lett. 111(9), 091105 (2017).
[Crossref]

Norris, T. B.

Y.-C. Chang, A. V. Kildishev, E. E. Narimanov, and T. B. Norris, “Metasurface perfect absorber based on guided resonance of a photonic hypercrystal,” Phys. Rev. B 94(15), 155430 (2016).
[Crossref]

Ou, J. Y.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5(1), 5139 (2014).
[Crossref] [PubMed]

Ou, Y.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Ozbay, E.

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayers stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

Ozgur, E.

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sens. 1(12), 1403–1407 (2016).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Palacios, E.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref] [PubMed]

Palpant, B.

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

Park, H. J.

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5(20), 1700368 (2017).
[Crossref]

Peale, R. E.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

Peng, B.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Piccinotti, D.

Podolskiy, V.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Podolskiy, V. A.

L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films,” Appl. Phys. Lett. 111(9), 091105 (2017).
[Crossref]

Pradhan, J. K.

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Qiu, C. W.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Rajeswaran, B.

Ramanathan, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Raschke, M. B.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235137 (2015).
[Crossref]

Rebollar, E.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Rensberg, J.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Ribaudo, T.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Richter, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Roberts, C.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Roberts, C. M.

L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films,” Appl. Phys. Lett. 111(9), 091105 (2017).
[Crossref]

Ronning, C.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Rooney, G.

Rosenberg, A.

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

Schäferling, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Schmidt-Grund, R.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Schöppe, P.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Schuller, J. A.

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17(6), 3940–3945 (2017).
[Crossref] [PubMed]

Serna, R.

G. Baraldi, M. García Pardo, J. Gonzalo, R. Serna, and J. Toudert, “Self-assembled nanostructured photonic-plasmonic metasurfaces for high-resolution optical thermometry,” Adv. Mater. Interfaces 5(12), 1800241 (2018).
[Crossref]

J. Toudert and R. Serna, “Interband transitions in semi-metals, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics,” Opt. Mater. Express 7(7), 2299–2325 (2017).
[Crossref]

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Shalaev, V. M.

A. M. Shaltout, J. Kim, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Ultrathin and multicolour optical cavities with embedded metasurfaces,” Nat. Commun. 9(1), 2673 (2018).
[Crossref] [PubMed]

Shalaginov, M. Y.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Shaltout, A. M.

A. M. Shaltout, J. Kim, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Ultrathin and multicolour optical cavities with embedded metasurfaces,” Nat. Commun. 9(1), 2673 (2018).
[Crossref] [PubMed]

Shaner, E. A.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Shao, Y.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Singh, R.

K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), e1706696 (2018).
[Crossref] [PubMed]

K. V. Sreekanth, S. Sreejith, S. Han, A. Mishra, X. Chen, H. Sun, C. T. Lim, and R. Singh, “Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity,” Nat. Commun. 9(1), 369 (2018).
[Crossref] [PubMed]

Smith, E.

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

So, J. K.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5(1), 5139 (2014).
[Crossref] [PubMed]

Soci, C.

J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. Chong, N. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” NPG Asia Mater. 9(8), e425 (2017).
[Crossref]

Song, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Song, P.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Soref, R.

Sreejith, S.

K. V. Sreekanth, S. Sreejith, S. Han, A. Mishra, X. Chen, H. Sun, C. T. Lim, and R. Singh, “Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity,” Nat. Commun. 9(1), 369 (2018).
[Crossref] [PubMed]

Sreekanth, K. V.

K. V. Sreekanth, S. Sreejith, S. Han, A. Mishra, X. Chen, H. Sun, C. T. Lim, and R. Singh, “Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity,” Nat. Commun. 9(1), 369 (2018).
[Crossref] [PubMed]

K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), e1706696 (2018).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Streyer, W.

Sulaev, A.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5(1), 5139 (2014).
[Crossref] [PubMed]

Sun, B.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Sun, H.

K. V. Sreekanth, S. Sreejith, S. Han, A. Mishra, X. Chen, H. Sun, C. T. Lim, and R. Singh, “Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity,” Nat. Commun. 9(1), 369 (2018).
[Crossref] [PubMed]

Sundheimer, M. L.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235137 (2015).
[Crossref]

Taubner, T.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Tittl, A.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Tongay, S.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref] [PubMed]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Toudert, J.

G. Baraldi, M. García Pardo, J. Gonzalo, R. Serna, and J. Toudert, “Self-assembled nanostructured photonic-plasmonic metasurfaces for high-resolution optical thermometry,” Adv. Mater. Interfaces 5(12), 1800241 (2018).
[Crossref]

J. Toudert and R. Serna, “Interband transitions in semi-metals, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics,” Opt. Mater. Express 7(7), 2299–2325 (2017).
[Crossref]

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Tucker, E.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235137 (2015).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Umarji, A. M.

Wan, C.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Wang, K.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref] [PubMed]

Wang, L.

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5(1), 5139 (2014).
[Crossref] [PubMed]

Wang, X.

X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photon. Res. 5(6), 536–542 (2017).
[Crossref]

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

Wasserman, D.

L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films,” Appl. Phys. Lett. 111(9), 091105 (2017).
[Crossref]

K. Feng, W. Streyer, Y. Zhong, A. J. Hoffman, and D. Wasserman, “Photonic materials, structures and devices for Reststrahlen optics,” Opt. Express 23(24), A1418–A1433 (2015).
[Crossref] [PubMed]

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
[Crossref] [PubMed]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Whitney, W. S.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Wojcik, J.

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Wu, J.

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref] [PubMed]

Wuttig, M.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Xiang, Y.

Xu, Q.-H.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Xu, T.

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5(20), 1700368 (2017).
[Crossref]

Xue, Q.-K.

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Yang, H. U.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235137 (2015).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Yao, J.

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Yin, G.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Yin, J.

J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. Chong, N. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” NPG Asia Mater. 9(8), e425 (2017).
[Crossref]

Yin, X.

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

You, Q.

Yu, L.

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Zeng, X.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Zhang, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Zhang, J.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Zhang, N.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

Zhang, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Zhang, Y.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Zhao, M.

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

Zheludev, N.

J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. Chong, N. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” NPG Asia Mater. 9(8), e425 (2017).
[Crossref]

Zheludev, N. I.

D. Piccinotti, B. Gholipour, J. Yao, K. F. Macdonald, B. E. Hayden, and N. I. Zheludev, “Compositionally controlled plasmonics in amorphous semiconductor metasurfaces,” Opt. Express 26(16), 20861–20867 (2018).
[Crossref] [PubMed]

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5(1), 5139 (2014).
[Crossref] [PubMed]

Zheng, B.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Zheng, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Zhong, Y.

Zhou, J.

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5(20), 1700368 (2017).
[Crossref]

Zhou, Y.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

ACS Nano (1)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
[Crossref]

ACS Sens. (1)

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sens. 1(12), 1403–1407 (2016).
[Crossref]

Adv. Mater. (4)

M. Zhao, J. Zhang, N. Gao, P. Song, M. Bosman, B. Peng, B. Sun, C. W. Qiu, Q.-H. Xu, Q. Bao, and K. P. Loh, “Actively tunable visible surface plasmons in Bi2Te3 and their energy-harvesting applications,” Adv. Mater. 28(16), 3138–3144 (2016).
[Crossref] [PubMed]

K. V. Sreekanth, S. Han, and R. Singh, “Ge2Sb2Te5-based tunable perfect absorber cavity with phase singularity at visible frequencies,” Adv. Mater. 30(21), e1706696 (2018).
[Crossref] [PubMed]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26(17), 2737–2743 (2014).
[Crossref] [PubMed]

A. Tittl, A.-K. U. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “Switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Adv. Mater. Interfaces (1)

G. Baraldi, M. García Pardo, J. Gonzalo, R. Serna, and J. Toudert, “Self-assembled nanostructured photonic-plasmonic metasurfaces for high-resolution optical thermometry,” Adv. Mater. Interfaces 5(12), 1800241 (2018).
[Crossref]

Adv. Opt. Mater. (1)

C. Ji, K. T. Lee, T. Xu, J. Zhou, H. J. Park, and L. J. Guo, “Engineering light at the nanoscale: structural color filters and broadband perfect absorbers,” Adv. Opt. Mater. 5(20), 1700368 (2017).
[Crossref]

Appl. Phys. Lett. (3)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

L. Nordin, O. Dominguez, C. M. Roberts, W. Streyer, K. Feng, Z. Fang, V. A. Podolskiy, A. J. Hoffman, and D. Wasserman, “Mid-infrared epsilon-near-zero modes in ultra-thin phononic films,” Appl. Phys. Lett. 111(9), 091105 (2017).
[Crossref]

J. Appl. Phys. (1)

J. Nath, E. Smith, D. Maukonen, and R. E. Peale, “Optical Salisbury screen with design-tunable resonant absorption bands,” J. Appl. Phys. 115(19), 193103 (2014).
[Crossref]

J. Phys. Chem. C (2)

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T. A. Ezquerra, “Unveiling the far infrared-to-ultraviolet optical properties of bismuth for applications in plasmonics and nanophotonics,” J. Phys. Chem. C 121(6), 3511–3521 (2017).
[Crossref]

Laser Photonics Rev. (1)

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

Nano Lett. (5)

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17(6), 3940–3945 (2017).
[Crossref] [PubMed]

S. Law, L. Yu, A. Rosenberg, and D. Wasserman, “All-semiconductor plasmonic nanoantennas for infrared sensing,” Nano Lett. 13(9), 4569–4574 (2013).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

W. S. Whitney, V. W. Brar, Y. Ou, Y. Shao, A. R. Davoyan, D. N. Basov, K. He, Q.-K. Xue, and H. A. Atwater, “Gate-Variable Mid-Infrared Optical Transitions in a (Bi1-xSbx)2Te3 Topological Insulator,” Nano Lett. 17(1), 255–260 (2017).
[Crossref] [PubMed]

Nanophotonics (1)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Nat. Commun. (4)

A. M. Shaltout, J. Kim, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, “Ultrathin and multicolour optical cavities with embedded metasurfaces,” Nat. Commun. 9(1), 2673 (2018).
[Crossref] [PubMed]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev, “Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2.,” Nat. Commun. 5(1), 5139 (2014).
[Crossref] [PubMed]

K. V. Sreekanth, S. Sreejith, S. Han, A. Mishra, X. Chen, H. Sun, C. T. Lim, and R. Singh, “Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity,” Nat. Commun. 9(1), 369 (2018).
[Crossref] [PubMed]

Nat. Mater. (1)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

NPG Asia Mater. (1)

J. Yin, H. N. S. Krishnamoorthy, G. Adamo, A. M. Dubrovkin, Y. Chong, N. Zheludev, and C. Soci, “Plasmonics of topological insulators at optical frequencies,” NPG Asia Mater. 9(8), e425 (2017).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. Appl. (1)

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Phys. Rev. B (1)

Y.-C. Chang, A. V. Kildishev, E. E. Narimanov, and T. B. Norris, “Metasurface perfect absorber based on guided resonance of a photonic hypercrystal,” Phys. Rev. B 94(15), 155430 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235137 (2015).
[Crossref]

Phys. Rev. Lett. (2)

S. Law, C. Roberts, T. Kilpatrick, L. Yu, T. Ribaudo, E. A. Shaner, V. Podolskiy, and D. Wasserman, “All-semiconductor negative-index plasmonic absorbers,” Phys. Rev. Lett. 112(1), 017401 (2014).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sci. Rep. (4)

J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref] [PubMed]

H. Kocer, S. Butun, E. Palacios, Z. Liu, S. Tongay, D. Fu, K. Wang, J. Wu, and K. Aydin, “Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films,” Sci. Rep. 5(1), 13384 (2015).
[Crossref] [PubMed]

S. Abedini Dereshgi, A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, “Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayers stacks,” Sci. Rep. 7(1), 14872 (2017).
[Crossref] [PubMed]

H. Kocer, S. Butun, Z. Li, and K. Aydin, “Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities,” Sci. Rep. 5(1), 8157 (2015).
[Crossref] [PubMed]

Other (1)

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. H. Ng, K. V. Sreekanth, X. Zhou, J. K. W. Yang, and R. E. Simpson, “Wide band gap phase change tuned visible photonics,” arXiv:1808.06459 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 “Boosted” Fabry-Pérot resonant cavity for infrared perfect absorption in a λ/50 nanofilm: optical properties and perfect absorption mechanism. (a) Simplified representation of the cavity. It consists of a nanofilm with giant refractive index n, small extinction coefficient k and thickness t backed by a near-perfectly conducting mirror. Here, as example, we take n = 10, t = 100 nm, and the mirror is made of Ag (with n and k from [28]). (b) Simulated reflectance spectrum of the cavity at normal incidence for k = 0.5 (black line) showing perfect absorption at the resonance wavelength λ ∼5 μm (t ∼λ/50), and reflectance loss due to absorption in the film (dashed grey line). (c) Color map of the simulated reflectance spectra for different values of k, showing that perfect absorption is not achieved for larger k. (d) Simplified representation of the wave propagation in the cavity and phasor diagrams at the resonance wavelength λ ∼5 μm, for k = 0.5 and k = 1. The vector r0 accounts for the wave directly reflected at the air/film interface (first reflection) and s is the sum of the vectors accounting for the internal cavity waves escaping after multiple reflections (rj’s). These vectors follow a straight line, typical of a Fabry-Pérot cavity. For k = 0.5, s cancels with r0, this totally destructive interference enables perfect absorption.
Fig. 2
Fig. 2 Fractal phasor resonant cavity for infrared perfect absorption in a sub - λ/100 nanofilm: optical properties and perfect absorption mechanism. (a) Simplified representation of this cavity. It consists of a nanofilm with giant refractive index n, small extinction coefficient k and thickness t, backed by a transparent spacer and a near-perfectly conducting mirror. Here, as example, we take n = 10, k = 1, t = 40 nm, an Al2O3 spacer (with n = 1.65, k = 0), and an Ag mirror. (b) Simulated reflectance spectrum of the cavity at normal incidence (black line) showing perfect absorption at the resonance wavelength λ ∼5 μm (t ∼λ/125), and reflectance loss due to absorption in the film (dashed grey line). At the resonance wavelength, near 100% of the incident power is absorbed in the film. (c) Simplified representation of the wave propagation in the cavity and phasor diagram at the resonance wavelength λ ∼5 μm. The vector r0 accounts for the first reflection and s is the sum of the vectors accounting for the internal cavity waves escaping after multiple reflections (rj’s). These vectors rj’s follow a fractal trajectory. This fractal trajectory yields a s vector that cancels with r0, enabling totally destructive interference and thus perfect absorption in a particularly thin absorbing film.
Fig. 3
Fig. 3 Fractal phasor resonant cavity enabling infrared perfect absorption in a sub - λ/100 Bi nanofilm: tunability of the perfect absorption wavelength in the mid-to-far infrared. (a) Left panel: Bi is a natural single-element material of the p-block of the periodic table. Middle panel: it shows a giant refractive index (8 < n < 10) and a small extinction coefficient (1 < k < 2) in the whole mid-to-far infrared (3 to 20 μm). Right panel: Some semi-metals, semi-conductors and topological insulators of the p-block (e.g. Sb, Bi2Te3, PbTe) also present very high n values, higher than those of the “standard” infrared materials (HgCdTe, InAs, InSb, PbS). The horizontal bands represent, for each material, the sub-bandgap spectral region where n takes high values, and the average of such values. (b) Simplified representation of the considered fractal phasor resonant cavity, with a Bi/Al2O3/Ag structure. (c) Color map showing the simulated reflectance spectra of this cavity at normal incidence as a function of the Bi film thickness tBi and Al2O3 transparent spacer thickness tAl2O3. The spacer adds a degree of freedom that enables shifting the perfect absorption wavelength in the whole the 3 to 20 μm region with small tBi values. (d) Simulated reflectance spectra of this cavity for selected (tBi, tAl2O3) values (color lines), and corresponding reflectance loss due to absorption in the Bi film (color dashed lines). Perfect absorption is reached for all the spectra with near 100% absorption in the Bi film. The (tBi, tAl2O3) values of the different spectra are (30 nm, 100 nm), (60 nm, 200 nm), (90 nm, 400 nm) and (90 nm, 1200 nm), where tBi represents the following fractions of the resonance wavelength: ∼λ/130, λ /150, λ /130, λ /200.
Fig. 4
Fig. 4 Fractal phasor resonant cavity enabling infrared perfect absorption in a sub - λ/100 Bi nanofilm: experimental demonstration of the perfect absorption wavelength tuning and angle-insensitivity. (a) top panel: picture of the Bi target used to grow the nanofilms by physical deposition, and of some of the fabricated cavity samples. Bottom panels: cross-section images of some of the fabricated fractal phasor resonant cavities (Bi/Al2O3/Ag cavity). These images confirm the layered structure, and the small Bi film thicknesses, of few tens of nm. (b) Reflectance spectra of the cavities with different Bi thicknesses, at near normal incidence (9°). Continuous lines represent the experimental data and dash-dotted lines represent the corresponding simulations. Perfect absorption is achieved at a wavelength λ tuned from 4.8 to 6.8 μm by varying tBi from 27 to 54 nm (∼λ/180 to λ/120). The spectrum of a Bi/Ag “boosted” Fabry-Pérot cavity is also shown. For this cavity, perfect absorption is not achieved. (c) Reflectance spectra of the Bi/Al2O3/Ag cavity with tBi = 54 nm as a function of the angle of incidence. Near perfect absorption remains in a wide angular range, up to 45°.
Fig. 5
Fig. 5 This figure represents the calculated power loss profiles at normal incidence of (a) the “boosted” Fabry-Pérot cavity presented in Fig. 1, and of (b) the fractal phasor resonant cavity presented in Fig. 2, at their resonance wavelength (λ = 5 μm) and off-resonance (λ = 10 μm). The vertical axis represents the absorbance per depth unit, i.e. the power loss per depth unit normalized to the incident power.
Fig. 6
Fig. 6 This figure refers to the “boosted” Fabry-Pérot resonant cavity shown in Fig. 1: film/near-perfectly conducting mirror, with n = 10, k = 0.5, t = 100 nm for the film. (a) Schematic representation of wave propagation in the cavity at the perfect absorption wavelength, at normal incidence. The round-trip phase shift (φ) of an internal cavity wave is exactly opposite to the reflection phase shift (-φ) at the film/mirror interface, 1/2. Therefore, each internal cavity wave escaping has a null phase shift with respect to the incident wave, and so does their sum (s). Thus, the phase of s is π shifted from that of the wave directly reflected at the air/film interface 0/1 (r0). This enables the totally destructive interference between s and r0. (b) Calculated spectra of the amplitude and phase of r0, s and r0 + s, showing the perfect absorption at λ ∼5 μm. (c) Calculated spectra of the amplitude and phase of the reflection coefficients at the interfaces between the different media (air = 0, film = 1, mirror = 2), and of the round-trip contribution. All the reflection coefficients have a 0 phase, except r01 (which equals to r0) that has a -π phase and r12. r12 is slightly different from π, because the mirror is non-perfectly conducting. This slightly different phase enables perfect absorption to occur for a film thickness slightly smaller than expected from the Fabry-Pérot formula (λ/50 < λ/4n, i.e. λ/40 with n = 10).
Fig. 7
Fig. 7 This figure refers to the “boosted” Fabry-Pérot resonant cavity shown in Fig. 1: film/near-perfectly conducting mirror, with n = 10, k = 0.5, but with an adjustable film thickness t for the film. (a) Simplified representation of the cavity. (b) Color map showing the simulated reflectance spectra of the cavity at normal incidence as a function of t. The perfect absorption wavelength can be tuned in the whole 3 – 20 μm region upon varying the film thickness up to 500 nm.
Fig. 8
Fig. 8 This figure refers to the Fabry-Pérot resonant cavity shown in Fig. 1: film/near-perfectly conducting mirror, but with adjustable film thickness t, refractive index n, and extinction coefficient k for the film. (a) Color maps showing the simulated reflectance spectra of the cavity at normal incidence as a function of t (from 0 to 1000 nm), n (4 or 10) and k (0, 0.5 or 1). The variation in t needed to tune the resonance wavelength in the whole 3 – 20 μm range decreases if n is larger. Perfect absorption is not achieved if k is too large. (b) Color maps showing the simulated reflectance spectra as a function of k for two cavities with different n and t, but the same resonance wavelength λ ∼5 μm. For a lower n, increasing t is necessary to maintain the resonance at the same wavelength, and the resonance is broader.
Fig. 9
Fig. 9 This figure refers to the fractal phasor resonant cavity shown in Fig. 2: film/transparent spacer/near-perfectly conducting mirror, with n = 10, k = 1, t = 40 nm for the film, a 120 nm – thick spacer and an Ag mirror. (a) Schematic representation of wave propagation in the cavity at normal incidence. The vector r0 accounts for the first reflection and s is the sum of the vectors accounting for the internal cavity waves escaping after multiple reflections (rj’s). (b) Simulated reflectance spectrum of the cavity at normal incidence. (c) Phasor diagram of the cavity, at the different wavelengths marked with the same color in (b). The rj’s follow a fractal trajectory that depends on λ. At the perfect absorption wavelength (λ ∼5 μm), the fractal branch is fully grown and yields a s vector that cancels with r0. At non-resonant wavelengths, the fractal branch is rotated and not fully grown, so that s does not cancel with r0.
Fig. 10
Fig. 10 (a) Simplified representation of the Bi/Ag cavity. The n and k of Bi are those shown in Fig. 3. (b) Color map showing the simulated reflectance spectra of this cavity at normal incidence, as a function of the Bi film thickness tBi. The cavity resonance shifts in the 3 to 18 μm region by varying tBi up to 500 nm (tBi ∼λ/40 to λ/50) (c) Simulated reflectance spectra of this cavity for selected tBi values (color lines), and corresponding reflectance loss due to absorption in the Bi film (color dashed lines). Perfect absorption is not achieved with this cavity.
Fig. 11
Fig. 11 This figure refers to the fractal phasor resonant cavity shown in Fig. 4: Bi/Al2O3/Ag structure with tBi = 54 nm and tAl2O3 = 180 nm. (a) Simplified representation of the cavity. (b) Simulated reflectance spectra of the cavity for different angles of incidence, with unpolarized light. (c) Corresponding color map, showing the reflectance spectra as a function of the angle of incidence. These simulations agree very well with the experimental results in Fig. 4(c).
Fig. 12
Fig. 12 This figure refers to a fractal phasor resonant cavity similar with that shown in Fig. 4: Bi/transparent spacer/near-perfectly conducting mirror with tBi = 54 nm and tspacer = 180 nm. Here, the effect of the nature of the spacer (a) and the mirror (b) on the spectral position of the cavity resonance is studied by simulations. No marked shift of the resonance is seen upon varying the refractive index of the spacer from 1 to 3 (a). The resonance is insensitive to the nature of the mirror. Any metal, even the cheap Al or Cu can be used equally.

Metrics