Abstract

In this paper, a novel strain sensor based on composite interference established within an S-tapered multimode (STM) fiber structure is proposed and experimentally demonstrated. The STM fibre structure is simply realized by non-axially tapering a traditional single-mode-multimode-single-mode (SMS) fiber into S-shape using a fusion splicer. This fabricated S-tapered structure provides an extra Mach-Zehnder interferometer (MZI) that is introduced within the multimode fibre (MMF) section; therefore, composite interference based on the inherent multimode interference (MMI) of an SMS and the introduced MZI is successfully established. This resultant composite interference greatly enhances the performance of traditional SMS fibre structures for strain sensing, with a maximum strain measurement sensitivity as high as −103.8 pm/με achieved with a detectable strain resolution of 0.2 με. Benefiting from the experimentally determined high sensitivity and good repeatability, this low-cost strain sensor can be realistically applied in many areas where high accuracy strain measurement is required.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure

Ke Tian, Gerald Farrell, Xianfan Wang, Wenlei Yang, Yifan Xin, Haidong Liang, Elfed Lewis, and Pengfei Wang
Opt. Express 25(16) 18885-18896 (2017)

Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure

Ke Tian, Gerald Farrell, Xianfan Wang, Elfed Lewis, and Pengfei Wang
Appl. Opt. 57(32) 9662-9668 (2018)

Polymer optical fiber for large strain measurement based on multimode interference

Jie Huang, Xinwei Lan, Hanzheng Wang, Lei Yuan, Tao Wei, Zhan Gao, and Hai Xiao
Opt. Lett. 37(20) 4308-4310 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
    [Crossref]
  2. B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, Y. Wu, and H. Zhang, “Fiber ring laser based on MMF-PMFBG-MMF filter for three parameters sensing,” Opt. Express 25(25), 30946–30955 (2017).
    [Crossref] [PubMed]
  3. O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous Measurement for Strain and Temperature Based on a Long-Period Grating Combined With a High-Birefringence Fiber Loop Mirror,” IEEE Photonics Technol. Lett. 18(22), 2407–2409 (2006).
    [Crossref]
  4. M.-S. Yoon, S. Park, and Y.-G. Han, “Simultaneous Measurement of Strain and Temperature by Using a Micro-Tapered Fiber Grating,” J. Lightwave Technol. 30(8), 1156–1160 (2012).
    [Crossref]
  5. X. Zhan, Y. Liu, M. Tang, L. Ma, R. Wang, L. Duan, L. Gan, C. Yang, W. Tong, S. Fu, D. Liu, and Z. He, “Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination,” Opt. Express 26(12), 15332–15342 (2018).
    [Crossref] [PubMed]
  6. Z. Tian and S. S. Yam, “In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
    [Crossref]
  7. C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
    [Crossref] [PubMed]
  8. H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
    [Crossref] [PubMed]
  9. Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Temperature-insensitive fiber optic Fabry-Perot interferometer based on special air cavity for transverse load and strain measurements,” Opt. Express 25(8), 9443–9448 (2017).
    [Crossref] [PubMed]
  10. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
    [Crossref] [PubMed]
  11. A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
    [Crossref] [PubMed]
  12. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
    [Crossref]
  13. G. Kim, T. Cho, K. Hwang, K. Lee, K. S. Lee, Y.-G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express 17(4), 2481–2486 (2009).
    [Crossref] [PubMed]
  14. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
    [Crossref] [PubMed]
  15. A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
    [Crossref]
  16. P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
    [Crossref] [PubMed]
  17. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
    [Crossref]
  18. K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y.-X. Fan, G. Farrell, E. Lewis, and P. Wang, “A Curvature Sensor Based on Twisted Single-Mode–Multimode–Single-Mode Hybrid Optical Fiber Structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
    [Crossref]
  19. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32(21), 3074–3076 (2007).
    [Crossref] [PubMed]
  20. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
    [Crossref] [PubMed]
  21. X. Wang, K. Tian, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure,” J. Lightwave Technol. 36(13), 2730–2736 (2018).
    [Crossref]
  22. W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 3285–3287 (2013).
    [Crossref]
  23. Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38(20), 3999–4001 (2013).
    [Crossref] [PubMed]
  24. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46(13), 2516–2519 (2007).
    [Crossref] [PubMed]
  25. J. Huang, X. Lan, H. Wang, L. Yuan, T. Wei, Z. Gao, and H. Xiao, “Polymer optical fiber for large strain measurement based on multimode interference,” Opt. Lett. 37(20), 4308–4310 (2012).
    [Crossref] [PubMed]
  26. K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang, “Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Opt. Express 25(16), 18885–18896 (2017).
    [Crossref] [PubMed]
  27. Q. Wang, G. Farrell, and W. Yan, “Investigation on Single-Mode–Multimode–Single-Mode Fiber Structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
    [Crossref]
  28. R. Yang, Y.-S. Yu, Y. Xue, C. Chen, Q.-D. Chen, and H.-B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
    [Crossref] [PubMed]
  29. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [Crossref] [PubMed]
  30. K. Tian, G. Farrell, E. Lewis, X. Wang, H. Liang, and P. Wang, “A high sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating,” Meas. Sci. Technol. 29(8), 085104 (2018).
    [Crossref]
  31. Q. Wang and G. Farrell, “Numerical investigation of multimode interference in a multimode fiber and its applications in optical sensing,” in Photonics Europe, pp. 327–31, 2006.

2018 (3)

2017 (5)

2014 (2)

2013 (4)

2012 (2)

2011 (2)

2010 (1)

A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (4)

2006 (2)

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous Measurement for Strain and Temperature Based on a Long-Period Grating Combined With a High-Birefringence Fiber Loop Mirror,” IEEE Photonics Technol. Lett. 18(22), 2407–2409 (2006).
[Crossref]

W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
[Crossref] [PubMed]

2003 (1)

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

1996 (1)

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
[Crossref]

Araújo, F. M.

Baptista, J. M.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous Measurement for Strain and Temperature Based on a Long-Period Grating Combined With a High-Birefringence Fiber Loop Mirror,” IEEE Photonics Technol. Lett. 18(22), 2407–2409 (2006).
[Crossref]

Bo, L.

Brambilla, G.

Caldas, P.

Chen, C.

Chen, Q.-D.

Chen, Y.

Cho, T.

Choi, H. Y.

Ding, M.

Dinh, X. Q.

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

Dockney, M. L.

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
[Crossref]

Dong, X.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Duan, L.

Fan, Y.-X.

Farahi, F.

Farrell, G.

K. Tian, G. Farrell, E. Lewis, X. Wang, H. Liang, and P. Wang, “A high sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating,” Meas. Sci. Technol. 29(8), 085104 (2018).
[Crossref]

X. Wang, K. Tian, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure,” J. Lightwave Technol. 36(13), 2730–2736 (2018).
[Crossref]

K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y.-X. Fan, G. Farrell, E. Lewis, and P. Wang, “A Curvature Sensor Based on Twisted Single-Mode–Multimode–Single-Mode Hybrid Optical Fiber Structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
[Crossref]

K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang, “Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Opt. Express 25(16), 18885–18896 (2017).
[Crossref] [PubMed]

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
[Crossref] [PubMed]

A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
[Crossref]

Q. Wang, G. Farrell, and W. Yan, “Investigation on Single-Mode–Multimode–Single-Mode Fiber Structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
[Crossref]

Feng, S.

Ferreira, L. A.

Frazao, O.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous Measurement for Strain and Temperature Based on a Long-Period Grating Combined With a High-Birefringence Fiber Loop Mirror,” IEEE Photonics Technol. Lett. 18(22), 2407–2409 (2006).
[Crossref]

Frazão, O.

Fu, S.

X. Zhan, Y. Liu, M. Tang, L. Ma, R. Wang, L. Duan, L. Gan, C. Yang, W. Tong, S. Fu, D. Liu, and Z. He, “Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination,” Opt. Express 26(12), 15332–15342 (2018).
[Crossref] [PubMed]

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

Gan, L.

Gao, Z.

Geng, T.

Gu, X.

Guan, C.

Han, Q.

Han, Y.-G.

Hatta, A. M.

A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
[Crossref]

He, Z.

Huang, J.

Hwang, K.

James, S. W.

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
[Crossref]

Johnson, E. G.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

Kim, G.

Kim, M. J.

Lan, X.

Lee, B. H.

Lee, K.

Lee, K. S.

Lee, S. B.

Lewis, E.

Li, Z.

Liang, H.

K. Tian, G. Farrell, E. Lewis, X. Wang, H. Liang, and P. Wang, “A high sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating,” Meas. Sci. Technol. 29(8), 085104 (2018).
[Crossref]

K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang, “Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Opt. Express 25(16), 18885–18896 (2017).
[Crossref] [PubMed]

Liao, C.

Liao, C. R.

Lin, W.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 3285–3287 (2013).
[Crossref]

Liu, B.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 3285–3287 (2013).
[Crossref]

Liu, D.

Liu, S.

Liu, T.

Liu, Y.

Liu, Z.

Low, C. W.

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

Ma, L.

Marques, L. M.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous Measurement for Strain and Temperature Based on a Long-Period Grating Combined With a High-Birefringence Fiber Loop Mirror,” IEEE Photonics Technol. Lett. 18(22), 2407–2409 (2006).
[Crossref]

Mehta, A.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

Miao, Y.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 3285–3287 (2013).
[Crossref]

Mohammed, W.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

Mohammed, W. S.

Park, S.

Qin, B.

Rajan, G.

A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
[Crossref]

Ren, J.

Santos, J. L.

O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32(21), 3074–3076 (2007).
[Crossref] [PubMed]

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous Measurement for Strain and Temperature Based on a Long-Period Grating Combined With a High-Birefringence Fiber Loop Mirror,” IEEE Photonics Technol. Lett. 18(22), 2407–2409 (2006).
[Crossref]

Santos, S.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous Measurement for Strain and Temperature Based on a Long-Period Grating Combined With a High-Birefringence Fiber Loop Mirror,” IEEE Photonics Technol. Lett. 18(22), 2407–2409 (2006).
[Crossref]

Semenova, Y.

Shao, X.

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

Shum, P.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Shum, P. P.

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

Smith, P. W. E.

Song, B.

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 3285–3287 (2013).
[Crossref]

Sun, H.-B.

Tam, H. Y.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Tang, J.

Tang, M.

X. Zhan, Y. Liu, M. Tang, L. Ma, R. Wang, L. Duan, L. Gan, C. Yang, W. Tong, S. Fu, D. Liu, and Z. He, “Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination,” Opt. Express 26(12), 15332–15342 (2018).
[Crossref] [PubMed]

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

Tang, Y.

Tatam, R. P.

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
[Crossref]

Tian, K.

Tian, Z.

Z. Tian and S. S. Yam, “In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Tong, W.

X. Zhan, Y. Liu, M. Tang, L. Ma, R. Wang, L. Duan, L. Gan, C. Yang, W. Tong, S. Fu, D. Liu, and Z. He, “Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination,” Opt. Express 26(12), 15332–15342 (2018).
[Crossref] [PubMed]

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

Viegas, J.

Wang, D. N.

Wang, G.

Wang, H.

Wang, M.

Wang, P.

Wang, Q.

Wang, R.

X. Zhan, Y. Liu, M. Tang, L. Ma, R. Wang, L. Duan, L. Gan, C. Yang, W. Tong, S. Fu, D. Liu, and Z. He, “Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination,” Opt. Express 26(12), 15332–15342 (2018).
[Crossref] [PubMed]

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Wei, L.

Wei, T.

Wu, J.

Wu, Q.

Wu, S.

Wu, Y.

Wu, Z.

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

Xiao, H.

Xin, Y.

Xu, Z.

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

Xue, Y.

Yam, S. S.

Z. Tian and S. S. Yam, “In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Yan, W.

Yang, C.

Yang, J.

Yang, K.

Yang, R.

Yang, W.

Yin, B.

Yoon, M.-S.

Yu, Y.-S.

Yuan, L.

Yuan, P.

Zhan, X.

Zhang, H.

B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, Y. Wu, and H. Zhang, “Fiber ring laser based on MMF-PMFBG-MMF filter for three parameters sensing,” Opt. Express 25(25), 30946–30955 (2017).
[Crossref] [PubMed]

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 3285–3287 (2013).
[Crossref]

Zhang, Y.

Zhao, J.

Zhong, X.

Zhou, A.

Zhou, J.

Zhu, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. Lin, Y. Miao, H. Zhang, B. Liu, Y. Liu, and B. Song, “Fiber-optic in-line magnetic field sensor based on the magnetic fluid and multimode interference effects,” Appl. Phys. Lett. 103(15), 3285–3287 (2013).
[Crossref]

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Electron. Lett. (1)

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32(12), 1133–1134 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (3)

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, “Simultaneous Measurement for Strain and Temperature Based on a Long-Period Grating Combined With a High-Birefringence Fiber Loop Mirror,” IEEE Photonics Technol. Lett. 18(22), 2407–2409 (2006).
[Crossref]

Z. Tian and S. S. Yam, “In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photonics Technol. Lett. 15(8), 1129–1131 (2003).
[Crossref]

J. Lightwave Technol. (4)

Meas. Sci. Technol. (1)

K. Tian, G. Farrell, E. Lewis, X. Wang, H. Liang, and P. Wang, “A high sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating,” Meas. Sci. Technol. 29(8), 085104 (2018).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
[Crossref]

Opt. Lett. (10)

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
[Crossref] [PubMed]

O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32(21), 3074–3076 (2007).
[Crossref] [PubMed]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
[Crossref] [PubMed]

C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
[Crossref] [PubMed]

R. Yang, Y.-S. Yu, Y. Xue, C. Chen, Q.-D. Chen, and H.-B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
[Crossref] [PubMed]

Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38(20), 3999–4001 (2013).
[Crossref] [PubMed]

J. Huang, X. Lan, H. Wang, L. Yuan, T. Wei, Z. Gao, and H. Xiao, “Polymer optical fiber for large strain measurement based on multimode interference,” Opt. Lett. 37(20), 4308–4310 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Zhang, Z. Wu, P. P. Shum, X. Q. Dinh, C. W. Low, Z. Xu, R. Wang, X. Shao, S. Fu, W. Tong, and M. Tang, “Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber,” Sci. Rep. 7(1), 46633 (2017).
[Crossref] [PubMed]

Other (1)

Q. Wang and G. Farrell, “Numerical investigation of multimode interference in a multimode fiber and its applications in optical sensing,” in Photonics Europe, pp. 327–31, 2006.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the light propagation within the STM fibre structure.
Fig. 2
Fig. 2 Schematic diagram of deformation when applied axial strain on the STM fibre structure.
Fig. 3
Fig. 3 Transmission spectrum of an untapered SMS fibre structure sandwiched with 2 cm length MMF.
Fig. 4
Fig. 4 (a)-(d) Optical microscopic images of the STM fibre structure with different offset values; (e)-(h) Transmission spectrums corresponding to the cases in (a)-(d).
Fig. 5
Fig. 5 Simulated optical field intensity distribution within the STM fibre structure at the free space wavelength of 1550 nm.
Fig. 6
Fig. 6 Schematic diagram of the experimental setup for strain measurement.
Fig. 7
Fig. 7 Transmission spectrum evolution when applied strain is changed (a) strain increases; (b) strain decreases.
Fig. 8
Fig. 8 Linear fitting curves for the dip wavelength shifts against strain variation: (a) dip A; (b) dip B.
Fig. 9
Fig. 9 (a) Transmission spectrum evolution of a traditional SMS fibre structure with 2 cm length MMF when applied strain is changed; (b) linear fitting curve of the dip' wavelength shifts against strain variation.
Fig. 10
Fig. 10 (a) Transmission spectrum evolution as temperature is changed; (b) linear fitting curve of the dip' wavelength shift against temperature variation.

Tables (1)

Tables Icon

Table 1 Comparison of sensing performance of different strain sensors developed to date

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

M 2 a n c o 2 n c l 2 λ
E ( r , z ) = m = 1 M e m F m ( r ) exp ( i β m z )
e m = 0 E ( r , 0 ) F m ( r ) r d r 0 F m ( r ) F m ( r ) r d r
φ m n = 2 π ( n c o m n c l n ) L e f f λ
λ s = 2 ( n c o m n c l n ) L e f f 2 s + 1
[ Δ ε Δ T ] = [ 103.8 p m / μ ε 36.2 p m / ° C 96.5 p m / μ ε 25.2 p m / ° C ] 1 [ Δ λ A Δ λ B ]

Metrics