Abstract

We investigate the relative intensity noise (RIN) properties of a multi-Stokes Brillouin fiber ring laser. We experimentally analyse the intensity noise of each Stokes wave and study the noise dynamics of the cascaded Brillouin scattering process. We observe up to 20 dB/Hz intensity noise reduction compared to that of the RIN input pump laser. We examine the impact of the fiber ring quality factor on the laser RIN features such as amplitude reduction and relaxation frequency. We also investigate the influence of the Brillouin gain detuning on the RIN reduction. A numerical model based on a set of coupled-mode equations replicates the experimental observations. Our study enables us to determine the optimal parameter values to operate the multi-Stokes laserin the low noise regime.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intensity noise in Brillouin fiber ring lasers

L. Stépien, S. Randoux, and J. Zemmouri
J. Opt. Soc. Am. B 19(5) 1055-1066 (2002)

Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications

Stéphanie Molin, Ghaya Baili, Mehdi Alouini, Daniel Dolfi, and Jean-Pierre Huignard
Opt. Lett. 33(15) 1681-1683 (2008)

Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers

Carlos Montes, Derradji Bahloul, Isabelle Bongrand, Jean Botineau, Gérard Cheval, Abdellatif Mamhoud, Eric Picholle, and Antonio Picozzi
J. Opt. Soc. Am. B 16(6) 932-951 (1999)

References

  • View by:
  • |
  • |
  • |

  1. E. Ippen and R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Applied Physics Letters 21, 539–541 (1972).
    [Crossref]
  2. S. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Optics letters 16, 393–395 (1991).
    [Crossref] [PubMed]
  3. A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Physical Review A 62, 023803 (2000).
    [Crossref]
  4. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technology Letters 18, 1813–1815 (2006).
    [Crossref]
  5. G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Applied Physics Letters 105, 231103 (2014).
    [Crossref]
  6. T. F. Büttner, M. Merklein, I. V. Kabakova, D. D. Hudson, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Phase-locked, chip-based, cascaded stimulated Brillouin scattering,” Optica 1, 311–314 (2014).
    [Crossref]
  7. S. Molin, G. Baili, M. Alouini, D. Dolfi, and J.-P. Huignard, “Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications,” Optics letters 33, 1681–1683 (2008).
    [Crossref] [PubMed]
  8. K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, D. Trégoat, J. Troles, and P. Toupin, “Linewidth-narrowing and intensity noise reduction of the 2 nd order Stokes component of a low threshold Brillouin laser made of Ge 10As 22Se 68 chalcogenide fiber,” Opt. Express 20, B104–B109 (2012).
    [Crossref] [PubMed]
  9. S. Gundavarapu, R. Behunin, G. M. Brodnik, D. Bose, T. Huffman, P. T. Rakich, and D. J. Blumenthal, “Sub-Hz Linewidth Photonic-Integrated Brillouin Laser,” arXiv preprint arXiv:1802.10020 (2018).
  10. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Physical Review Letters 102, 043902 (2009).
    [Crossref]
  11. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
    [Crossref]
  12. A. Choudhary, M. Pelusi, D. Marpaung, T. Inoue, K. Vu, P. Ma, D.-Y. Choi, S. Madden, S. Namiki, and B. J. Eggleton, “On-chip Brillouin purification for frequency comb-based coherent optical communications,” Opt. Lett. 42, 5074–5077 (2017).
    [Crossref] [PubMed]
  13. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nature communications 4, 2097 (2013).
    [Crossref] [PubMed]
  14. Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Chip-Based Brillouin Processing for Phase Control of RF Signals,” IEEE Journal of Quantum Electronics 54, 1–13 (2018).
    [Crossref]
  15. F. Zarinetchi, S. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Optics letters 16, 229–231 (1991).
    [Crossref] [PubMed]
  16. L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” JOSA B 19, 1055–1066 (2002).
    [Crossref]
  17. W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New Journal of Physics 18, 045001 (2016).
    [Crossref]
  18. W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2, 225–232 (2015).
    [Crossref]
  19. M.-G. Suh, Q.-F. Yang, and K. J. Vahala, “Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures,” Physical review letters 119, 143901 (2017).
    [Crossref] [PubMed]
  20. D. Lim, H. Lee, K. Kim, S. Kang, J. Ahn, and M.-Y. Jeon, “Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror,” Optics letters 23, 1671–1673 (1998).
    [Crossref]
  21. R. O. Behunin, N. T. Otterstrom, P. T. Rakich, S. Gundavarapu, and D. J. Blumenthal, “Fundamental noise dynamics in cascaded-order Brillouin lasers,” Phys. Rev. A 98, 023832 (2018).
    [Crossref]
  22. M. L. Dennis, P. T. Callahan, and M. C. Gross, “Suppression of relative intensity noise in a Brillouin fiber laser by operation above second-order threshold,” in Photonics Society, 2010 23rd Annual Meeting of the IEEE, (IEEE, 2010), pp. 28–29.
    [Crossref]
  23. Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” JOSA B 25, 2073–2080 (2008).
    [Crossref]
  24. M. Weel and A. Kumarakrishnan, “Laser-frequency stabilization using a lock-in amplifier,” Canadian journal of physics 80, 1449–1458 (2002).
    [Crossref]
  25. M. Cox, N. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proceedings-Science, Measurement and Technology 145, 163–165 (1998).
    [Crossref]
  26. W. Loh, S. B. Papp, and S. A. Diddams, “Noise and dynamics of stimulated-Brillouin-scattering microresonator lasers,” Physical Review A 91, 053843 (2015).
    [Crossref]
  27. H. Haus, Waves and Fields in Optoelectronics(Prentice-Hall, 1984).
  28. K. Petermann, Laser Diode Modulation and Noise(Kluwer Academic Publishers, 1988).
    [Crossref]
  29. K. Toyama, S. Huang, P.-A. Nicati, B. Y. Kim, and H. J. Shaw, “Generation of multiple Stokes waves in a Brillouin fiber ring laser,” in Optical Fiber Sensors Conference, pp. 11–14 (1993).
  30. S. Ananthu, S. Fresnel, S. Trebaol, F. Ginovart, and P. Besnard, “Improvement of noise reduction in fiber Brillouin lasers due to multi-Stokes operation,” in Conference: Fiber Lasers and Glass Photonics: Materials through Applications, vol. 10683 (2018).
  31. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics 7, 328–333 (2001).
    [Crossref]
  32. G. Danion, F. Bondu, G. Loas, and M. Alouini, “GHz bandwidth noise eater hybrid optical amplifier: design guidelines,” Optics letters 39, 4239–4242 (2014).
    [Crossref] [PubMed]
  33. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers(Springer Science & Business Media, 2013).

2018 (2)

R. O. Behunin, N. T. Otterstrom, P. T. Rakich, S. Gundavarapu, and D. J. Blumenthal, “Fundamental noise dynamics in cascaded-order Brillouin lasers,” Phys. Rev. A 98, 023832 (2018).
[Crossref]

Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Chip-Based Brillouin Processing for Phase Control of RF Signals,” IEEE Journal of Quantum Electronics 54, 1–13 (2018).
[Crossref]

2017 (2)

2016 (1)

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New Journal of Physics 18, 045001 (2016).
[Crossref]

2015 (2)

W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2, 225–232 (2015).
[Crossref]

W. Loh, S. B. Papp, and S. A. Diddams, “Noise and dynamics of stimulated-Brillouin-scattering microresonator lasers,” Physical Review A 91, 053843 (2015).
[Crossref]

2014 (3)

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Applied Physics Letters 105, 231103 (2014).
[Crossref]

T. F. Büttner, M. Merklein, I. V. Kabakova, D. D. Hudson, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Phase-locked, chip-based, cascaded stimulated Brillouin scattering,” Optica 1, 311–314 (2014).
[Crossref]

G. Danion, F. Bondu, G. Loas, and M. Alouini, “GHz bandwidth noise eater hybrid optical amplifier: design guidelines,” Optics letters 39, 4239–4242 (2014).
[Crossref] [PubMed]

2013 (2)

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nature communications 4, 2097 (2013).
[Crossref] [PubMed]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

2012 (1)

2009 (1)

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Physical Review Letters 102, 043902 (2009).
[Crossref]

2008 (2)

S. Molin, G. Baili, M. Alouini, D. Dolfi, and J.-P. Huignard, “Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications,” Optics letters 33, 1681–1683 (2008).
[Crossref] [PubMed]

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” JOSA B 25, 2073–2080 (2008).
[Crossref]

2006 (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technology Letters 18, 1813–1815 (2006).
[Crossref]

2002 (2)

M. Weel and A. Kumarakrishnan, “Laser-frequency stabilization using a lock-in amplifier,” Canadian journal of physics 80, 1449–1458 (2002).
[Crossref]

L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” JOSA B 19, 1055–1066 (2002).
[Crossref]

2001 (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics 7, 328–333 (2001).
[Crossref]

2000 (1)

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Physical Review A 62, 023803 (2000).
[Crossref]

1998 (2)

D. Lim, H. Lee, K. Kim, S. Kang, J. Ahn, and M.-Y. Jeon, “Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror,” Optics letters 23, 1671–1673 (1998).
[Crossref]

M. Cox, N. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proceedings-Science, Measurement and Technology 145, 163–165 (1998).
[Crossref]

1991 (2)

S. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Optics letters 16, 393–395 (1991).
[Crossref] [PubMed]

F. Zarinetchi, S. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Optics letters 16, 229–231 (1991).
[Crossref] [PubMed]

1972 (1)

E. Ippen and R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Applied Physics Letters 21, 539–541 (1972).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers(Springer Science & Business Media, 2013).

Ahn, J.

D. Lim, H. Lee, K. Kim, S. Kang, J. Ahn, and M.-Y. Jeon, “Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror,” Optics letters 23, 1671–1673 (1998).
[Crossref]

Alouini, M.

G. Danion, F. Bondu, G. Loas, and M. Alouini, “GHz bandwidth noise eater hybrid optical amplifier: design guidelines,” Optics letters 39, 4239–4242 (2014).
[Crossref] [PubMed]

S. Molin, G. Baili, M. Alouini, D. Dolfi, and J.-P. Huignard, “Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications,” Optics letters 33, 1681–1683 (2008).
[Crossref] [PubMed]

Ananthu, S.

S. Ananthu, S. Fresnel, S. Trebaol, F. Ginovart, and P. Besnard, “Improvement of noise reduction in fiber Brillouin lasers due to multi-Stokes operation,” in Conference: Fiber Lasers and Glass Photonics: Materials through Applications, vol. 10683 (2018).

Baili, G.

S. Molin, G. Baili, M. Alouini, D. Dolfi, and J.-P. Huignard, “Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications,” Optics letters 33, 1681–1683 (2008).
[Crossref] [PubMed]

Baynes, F. N.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New Journal of Physics 18, 045001 (2016).
[Crossref]

W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2, 225–232 (2015).
[Crossref]

Becker, J.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New Journal of Physics 18, 045001 (2016).
[Crossref]

Behunin, R.

S. Gundavarapu, R. Behunin, G. M. Brodnik, D. Bose, T. Huffman, P. T. Rakich, and D. J. Blumenthal, “Sub-Hz Linewidth Photonic-Integrated Brillouin Laser,” arXiv preprint arXiv:1802.10020 (2018).

Behunin, R. O.

R. O. Behunin, N. T. Otterstrom, P. T. Rakich, S. Gundavarapu, and D. J. Blumenthal, “Fundamental noise dynamics in cascaded-order Brillouin lasers,” Phys. Rev. A 98, 023832 (2018).
[Crossref]

Besnard, P.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, D. Trégoat, J. Troles, and P. Toupin, “Linewidth-narrowing and intensity noise reduction of the 2 nd order Stokes component of a low threshold Brillouin laser made of Ge 10As 22Se 68 chalcogenide fiber,” Opt. Express 20, B104–B109 (2012).
[Crossref] [PubMed]

S. Ananthu, S. Fresnel, S. Trebaol, F. Ginovart, and P. Besnard, “Improvement of noise reduction in fiber Brillouin lasers due to multi-Stokes operation,” in Conference: Fiber Lasers and Glass Photonics: Materials through Applications, vol. 10683 (2018).

Beugnot, J.-C.

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Applied Physics Letters 105, 231103 (2014).
[Crossref]

Blake, M.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technology Letters 18, 1813–1815 (2006).
[Crossref]

Blumenthal, D. J.

R. O. Behunin, N. T. Otterstrom, P. T. Rakich, S. Gundavarapu, and D. J. Blumenthal, “Fundamental noise dynamics in cascaded-order Brillouin lasers,” Phys. Rev. A 98, 023832 (2018).
[Crossref]

S. Gundavarapu, R. Behunin, G. M. Brodnik, D. Bose, T. Huffman, P. T. Rakich, and D. J. Blumenthal, “Sub-Hz Linewidth Photonic-Integrated Brillouin Laser,” arXiv preprint arXiv:1802.10020 (2018).

Bondu, F.

G. Danion, F. Bondu, G. Loas, and M. Alouini, “GHz bandwidth noise eater hybrid optical amplifier: design guidelines,” Optics letters 39, 4239–4242 (2014).
[Crossref] [PubMed]

Bose, D.

S. Gundavarapu, R. Behunin, G. M. Brodnik, D. Bose, T. Huffman, P. T. Rakich, and D. J. Blumenthal, “Sub-Hz Linewidth Photonic-Integrated Brillouin Laser,” arXiv preprint arXiv:1802.10020 (2018).

Brilland, L.

Brodnik, G. M.

S. Gundavarapu, R. Behunin, G. M. Brodnik, D. Bose, T. Huffman, P. T. Rakich, and D. J. Blumenthal, “Sub-Hz Linewidth Photonic-Integrated Brillouin Laser,” arXiv preprint arXiv:1802.10020 (2018).

Büttner, T. F.

Callahan, P. T.

M. L. Dennis, P. T. Callahan, and M. C. Gross, “Suppression of relative intensity noise in a Brillouin fiber laser by operation above second-order threshold,” in Photonics Society, 2010 23rd Annual Meeting of the IEEE, (IEEE, 2010), pp. 28–29.
[Crossref]

Chembo, Y. K.

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Applied Physics Letters 105, 231103 (2014).
[Crossref]

Choi, D.-Y.

Choudhary, A.

Coillet, A.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New Journal of Physics 18, 045001 (2016).
[Crossref]

Cole, D. C.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New Journal of Physics 18, 045001 (2016).
[Crossref]

W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2, 225–232 (2015).
[Crossref]

Copner, N.

M. Cox, N. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proceedings-Science, Measurement and Technology 145, 163–165 (1998).
[Crossref]

Cox, J. A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Cox, M.

M. Cox, N. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proceedings-Science, Measurement and Technology 145, 163–165 (1998).
[Crossref]

Danion, G.

G. Danion, F. Bondu, G. Loas, and M. Alouini, “GHz bandwidth noise eater hybrid optical amplifier: design guidelines,” Optics letters 39, 4239–4242 (2014).
[Crossref] [PubMed]

Debut, A.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Physical Review A 62, 023803 (2000).
[Crossref]

Dennis, M. L.

M. L. Dennis, P. T. Callahan, and M. C. Gross, “Suppression of relative intensity noise in a Brillouin fiber laser by operation above second-order threshold,” in Photonics Society, 2010 23rd Annual Meeting of the IEEE, (IEEE, 2010), pp. 28–29.
[Crossref]

Diallo, S.

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Applied Physics Letters 105, 231103 (2014).
[Crossref]

Diddams, S. A.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New Journal of Physics 18, 045001 (2016).
[Crossref]

W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2, 225–232 (2015).
[Crossref]

W. Loh, S. B. Papp, and S. A. Diddams, “Noise and dynamics of stimulated-Brillouin-scattering microresonator lasers,” Physical Review A 91, 053843 (2015).
[Crossref]

Dolfi, D.

S. Molin, G. Baili, M. Alouini, D. Dolfi, and J.-P. Huignard, “Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications,” Optics letters 33, 1681–1683 (2008).
[Crossref] [PubMed]

Dumeige, Y.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” JOSA B 25, 2073–2080 (2008).
[Crossref]

Dutta, N. K.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers(Springer Science & Business Media, 2013).

Eggleton, B. J.

Ezekiel, S.

F. Zarinetchi, S. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Optics letters 16, 229–231 (1991).
[Crossref] [PubMed]

S. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Optics letters 16, 393–395 (1991).
[Crossref] [PubMed]

Féron, P.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” JOSA B 25, 2073–2080 (2008).
[Crossref]

Fresnel, S.

K. H. Tow, Y. Léguillon, S. Fresnel, P. Besnard, L. Brilland, D. Méchin, D. Trégoat, J. Troles, and P. Toupin, “Linewidth-narrowing and intensity noise reduction of the 2 nd order Stokes component of a low threshold Brillouin laser made of Ge 10As 22Se 68 chalcogenide fiber,” Opt. Express 20, B104–B109 (2012).
[Crossref] [PubMed]

S. Ananthu, S. Fresnel, S. Trebaol, F. Ginovart, and P. Besnard, “Improvement of noise reduction in fiber Brillouin lasers due to multi-Stokes operation,” in Conference: Fiber Lasers and Glass Photonics: Materials through Applications, vol. 10683 (2018).

Geng, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technology Letters 18, 1813–1815 (2006).
[Crossref]

Ghisa, L.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” JOSA B 25, 2073–2080 (2008).
[Crossref]

Ginovart, F.

S. Ananthu, S. Fresnel, S. Trebaol, F. Ginovart, and P. Besnard, “Improvement of noise reduction in fiber Brillouin lasers due to multi-Stokes operation,” in Conference: Fiber Lasers and Glass Photonics: Materials through Applications, vol. 10683 (2018).

Green, A. A.

Gross, M. C.

M. L. Dennis, P. T. Callahan, and M. C. Gross, “Suppression of relative intensity noise in a Brillouin fiber laser by operation above second-order threshold,” in Photonics Society, 2010 23rd Annual Meeting of the IEEE, (IEEE, 2010), pp. 28–29.
[Crossref]

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Physical Review Letters 102, 043902 (2009).
[Crossref]

Gundavarapu, S.

R. O. Behunin, N. T. Otterstrom, P. T. Rakich, S. Gundavarapu, and D. J. Blumenthal, “Fundamental noise dynamics in cascaded-order Brillouin lasers,” Phys. Rev. A 98, 023832 (2018).
[Crossref]

S. Gundavarapu, R. Behunin, G. M. Brodnik, D. Bose, T. Huffman, P. T. Rakich, and D. J. Blumenthal, “Sub-Hz Linewidth Photonic-Integrated Brillouin Laser,” arXiv preprint arXiv:1802.10020 (2018).

Haus, H.

H. Haus, Waves and Fields in Optoelectronics(Prentice-Hall, 1984).

Huang, S.

K. Toyama, S. Huang, P.-A. Nicati, B. Y. Kim, and H. J. Shaw, “Generation of multiple Stokes waves in a Brillouin fiber ring laser,” in Optical Fiber Sensors Conference, pp. 11–14 (1993).

Hudson, D. D.

Huffman, T.

S. Gundavarapu, R. Behunin, G. M. Brodnik, D. Bose, T. Huffman, P. T. Rakich, and D. J. Blumenthal, “Sub-Hz Linewidth Photonic-Integrated Brillouin Laser,” arXiv preprint arXiv:1802.10020 (2018).

Huignard, J.-P.

S. Molin, G. Baili, M. Alouini, D. Dolfi, and J.-P. Huignard, “Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications,” Optics letters 33, 1681–1683 (2008).
[Crossref] [PubMed]

Inoue, T.

Ippen, E.

E. Ippen and R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Applied Physics Letters 21, 539–541 (1972).
[Crossref]

Jarecki, R.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Jeon, M.-Y.

D. Lim, H. Lee, K. Kim, S. Kang, J. Ahn, and M.-Y. Jeon, “Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror,” Optics letters 23, 1671–1673 (1998).
[Crossref]

Jiang, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technology Letters 18, 1813–1815 (2006).
[Crossref]

Kabakova, I. V.

Kang, S.

D. Lim, H. Lee, K. Kim, S. Kang, J. Ahn, and M.-Y. Jeon, “Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror,” Optics letters 23, 1671–1673 (1998).
[Crossref]

Kim, B. Y.

K. Toyama, S. Huang, P.-A. Nicati, B. Y. Kim, and H. J. Shaw, “Generation of multiple Stokes waves in a Brillouin fiber ring laser,” in Optical Fiber Sensors Conference, pp. 11–14 (1993).

Kim, K.

D. Lim, H. Lee, K. Kim, S. Kang, J. Ahn, and M.-Y. Jeon, “Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror,” Optics letters 23, 1671–1673 (1998).
[Crossref]

Kumarakrishnan, A.

M. Weel and A. Kumarakrishnan, “Laser-frequency stabilization using a lock-in amplifier,” Canadian journal of physics 80, 1449–1458 (2002).
[Crossref]

Lee, H.

W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2, 225–232 (2015).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nature communications 4, 2097 (2013).
[Crossref] [PubMed]

D. Lim, H. Lee, K. Kim, S. Kang, J. Ahn, and M.-Y. Jeon, “Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror,” Optics letters 23, 1671–1673 (1998).
[Crossref]

Léguillon, Y.

Li, J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nature communications 4, 2097 (2013).
[Crossref] [PubMed]

Lim, D.

D. Lim, H. Lee, K. Kim, S. Kang, J. Ahn, and M.-Y. Jeon, “Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror,” Optics letters 23, 1671–1673 (1998).
[Crossref]

Lin, G.

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Applied Physics Letters 105, 231103 (2014).
[Crossref]

Liu, Y.

Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Chip-Based Brillouin Processing for Phase Control of RF Signals,” IEEE Journal of Quantum Electronics 54, 1–13 (2018).
[Crossref]

Loas, G.

G. Danion, F. Bondu, G. Loas, and M. Alouini, “GHz bandwidth noise eater hybrid optical amplifier: design guidelines,” Optics letters 39, 4239–4242 (2014).
[Crossref] [PubMed]

Loh, W.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New Journal of Physics 18, 045001 (2016).
[Crossref]

W. Loh, S. B. Papp, and S. A. Diddams, “Noise and dynamics of stimulated-Brillouin-scattering microresonator lasers,” Physical Review A 91, 053843 (2015).
[Crossref]

W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2, 225–232 (2015).
[Crossref]

Luther-Davies, B.

Ma, P.

Madden, S.

Madden, S. J.

Maleki, L.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Physical Review Letters 102, 043902 (2009).
[Crossref]

Marpaung, D.

Martinenghi, R.

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Applied Physics Letters 105, 231103 (2014).
[Crossref]

Matsko, A. B.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Physical Review Letters 102, 043902 (2009).
[Crossref]

Méchin, D.

Merklein, M.

Molin, S.

S. Molin, G. Baili, M. Alouini, D. Dolfi, and J.-P. Huignard, “Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications,” Optics letters 33, 1681–1683 (2008).
[Crossref] [PubMed]

Namiki, S.

Nguyen, T. K. N.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” JOSA B 25, 2073–2080 (2008).
[Crossref]

Nicati, P.-A.

K. Toyama, S. Huang, P.-A. Nicati, B. Y. Kim, and H. J. Shaw, “Generation of multiple Stokes waves in a Brillouin fiber ring laser,” in Optical Fiber Sensors Conference, pp. 11–14 (1993).

Olsson, R. H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Otterstrom, N. T.

R. O. Behunin, N. T. Otterstrom, P. T. Rakich, S. Gundavarapu, and D. J. Blumenthal, “Fundamental noise dynamics in cascaded-order Brillouin lasers,” Phys. Rev. A 98, 023832 (2018).
[Crossref]

Papp, S. B.

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New Journal of Physics 18, 045001 (2016).
[Crossref]

W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2, 225–232 (2015).
[Crossref]

W. Loh, S. B. Papp, and S. A. Diddams, “Noise and dynamics of stimulated-Brillouin-scattering microresonator lasers,” Physical Review A 91, 053843 (2015).
[Crossref]

Pelusi, M.

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise(Kluwer Academic Publishers, 1988).
[Crossref]

Qiu, W.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Quinlan, F. J.

Rakich, P. T.

R. O. Behunin, N. T. Otterstrom, P. T. Rakich, S. Gundavarapu, and D. J. Blumenthal, “Fundamental noise dynamics in cascaded-order Brillouin lasers,” Phys. Rev. A 98, 023832 (2018).
[Crossref]

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

S. Gundavarapu, R. Behunin, G. M. Brodnik, D. Bose, T. Huffman, P. T. Rakich, and D. J. Blumenthal, “Sub-Hz Linewidth Photonic-Integrated Brillouin Laser,” arXiv preprint arXiv:1802.10020 (2018).

Randoux, S.

L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” JOSA B 19, 1055–1066 (2002).
[Crossref]

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Physical Review A 62, 023803 (2000).
[Crossref]

Saleh, K.

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Applied Physics Letters 105, 231103 (2014).
[Crossref]

Sato, K.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics 7, 328–333 (2001).
[Crossref]

Shaw, H. J.

K. Toyama, S. Huang, P.-A. Nicati, B. Y. Kim, and H. J. Shaw, “Generation of multiple Stokes waves in a Brillouin fiber ring laser,” in Optical Fiber Sensors Conference, pp. 11–14 (1993).

Shin, H.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Smith, S.

S. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Optics letters 16, 393–395 (1991).
[Crossref] [PubMed]

F. Zarinetchi, S. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Optics letters 16, 229–231 (1991).
[Crossref] [PubMed]

Staines, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technology Letters 18, 1813–1815 (2006).
[Crossref]

Starbuck, A.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Stepien, L.

L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” JOSA B 19, 1055–1066 (2002).
[Crossref]

Stolen, R.

E. Ippen and R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Applied Physics Letters 21, 539–541 (1972).
[Crossref]

Suh, M.-G.

M.-G. Suh, Q.-F. Yang, and K. J. Vahala, “Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures,” Physical review letters 119, 143901 (2017).
[Crossref] [PubMed]

Sylvestre, T.

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Applied Physics Letters 105, 231103 (2014).
[Crossref]

Tavernier, H.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” JOSA B 25, 2073–2080 (2008).
[Crossref]

Toba, H.

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics 7, 328–333 (2001).
[Crossref]

Toupin, P.

Tow, K. H.

Toyama, K.

K. Toyama, S. Huang, P.-A. Nicati, B. Y. Kim, and H. J. Shaw, “Generation of multiple Stokes waves in a Brillouin fiber ring laser,” in Optical Fiber Sensors Conference, pp. 11–14 (1993).

Trebaol, S.

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” JOSA B 25, 2073–2080 (2008).
[Crossref]

S. Ananthu, S. Fresnel, S. Trebaol, F. Ginovart, and P. Besnard, “Improvement of noise reduction in fiber Brillouin lasers due to multi-Stokes operation,” in Conference: Fiber Lasers and Glass Photonics: Materials through Applications, vol. 10683 (2018).

Trégoat, D.

Troles, J.

Vahala, K. J.

M.-G. Suh, Q.-F. Yang, and K. J. Vahala, “Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures,” Physical review letters 119, 143901 (2017).
[Crossref] [PubMed]

W. Loh, A. A. Green, F. N. Baynes, D. C. Cole, F. J. Quinlan, H. Lee, K. J. Vahala, S. B. Papp, and S. A. Diddams, “Dual-microcavity narrow-linewidth Brillouin laser,” Optica 2, 225–232 (2015).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nature communications 4, 2097 (2013).
[Crossref] [PubMed]

Vu, K.

Wang, Z.

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technology Letters 18, 1813–1815 (2006).
[Crossref]

Weel, M.

M. Weel and A. Kumarakrishnan, “Laser-frequency stabilization using a lock-in amplifier,” Canadian journal of physics 80, 1449–1458 (2002).
[Crossref]

Williams, B.

M. Cox, N. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proceedings-Science, Measurement and Technology 145, 163–165 (1998).
[Crossref]

Yang, Q.-F.

M.-G. Suh, Q.-F. Yang, and K. J. Vahala, “Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures,” Physical review letters 119, 143901 (2017).
[Crossref] [PubMed]

Zarinetchi, F.

S. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Optics letters 16, 393–395 (1991).
[Crossref] [PubMed]

F. Zarinetchi, S. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Optics letters 16, 229–231 (1991).
[Crossref] [PubMed]

Zemmouri, J.

L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” JOSA B 19, 1055–1066 (2002).
[Crossref]

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Physical Review A 62, 023803 (2000).
[Crossref]

Zong, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technology Letters 18, 1813–1815 (2006).
[Crossref]

Applied Physics Letters (2)

E. Ippen and R. Stolen, “Stimulated Brillouin scattering in optical fibers,” Applied Physics Letters 21, 539–541 (1972).
[Crossref]

G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot, T. Sylvestre, and Y. K. Chembo, “Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators,” Applied Physics Letters 105, 231103 (2014).
[Crossref]

Canadian journal of physics (1)

M. Weel and A. Kumarakrishnan, “Laser-frequency stabilization using a lock-in amplifier,” Canadian journal of physics 80, 1449–1458 (2002).
[Crossref]

IEE Proceedings-Science, Measurement and Technology (1)

M. Cox, N. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE Proceedings-Science, Measurement and Technology 145, 163–165 (1998).
[Crossref]

IEEE Journal of Quantum Electronics (1)

Y. Liu, A. Choudhary, D. Marpaung, and B. J. Eggleton, “Chip-Based Brillouin Processing for Phase Control of RF Signals,” IEEE Journal of Quantum Electronics 54, 1–13 (2018).
[Crossref]

IEEE Journal of Selected Topics in Quantum Electronics (1)

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics 7, 328–333 (2001).
[Crossref]

IEEE Photonics Technology Letters (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photonics Technology Letters 18, 1813–1815 (2006).
[Crossref]

JOSA B (2)

L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” JOSA B 19, 1055–1066 (2002).
[Crossref]

Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyen, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” JOSA B 25, 2073–2080 (2008).
[Crossref]

Nat. Commun. (1)

H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013).
[Crossref]

Nature communications (1)

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nature communications 4, 2097 (2013).
[Crossref] [PubMed]

New Journal of Physics (1)

W. Loh, J. Becker, D. C. Cole, A. Coillet, F. N. Baynes, S. B. Papp, and S. A. Diddams, “A microrod-resonator Brillouin laser with 240 Hz absolute linewidth,” New Journal of Physics 18, 045001 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (2)

Optics letters (5)

S. Molin, G. Baili, M. Alouini, D. Dolfi, and J.-P. Huignard, “Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications,” Optics letters 33, 1681–1683 (2008).
[Crossref] [PubMed]

S. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Optics letters 16, 393–395 (1991).
[Crossref] [PubMed]

F. Zarinetchi, S. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Optics letters 16, 229–231 (1991).
[Crossref] [PubMed]

D. Lim, H. Lee, K. Kim, S. Kang, J. Ahn, and M.-Y. Jeon, “Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror,” Optics letters 23, 1671–1673 (1998).
[Crossref]

G. Danion, F. Bondu, G. Loas, and M. Alouini, “GHz bandwidth noise eater hybrid optical amplifier: design guidelines,” Optics letters 39, 4239–4242 (2014).
[Crossref] [PubMed]

Phys. Rev. A (1)

R. O. Behunin, N. T. Otterstrom, P. T. Rakich, S. Gundavarapu, and D. J. Blumenthal, “Fundamental noise dynamics in cascaded-order Brillouin lasers,” Phys. Rev. A 98, 023832 (2018).
[Crossref]

Physical Review A (2)

W. Loh, S. B. Papp, and S. A. Diddams, “Noise and dynamics of stimulated-Brillouin-scattering microresonator lasers,” Physical Review A 91, 053843 (2015).
[Crossref]

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Physical Review A 62, 023803 (2000).
[Crossref]

Physical Review Letters (1)

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Physical Review Letters 102, 043902 (2009).
[Crossref]

M.-G. Suh, Q.-F. Yang, and K. J. Vahala, “Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures,” Physical review letters 119, 143901 (2017).
[Crossref] [PubMed]

Other (7)

S. Gundavarapu, R. Behunin, G. M. Brodnik, D. Bose, T. Huffman, P. T. Rakich, and D. J. Blumenthal, “Sub-Hz Linewidth Photonic-Integrated Brillouin Laser,” arXiv preprint arXiv:1802.10020 (2018).

H. Haus, Waves and Fields in Optoelectronics(Prentice-Hall, 1984).

K. Petermann, Laser Diode Modulation and Noise(Kluwer Academic Publishers, 1988).
[Crossref]

K. Toyama, S. Huang, P.-A. Nicati, B. Y. Kim, and H. J. Shaw, “Generation of multiple Stokes waves in a Brillouin fiber ring laser,” in Optical Fiber Sensors Conference, pp. 11–14 (1993).

S. Ananthu, S. Fresnel, S. Trebaol, F. Ginovart, and P. Besnard, “Improvement of noise reduction in fiber Brillouin lasers due to multi-Stokes operation,” in Conference: Fiber Lasers and Glass Photonics: Materials through Applications, vol. 10683 (2018).

M. L. Dennis, P. T. Callahan, and M. C. Gross, “Suppression of relative intensity noise in a Brillouin fiber laser by operation above second-order threshold,” in Photonics Society, 2010 23rd Annual Meeting of the IEEE, (IEEE, 2010), pp. 28–29.
[Crossref]

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers(Springer Science & Business Media, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (Color online) Experimental setup to study the lasing properties of multi-Stokes Brillouin Laser. Pump: Koheras continous wave laser, EDFA: Erbium-doped fiber amplifer, VA: variable attenuator, VC: Variable coupler, PZT: Piezoelectric transducer, Filter: Yenista optical filter, PD: Photodiode, PID: Proportional-integral differential amplifier, HV: High-voltage amplifer, TA: Transimpedance Amplifier, ESA: Electrical spetrum analyzer. The fiber ring cavity is composed of 20 m polarization maintaining fiber spooled around a PZT. Red line: Pump wave, Blue: Stokes 1 wave, Green: Stokes 2 wave.
Fig. 2
Fig. 2 (Color online) (a) Output Stokes power ( P s) normalized to the circulating power ( P c) versus input pump power ( P in) normalized to the Stokes 1 lasing threshold ( P th). (b) RIN of Stokes lines normalized to the input pump RIN. RIN amplitude is measured at 4 kHz from the carrier. Straight lines and full dots are experimental results. Stars are simulation results. Results are obtained with the "low-Q cavity" Brillouin laser, P th = 26.5 mW. Square symbols correspond to numerical simulations including gain detuning (black Δ ν = 100 kHz, red Δ ν = 250 kHz, green Δ ν = 400 kHz, blue light Δ ν = 400 kHz, deep blue Δ ν = 450 kHz)
Fig. 3
Fig. 3 (Color online) Normalized RIN of Stokes 1 (a, b) and Stokes 2 (c, d) lines for various input pump powers. Full and dashed lines hold for experimental and simulation results respectively. Deep and light colors refered to high ( τ 0 = 1.4   μs, τ e = 3.7   μs) and low-Q factors ( τ 0 = 1.4   μs, τ e = 0.5   μs) respectively. The peak observed at 10 kHz originates from the high-frequency modulation of the servoing scheme
Fig. 4
Fig. 4 (Color online) Relaxation frequency as function of the normalized pump power for low-Q (light blue) and high-Q (deep blue) cavities. Lines represent the results of calculation of Eq. (6). Error bars ( ± 75 kHz) represent the average possible misreading of relaxation frequency on RIN curves.
Fig. 5
Fig. 5 (Color online) Evolution of the Stokes 1 RIN in function of the gain detuning for a pump power of a) 5.5 P th and b) 9 P th in the low-Q cavity configuration

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A 0 t = 1 τ A 0 i q 0 ω 0 A 1 ρ 1 + 2 τ e S e i σ 0 t ,
A η t = 1 τ η A η i q η ω η [ A η 1 ρ η * + δ η N A η + 1 ρ η + 1 ] ,
ρ η t = i Ω b 2 Ω η 2 2 Ω η ρ η Γ b 2 ρ η i p η A η 1 A η * .
q η = γ e 4 n 0 2 ρ 0 Λ η , and p η = ϵ 0 γ e n 0 2 Ω η 4 v 2 Λ ρ η ,
RIN = 8 S δ | A η | p | A η | S 2
f R = 1 2 π | A 1 | 2 | A 0 | 2 * 2 Γ b τ 2 ( 2 τ + Γ b 2 ) 1
| A N 1 | 2 = K N ω N ,
| A η + 2 | 2 = | A η | 2 K η + 1 ω η + 1 .
| A 0 | 2 = 2 τ 2 τ e | S | 2 × [ K 1 ω 0 | A 1 | 2 + 1 ] 2 , if N = 2 , 4 , 6
| A 1 | 2 = [ τ τ e / 2 | S | | A 0 | 1 ] K ω 0 , if N = 1 , 3 , 5

Metrics