Abstract

In holographic three-dimensional (3D) display, holograms for reconstructing 3D scenes require huge storage space and high transmission bandwidth. Holographic data must be compressed for practical applications. The holograms for 3D display are commonly represented in pure-phase format. Existing hologram compression techniques are generally not designed to handle phase-only holograms. In this paper, we propose a phase-difference-based compression method to compress phase-only holograms for holographic 3D display. Phase-only holograms are decomposed into grayscale images representing the phase distance and binary images containing the sign information of the phase difference. The grayscale images can be better handled by common image compression algorithms since their pixel values are proportional to the phase distance reflecting the distance between complex amplitudes. The binary images are compressed by lossless bi-level image coding. The compressed grayscale images and binary images can be synthesized to recover the phase-only holograms and reconstruct the 3D scenes. The advantages of the proposed method over existing image coding standards are verified by numerical simulations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets

Pavel A. Cheremkhin and Ekaterina A. Kurbatova
Appl. Opt. 57(1) A55-A64 (2018)

Layered holographic stereogram based on inverse Fresnel diffraction

Hao Zhang, Yan Zhao, Liangcai Cao, and Guofan Jin
Appl. Opt. 55(3) A154-A159 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  2. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41(20), 4124–4132 (2002).
    [Crossref] [PubMed]
  3. T. J. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43(10), 2233–2238 (2004).
    [Crossref]
  4. T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, “Image reconstruction from compressed encrypted digital hologram,” Opt. Eng. 44(7), 075801 (2005).
    [Crossref]
  5. A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of optically encrypted digital holograms using artificial neural networks,” J. Disp. Technol. 2(4), 401–410 (2006).
    [Crossref]
  6. A. E. Shortt, T. J. Naughton, and B. Javidi, “A companding approach for nonuniform quantization of digital holograms of three-dimensional objects,” Opt. Express 14(12), 5129–5134 (2006).
    [Crossref] [PubMed]
  7. A. E. Shortt, T. J. Naughton, and B. Javidi, “Histogram approaches for lossy compression of digital holograms of three-dimensional objects,” IEEE Trans. Image Process. 16(6), 1548–1556 (2007).
    [Crossref] [PubMed]
  8. P. Tsang, K. W. K. Cheung, and T.-C. Poon, “Low-bit-rate computer-generated color Fresnel holography with compression ratio of over 1600 times using vector quantization [Invited],” Appl. Opt. 50(34), H42–H49 (2011).
    [Crossref] [PubMed]
  9. P. Tsang, K. W. K. Cheung, T. C. Poon, and C. Zhou, “Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video,” J. Opt. 14(12), 125403 (2012).
    [Crossref]
  10. Y. K. Lam, W. C. Situ, and P. W. M. Tsang, “Fast compression of computer-generated holographic images based on a GPU-accelerated skip-dimension vector quantization method,” Chin. Opt. Lett. 11(5), 050901 (2013).
    [Crossref]
  11. Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22(2), 144–156 (2007).
    [Crossref]
  12. Y.-H. Seo, H.-J. Choi, J.-S. Yoo, G.-S. Lee, C.-H. Kim, S.-H. Lee, S.-H. Lee, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010).
    [Crossref]
  13. Z. Ren, P. Su, and J. Ma, “Information content compression and zero-order elimination of computer-generated hologram based on discrete cosine transform,” Opt. Rev. 20(6), 469–473 (2013).
    [Crossref]
  14. A. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14(7), 2625–2630 (2006).
    [Crossref] [PubMed]
  15. E. A. Kurbatova, P. A. Cheremkhin, and N. N. Evtikhiev, “Methods of compression of digital holograms, based on 1-level wavelet transform,” J. Phys. Conf. Ser. 737(1), 012071 (2016).
    [Crossref]
  16. P. A. Cheremkhin and E. A. Kurbatova, “Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets,” Appl. Opt. 57(1), A55–A64 (2018).
    [Crossref] [PubMed]
  17. T. Bang, Z. Ali, P. D. Quang, J.-H. Park, and N. Kim, “Compression of digital hologram for three-dimensional object using Wavelet-Bandelets transform,” Opt. Express 19(9), 8019–8031 (2011).
    [Crossref] [PubMed]
  18. E. Darakis and J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15(12), 3804–3811 (2006).
    [Crossref] [PubMed]
  19. Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Vector lifting scheme for phase-shifting holographic data compression,” Opt. Eng. 53(11), 112312 (2014).
    [Crossref]
  20. Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Adaptive nonseparable vector lifting scheme for digital holographic data compression,” Appl. Opt. 54(1), A98–A109 (2015).
    [Crossref] [PubMed]
  21. P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35(23), 3883–3885 (2010).
    [Crossref] [PubMed]
  22. P. Tsang, W. K. Cheung, T. Kim, Y. S. Kim, and T.-C. Poon, “Low-complexity compression of holograms based on delta modulation,” Opt. Commun. 284(8), 2113–2117 (2011).
    [Crossref]
  23. P. W. M. Tsang, W. K. Cheung, and T.-C. Poon, “Near computation-free compression of Fresnel holograms based on adaptive delta modulation,” Opt. Eng. 50(8), 085802 (2011).
    [Crossref]
  24. E. Darakis and J. J. Soraghan, “Compression of interference patterns with application to phase-shifting digital holography,” Appl. Opt. 45(11), 2437–2443 (2006).
    [Crossref] [PubMed]
  25. D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53(12), 123102 (2014).
    [Crossref]
  26. E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
    [Crossref]
  27. E. Darakis, M. Kowiel, R. Näsänen, and T. J. Naughton, “Visually lossless compression of digital hologram sequences,” Proc. SPIE 7529, 752912 (2010).
    [Crossref]
  28. Y. Xing, B. Pesquet-Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
    [Crossref]
  29. J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48(2), 020502 (2009).
    [Crossref]
  30. H. Zheng, Y. Yu, T. Wang, and A. Asundi, “Computer-generated kinoforms of real-existing full-color 3D objects using pure-phase look-up-table method,” Opt. Lasers Eng. 50(4), 568–573 (2012).
    [Crossref]
  31. G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
    [Crossref] [PubMed]
  32. S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou, and X. Li, “Compression of phase-only holograms with JPEG standard and deep learning,” Appl. Sci. (Basel) 8(8), 1258 (2018).
    [Crossref]
  33. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  34. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
    [Crossref] [PubMed]
  35. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express 23(4), 3901–3913 (2015).
    [Crossref] [PubMed]
  36. A. Gilles, P. Gioia, R. Cozot, and L. Morin, “Hybrid approach for fast occlusion processing in computer-generated hologram calculation,” Appl. Opt. 55(20), 5459–5470 (2016).
    [Crossref] [PubMed]
  37. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41(29), 6187–6192 (2002).
    [Crossref] [PubMed]
  38. Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24(26), 30368–30378 (2016).
    [Crossref] [PubMed]

2018 (2)

P. A. Cheremkhin and E. A. Kurbatova, “Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets,” Appl. Opt. 57(1), A55–A64 (2018).
[Crossref] [PubMed]

S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou, and X. Li, “Compression of phase-only holograms with JPEG standard and deep learning,” Appl. Sci. (Basel) 8(8), 1258 (2018).
[Crossref]

2016 (3)

2015 (2)

2014 (3)

Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Vector lifting scheme for phase-shifting holographic data compression,” Opt. Eng. 53(11), 112312 (2014).
[Crossref]

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53(12), 123102 (2014).
[Crossref]

G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
[Crossref] [PubMed]

2013 (4)

Y. Xing, B. Pesquet-Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
[Crossref]

Z. Ren, P. Su, and J. Ma, “Information content compression and zero-order elimination of computer-generated hologram based on discrete cosine transform,” Opt. Rev. 20(6), 469–473 (2013).
[Crossref]

Y. K. Lam, W. C. Situ, and P. W. M. Tsang, “Fast compression of computer-generated holographic images based on a GPU-accelerated skip-dimension vector quantization method,” Chin. Opt. Lett. 11(5), 050901 (2013).
[Crossref]

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

2012 (2)

P. Tsang, K. W. K. Cheung, T. C. Poon, and C. Zhou, “Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video,” J. Opt. 14(12), 125403 (2012).
[Crossref]

H. Zheng, Y. Yu, T. Wang, and A. Asundi, “Computer-generated kinoforms of real-existing full-color 3D objects using pure-phase look-up-table method,” Opt. Lasers Eng. 50(4), 568–573 (2012).
[Crossref]

2011 (4)

P. Tsang, W. K. Cheung, T. Kim, Y. S. Kim, and T.-C. Poon, “Low-complexity compression of holograms based on delta modulation,” Opt. Commun. 284(8), 2113–2117 (2011).
[Crossref]

P. W. M. Tsang, W. K. Cheung, and T.-C. Poon, “Near computation-free compression of Fresnel holograms based on adaptive delta modulation,” Opt. Eng. 50(8), 085802 (2011).
[Crossref]

T. Bang, Z. Ali, P. D. Quang, J.-H. Park, and N. Kim, “Compression of digital hologram for three-dimensional object using Wavelet-Bandelets transform,” Opt. Express 19(9), 8019–8031 (2011).
[Crossref] [PubMed]

P. Tsang, K. W. K. Cheung, and T.-C. Poon, “Low-bit-rate computer-generated color Fresnel holography with compression ratio of over 1600 times using vector quantization [Invited],” Appl. Opt. 50(34), H42–H49 (2011).
[Crossref] [PubMed]

2010 (3)

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, G.-S. Lee, C.-H. Kim, S.-H. Lee, S.-H. Lee, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010).
[Crossref]

P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35(23), 3883–3885 (2010).
[Crossref] [PubMed]

E. Darakis, M. Kowiel, R. Näsänen, and T. J. Naughton, “Visually lossless compression of digital hologram sequences,” Proc. SPIE 7529, 752912 (2010).
[Crossref]

2009 (2)

J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48(2), 020502 (2009).
[Crossref]

E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
[Crossref]

2008 (1)

2007 (2)

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22(2), 144–156 (2007).
[Crossref]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Histogram approaches for lossy compression of digital holograms of three-dimensional objects,” IEEE Trans. Image Process. 16(6), 1548–1556 (2007).
[Crossref] [PubMed]

2006 (5)

2005 (1)

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, “Image reconstruction from compressed encrypted digital hologram,” Opt. Eng. 44(7), 075801 (2005).
[Crossref]

2004 (1)

T. J. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43(10), 2233–2238 (2004).
[Crossref]

2002 (2)

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Ali, Z.

Asundi, A.

H. Zheng, Y. Yu, T. Wang, and A. Asundi, “Computer-generated kinoforms of real-existing full-color 3D objects using pure-phase look-up-table method,” Opt. Lasers Eng. 50(4), 568–573 (2012).
[Crossref]

Bang, T.

Bertaux, N.

Blinder, D.

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53(12), 123102 (2014).
[Crossref]

Bruylants, T.

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53(12), 123102 (2014).
[Crossref]

Cao, L.

Chang, C.

S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou, and X. Li, “Compression of phase-only holograms with JPEG standard and deep learning,” Appl. Sci. (Basel) 8(8), 1258 (2018).
[Crossref]

Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24(26), 30368–30378 (2016).
[Crossref] [PubMed]

Cheremkhin, P. A.

P. A. Cheremkhin and E. A. Kurbatova, “Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets,” Appl. Opt. 57(1), A55–A64 (2018).
[Crossref] [PubMed]

E. A. Kurbatova, P. A. Cheremkhin, and N. N. Evtikhiev, “Methods of compression of digital holograms, based on 1-level wavelet transform,” J. Phys. Conf. Ser. 737(1), 012071 (2016).
[Crossref]

Cheung, K. W. K.

P. Tsang, K. W. K. Cheung, T. C. Poon, and C. Zhou, “Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video,” J. Opt. 14(12), 125403 (2012).
[Crossref]

P. Tsang, K. W. K. Cheung, and T.-C. Poon, “Low-bit-rate computer-generated color Fresnel holography with compression ratio of over 1600 times using vector quantization [Invited],” Appl. Opt. 50(34), H42–H49 (2011).
[Crossref] [PubMed]

Cheung, W. K.

P. W. M. Tsang, W. K. Cheung, and T.-C. Poon, “Near computation-free compression of Fresnel holograms based on adaptive delta modulation,” Opt. Eng. 50(8), 085802 (2011).
[Crossref]

P. Tsang, W. K. Cheung, T. Kim, Y. S. Kim, and T.-C. Poon, “Low-complexity compression of holograms based on delta modulation,” Opt. Commun. 284(8), 2113–2117 (2011).
[Crossref]

Choi, H.-J.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, G.-S. Lee, C.-H. Kim, S.-H. Lee, S.-H. Lee, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010).
[Crossref]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22(2), 144–156 (2007).
[Crossref]

Cozot, R.

Darakis, E.

E. Darakis, M. Kowiel, R. Näsänen, and T. J. Naughton, “Visually lossless compression of digital hologram sequences,” Proc. SPIE 7529, 752912 (2010).
[Crossref]

E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
[Crossref]

E. Darakis and J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15(12), 3804–3811 (2006).
[Crossref] [PubMed]

E. Darakis and J. J. Soraghan, “Compression of interference patterns with application to phase-shifting digital holography,” Appl. Opt. 45(11), 2437–2443 (2006).
[Crossref] [PubMed]

Dufaux, F.

Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Adaptive nonseparable vector lifting scheme for digital holographic data compression,” Appl. Opt. 54(1), A98–A109 (2015).
[Crossref] [PubMed]

Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Vector lifting scheme for phase-shifting holographic data compression,” Opt. Eng. 53(11), 112312 (2014).
[Crossref]

Y. Xing, B. Pesquet-Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
[Crossref]

Evtikhiev, N. N.

E. A. Kurbatova, P. A. Cheremkhin, and N. N. Evtikhiev, “Methods of compression of digital holograms, based on 1-level wavelet transform,” J. Phys. Conf. Ser. 737(1), 012071 (2016).
[Crossref]

Ferraro, P.

Finizio, A.

Frauel, Y.

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Gilles, A.

Gioia, P.

Hu, B.

Javidi, B.

P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35(23), 3883–3885 (2010).
[Crossref] [PubMed]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Histogram approaches for lossy compression of digital holograms of three-dimensional objects,” IEEE Trans. Image Process. 16(6), 1548–1556 (2007).
[Crossref] [PubMed]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of optically encrypted digital holograms using artificial neural networks,” J. Disp. Technol. 2(4), 401–410 (2006).
[Crossref]

A. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14(7), 2625–2630 (2006).
[Crossref] [PubMed]

A. E. Shortt, T. J. Naughton, and B. Javidi, “A companding approach for nonuniform quantization of digital holograms of three-dimensional objects,” Opt. Express 14(12), 5129–5134 (2006).
[Crossref] [PubMed]

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, “Image reconstruction from compressed encrypted digital hologram,” Opt. Eng. 44(7), 075801 (2005).
[Crossref]

T. J. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43(10), 2233–2238 (2004).
[Crossref]

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41(20), 4124–4132 (2002).
[Crossref] [PubMed]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41(29), 6187–6192 (2002).
[Crossref] [PubMed]

Jia, J.

Jiao, S.

S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou, and X. Li, “Compression of phase-only holograms with JPEG standard and deep learning,” Appl. Sci. (Basel) 8(8), 1258 (2018).
[Crossref]

Jin, G.

Jin, Z.

S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou, and X. Li, “Compression of phase-only holograms with JPEG standard and deep learning,” Appl. Sci. (Basel) 8(8), 1258 (2018).
[Crossref]

Kaaniche, M.

Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Adaptive nonseparable vector lifting scheme for digital holographic data compression,” Appl. Opt. 54(1), A98–A109 (2015).
[Crossref] [PubMed]

Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Vector lifting scheme for phase-shifting holographic data compression,” Opt. Eng. 53(11), 112312 (2014).
[Crossref]

Kameda, M.

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, “Image reconstruction from compressed encrypted digital hologram,” Opt. Eng. 44(7), 075801 (2005).
[Crossref]

Kim, C.-H.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, G.-S. Lee, C.-H. Kim, S.-H. Lee, S.-H. Lee, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010).
[Crossref]

Kim, D.-W.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, G.-S. Lee, C.-H. Kim, S.-H. Lee, S.-H. Lee, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010).
[Crossref]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22(2), 144–156 (2007).
[Crossref]

Kim, E.-S.

Kim, N.

Kim, S.-C.

Kim, T.

P. Tsang, W. K. Cheung, T. Kim, Y. S. Kim, and T.-C. Poon, “Low-complexity compression of holograms based on delta modulation,” Opt. Commun. 284(8), 2113–2117 (2011).
[Crossref]

Kim, Y. S.

P. Tsang, W. K. Cheung, T. Kim, Y. S. Kim, and T.-C. Poon, “Low-complexity compression of holograms based on delta modulation,” Opt. Commun. 284(8), 2113–2117 (2011).
[Crossref]

Kowiel, M.

E. Darakis, M. Kowiel, R. Näsänen, and T. J. Naughton, “Visually lossless compression of digital hologram sequences,” Proc. SPIE 7529, 752912 (2010).
[Crossref]

Kurbatova, E. A.

P. A. Cheremkhin and E. A. Kurbatova, “Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets,” Appl. Opt. 57(1), A55–A64 (2018).
[Crossref] [PubMed]

E. A. Kurbatova, P. A. Cheremkhin, and N. N. Evtikhiev, “Methods of compression of digital holograms, based on 1-level wavelet transform,” J. Phys. Conf. Ser. 737(1), 012071 (2016).
[Crossref]

Lam, Y. K.

Lee, G.-S.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, G.-S. Lee, C.-H. Kim, S.-H. Lee, S.-H. Lee, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010).
[Crossref]

Lee, S.-H.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, G.-S. Lee, C.-H. Kim, S.-H. Lee, S.-H. Lee, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010).
[Crossref]

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, G.-S. Lee, C.-H. Kim, S.-H. Lee, S.-H. Lee, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010).
[Crossref]

Li, X.

S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou, and X. Li, “Compression of phase-only holograms with JPEG standard and deep learning,” Appl. Sci. (Basel) 8(8), 1258 (2018).
[Crossref]

G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
[Crossref] [PubMed]

Liu, J.

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Ma, J.

Z. Ren, P. Su, and J. Ma, “Information content compression and zero-order elimination of computer-generated hologram based on discrete cosine transform,” Opt. Rev. 20(6), 469–473 (2013).
[Crossref]

Matoba, O.

Memmolo, P.

Morimoto, Y.

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, “Image reconstruction from compressed encrypted digital hologram,” Opt. Eng. 44(7), 075801 (2005).
[Crossref]

Morin, L.

Munteanu, A.

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53(12), 123102 (2014).
[Crossref]

Näsänen, R.

E. Darakis, M. Kowiel, R. Näsänen, and T. J. Naughton, “Visually lossless compression of digital hologram sequences,” Proc. SPIE 7529, 752912 (2010).
[Crossref]

Naughton, T. J.

E. Darakis, M. Kowiel, R. Näsänen, and T. J. Naughton, “Visually lossless compression of digital hologram sequences,” Proc. SPIE 7529, 752912 (2010).
[Crossref]

E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
[Crossref]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Histogram approaches for lossy compression of digital holograms of three-dimensional objects,” IEEE Trans. Image Process. 16(6), 1548–1556 (2007).
[Crossref] [PubMed]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of optically encrypted digital holograms using artificial neural networks,” J. Disp. Technol. 2(4), 401–410 (2006).
[Crossref]

A. E. Shortt, T. J. Naughton, and B. Javidi, “A companding approach for nonuniform quantization of digital holograms of three-dimensional objects,” Opt. Express 14(12), 5129–5134 (2006).
[Crossref] [PubMed]

A. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14(7), 2625–2630 (2006).
[Crossref] [PubMed]

T. J. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43(10), 2233–2238 (2004).
[Crossref]

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41(20), 4124–4132 (2002).
[Crossref] [PubMed]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41(29), 6187–6192 (2002).
[Crossref] [PubMed]

Nomura, T.

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, “Image reconstruction from compressed encrypted digital hologram,” Opt. Eng. 44(7), 075801 (2005).
[Crossref]

Okazaki, A.

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, “Image reconstruction from compressed encrypted digital hologram,” Opt. Eng. 44(7), 075801 (2005).
[Crossref]

Ottevaere, H.

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53(12), 123102 (2014).
[Crossref]

Park, J.-H.

Paturzo, M.

Pelagotti, A.

Pesquet-Popescu, B.

Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Adaptive nonseparable vector lifting scheme for digital holographic data compression,” Appl. Opt. 54(1), A98–A109 (2015).
[Crossref] [PubMed]

Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Vector lifting scheme for phase-shifting holographic data compression,” Opt. Eng. 53(11), 112312 (2014).
[Crossref]

Y. Xing, B. Pesquet-Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
[Crossref]

Poon, T. C.

P. Tsang, K. W. K. Cheung, T. C. Poon, and C. Zhou, “Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video,” J. Opt. 14(12), 125403 (2012).
[Crossref]

Poon, T.-C.

P. Tsang, W. K. Cheung, T. Kim, Y. S. Kim, and T.-C. Poon, “Low-complexity compression of holograms based on delta modulation,” Opt. Commun. 284(8), 2113–2117 (2011).
[Crossref]

P. W. M. Tsang, W. K. Cheung, and T.-C. Poon, “Near computation-free compression of Fresnel holograms based on adaptive delta modulation,” Opt. Eng. 50(8), 085802 (2011).
[Crossref]

P. Tsang, K. W. K. Cheung, and T.-C. Poon, “Low-bit-rate computer-generated color Fresnel holography with compression ratio of over 1600 times using vector quantization [Invited],” Appl. Opt. 50(34), H42–H49 (2011).
[Crossref] [PubMed]

Qi, Y.

Quang, P. D.

Ren, Z.

Z. Ren, P. Su, and J. Ma, “Information content compression and zero-order elimination of computer-generated hologram based on discrete cosine transform,” Opt. Rev. 20(6), 469–473 (2013).
[Crossref]

Schelkens, P.

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53(12), 123102 (2014).
[Crossref]

Seo, Y.-H.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, G.-S. Lee, C.-H. Kim, S.-H. Lee, S.-H. Lee, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010).
[Crossref]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22(2), 144–156 (2007).
[Crossref]

Shortt, A.

Shortt, A. E.

A. E. Shortt, T. J. Naughton, and B. Javidi, “Histogram approaches for lossy compression of digital holograms of three-dimensional objects,” IEEE Trans. Image Process. 16(6), 1548–1556 (2007).
[Crossref] [PubMed]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of optically encrypted digital holograms using artificial neural networks,” J. Disp. Technol. 2(4), 401–410 (2006).
[Crossref]

A. E. Shortt, T. J. Naughton, and B. Javidi, “A companding approach for nonuniform quantization of digital holograms of three-dimensional objects,” Opt. Express 14(12), 5129–5134 (2006).
[Crossref] [PubMed]

Situ, W. C.

Soraghan, J. J.

E. Darakis and J. J. Soraghan, “Compression of interference patterns with application to phase-shifting digital holography,” Appl. Opt. 45(11), 2437–2443 (2006).
[Crossref] [PubMed]

E. Darakis and J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15(12), 3804–3811 (2006).
[Crossref] [PubMed]

Su, P.

Z. Ren, P. Su, and J. Ma, “Information content compression and zero-order elimination of computer-generated hologram based on discrete cosine transform,” Opt. Rev. 20(6), 469–473 (2013).
[Crossref]

Tajahuerce, E.

Tsang, P.

P. Tsang, K. W. K. Cheung, T. C. Poon, and C. Zhou, “Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video,” J. Opt. 14(12), 125403 (2012).
[Crossref]

P. Tsang, W. K. Cheung, T. Kim, Y. S. Kim, and T.-C. Poon, “Low-complexity compression of holograms based on delta modulation,” Opt. Commun. 284(8), 2113–2117 (2011).
[Crossref]

P. Tsang, K. W. K. Cheung, and T.-C. Poon, “Low-bit-rate computer-generated color Fresnel holography with compression ratio of over 1600 times using vector quantization [Invited],” Appl. Opt. 50(34), H42–H49 (2011).
[Crossref] [PubMed]

Tsang, P. W. M.

Y. K. Lam, W. C. Situ, and P. W. M. Tsang, “Fast compression of computer-generated holographic images based on a GPU-accelerated skip-dimension vector quantization method,” Chin. Opt. Lett. 11(5), 050901 (2013).
[Crossref]

P. W. M. Tsang, W. K. Cheung, and T.-C. Poon, “Near computation-free compression of Fresnel holograms based on adaptive delta modulation,” Opt. Eng. 50(8), 085802 (2011).
[Crossref]

Wang, T.

H. Zheng, Y. Yu, T. Wang, and A. Asundi, “Computer-generated kinoforms of real-existing full-color 3D objects using pure-phase look-up-table method,” Opt. Lasers Eng. 50(4), 568–573 (2012).
[Crossref]

Wang, Y.

Xia, J.

Y. Qi, C. Chang, and J. Xia, “Speckleless holographic display by complex modulation based on double-phase method,” Opt. Express 24(26), 30368–30378 (2016).
[Crossref] [PubMed]

J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48(2), 020502 (2009).
[Crossref]

Xing, Y.

Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Adaptive nonseparable vector lifting scheme for digital holographic data compression,” Appl. Opt. 54(1), A98–A109 (2015).
[Crossref] [PubMed]

Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Vector lifting scheme for phase-shifting holographic data compression,” Opt. Eng. 53(11), 112312 (2014).
[Crossref]

Y. Xing, B. Pesquet-Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
[Crossref]

Xue, G.

Yin, H.

J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48(2), 020502 (2009).
[Crossref]

Yoo, J.-S.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, G.-S. Lee, C.-H. Kim, S.-H. Lee, S.-H. Lee, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010).
[Crossref]

Yu, Y.

H. Zheng, Y. Yu, T. Wang, and A. Asundi, “Computer-generated kinoforms of real-existing full-color 3D objects using pure-phase look-up-table method,” Opt. Lasers Eng. 50(4), 568–573 (2012).
[Crossref]

Zhang, H.

Zhang, Z.

Zhao, Y.

Zheng, H.

H. Zheng, Y. Yu, T. Wang, and A. Asundi, “Computer-generated kinoforms of real-existing full-color 3D objects using pure-phase look-up-table method,” Opt. Lasers Eng. 50(4), 568–573 (2012).
[Crossref]

Zhou, C.

S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou, and X. Li, “Compression of phase-only holograms with JPEG standard and deep learning,” Appl. Sci. (Basel) 8(8), 1258 (2018).
[Crossref]

P. Tsang, K. W. K. Cheung, T. C. Poon, and C. Zhou, “Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video,” J. Opt. 14(12), 125403 (2012).
[Crossref]

Zou, W.

S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou, and X. Li, “Compression of phase-only holograms with JPEG standard and deep learning,” Appl. Sci. (Basel) 8(8), 1258 (2018).
[Crossref]

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Opt. (8)

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41(20), 4124–4132 (2002).
[Crossref] [PubMed]

P. Tsang, K. W. K. Cheung, and T.-C. Poon, “Low-bit-rate computer-generated color Fresnel holography with compression ratio of over 1600 times using vector quantization [Invited],” Appl. Opt. 50(34), H42–H49 (2011).
[Crossref] [PubMed]

P. A. Cheremkhin and E. A. Kurbatova, “Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets,” Appl. Opt. 57(1), A55–A64 (2018).
[Crossref] [PubMed]

Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Adaptive nonseparable vector lifting scheme for digital holographic data compression,” Appl. Opt. 54(1), A98–A109 (2015).
[Crossref] [PubMed]

E. Darakis and J. J. Soraghan, “Compression of interference patterns with application to phase-shifting digital holography,” Appl. Opt. 45(11), 2437–2443 (2006).
[Crossref] [PubMed]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
[Crossref] [PubMed]

A. Gilles, P. Gioia, R. Cozot, and L. Morin, “Hybrid approach for fast occlusion processing in computer-generated hologram calculation,” Appl. Opt. 55(20), 5459–5470 (2016).
[Crossref] [PubMed]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41(29), 6187–6192 (2002).
[Crossref] [PubMed]

Appl. Sci. (Basel) (1)

S. Jiao, Z. Jin, C. Chang, C. Zhou, W. Zou, and X. Li, “Compression of phase-only holograms with JPEG standard and deep learning,” Appl. Sci. (Basel) 8(8), 1258 (2018).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Trans. Image Process. (2)

A. E. Shortt, T. J. Naughton, and B. Javidi, “Histogram approaches for lossy compression of digital holograms of three-dimensional objects,” IEEE Trans. Image Process. 16(6), 1548–1556 (2007).
[Crossref] [PubMed]

E. Darakis and J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15(12), 3804–3811 (2006).
[Crossref] [PubMed]

J. Disp. Technol. (1)

A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of optically encrypted digital holograms using artificial neural networks,” J. Disp. Technol. 2(4), 401–410 (2006).
[Crossref]

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

J. Opt. (1)

P. Tsang, K. W. K. Cheung, T. C. Poon, and C. Zhou, “Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video,” J. Opt. 14(12), 125403 (2012).
[Crossref]

J. Phys. Conf. Ser. (1)

E. A. Kurbatova, P. A. Cheremkhin, and N. N. Evtikhiev, “Methods of compression of digital holograms, based on 1-level wavelet transform,” J. Phys. Conf. Ser. 737(1), 012071 (2016).
[Crossref]

Opt. Commun. (2)

P. Tsang, W. K. Cheung, T. Kim, Y. S. Kim, and T.-C. Poon, “Low-complexity compression of holograms based on delta modulation,” Opt. Commun. 284(8), 2113–2117 (2011).
[Crossref]

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, G.-S. Lee, C.-H. Kim, S.-H. Lee, S.-H. Lee, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283(21), 4261–4270 (2010).
[Crossref]

Opt. Eng. (6)

T. J. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43(10), 2233–2238 (2004).
[Crossref]

T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, “Image reconstruction from compressed encrypted digital hologram,” Opt. Eng. 44(7), 075801 (2005).
[Crossref]

P. W. M. Tsang, W. K. Cheung, and T.-C. Poon, “Near computation-free compression of Fresnel holograms based on adaptive delta modulation,” Opt. Eng. 50(8), 085802 (2011).
[Crossref]

J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48(2), 020502 (2009).
[Crossref]

Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Vector lifting scheme for phase-shifting holographic data compression,” Opt. Eng. 53(11), 112312 (2014).
[Crossref]

D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, “JPEG 2000-based compression of fringe patterns for digital holographic microscopy,” Opt. Eng. 53(12), 123102 (2014).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (1)

H. Zheng, Y. Yu, T. Wang, and A. Asundi, “Computer-generated kinoforms of real-existing full-color 3D objects using pure-phase look-up-table method,” Opt. Lasers Eng. 50(4), 568–573 (2012).
[Crossref]

Opt. Lett. (1)

Opt. Rev. (1)

Z. Ren, P. Su, and J. Ma, “Information content compression and zero-order elimination of computer-generated hologram based on discrete cosine transform,” Opt. Rev. 20(6), 469–473 (2013).
[Crossref]

Proc. SPIE (3)

E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
[Crossref]

E. Darakis, M. Kowiel, R. Näsänen, and T. J. Naughton, “Visually lossless compression of digital hologram sequences,” Proc. SPIE 7529, 752912 (2010).
[Crossref]

Y. Xing, B. Pesquet-Popescu, and F. Dufaux, “Compression of computer generated phase-shifting hologram sequence using AVC and HEVC,” Proc. SPIE 8856, 88561M (2013).
[Crossref]

Signal Process. Image Commun. (1)

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22(2), 144–156 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Configuration for holographic 3D display.
Fig. 2
Fig. 2 (a) Shading image and (b) depth image of a 3D object rendered in Autodesk 3ds Max. Gamma/LUT correction is disabled during rendering to get a linear map between the depth information and the grayscale values of pixels in the depth image. Brighter pixels in the depth image are closer to the hologram plane, and darker ones are farther.
Fig. 3
Fig. 3 Calculated phase profile of a phase-only hologram.
Fig. 4
Fig. 4 Numerically reconstructed image on the middle plane of a 3D object.
Fig. 5
Fig. 5 Illustration of the phase difference between two pixel values on the complex plane. Re denotes the real axis and Im denotes the imaginary axis.
Fig. 6
Fig. 6 Flow chart of the phase-difference-based compression procedure.
Fig. 7
Fig. 7 (a) Shading image, (b) depth image, and (c) phase-only hologram of the bunny; (d) shading image, (e) depth image, and (f) phase-only hologram of the Buddha.
Fig. 8
Fig. 8 Compression results using HEVC-Intra for the phase-only hologram of the dragon: (a) part of the compressed hologram; (b) reconstructed image.
Fig. 9
Fig. 9 Compression results using PDBC-HEVC-Intra for the phase-only hologram of the dragon: (a) grayscale image representing the phase distance; (b) binary image containing the sign information of the phase difference; (c) recomposed hologram from uncompressed grayscale image and binary image; (d) part of the HEVC-Intra-compressed grayscale image; (e) recovered hologram; (f) reconstructed image.
Fig. 10
Fig. 10 Compression performances of 10 compression methods indicated by (a) PSNRs and (b) SSIMs of reconstructed images for the phase-only hologram of the dragon.
Fig. 11
Fig. 11 Compression performances of 10 compression methods indicated by (a) PSNRs and (b) SSIMs of reconstructed images for the phase-only hologram of the bunny.
Fig. 12
Fig. 12 Compression performances of 10 compression methods indicated by (a) PSNRs and (b) SSIMs of reconstructed images for the phase-only hologram of the Buddha.
Fig. 13
Fig. 13 Encoding time for existing image coding standards and PDBC methods as a function of compression ratio for phase-only holograms of (a) the dragon, (b) the bunny, and (c) the Buddha.
Fig. 14
Fig. 14 (a) Reconstructed image from the JBIG-compressed binary image of the dragon; (b) comparison of PSNRs of reconstructed images from the JBIG-compressed binary image and the HEVC-Intra-compressed holograms of the dragon.

Tables (1)

Tables Icon

Table 1 Compression Results of HEVC-Intra and PDBC-HEVC-Intra for Similar Compression Ratio

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H( x,y )= j=1 N A j r j exp[ i( 2π λ r j + φ j ) ] ,
r j = ( x x j ) 2 + ( y y j ) 2 + z j 2 .
exp[ iϕ( x,y ) ]= H( x,y ) | H( x,y ) | .
U( ξ,η )= iexp( ik z d ) λ z d + + Rexp[ iϕ( x,y ) ]exp{ ik 2 z d [ ( xξ ) 2 + ( yη ) 2 ] }dxdy ,
Δ ϕ 12 = ϕ 2 ϕ 1 +2mπ ( π,π ] ,
| exp( i ϕ 2 )exp( i ϕ 1 ) |= 22cos| Δ ϕ 12 | =2sin( | Δ ϕ 12 |/2 ).
Δϕ( x,y )=ϕ( x,y )+2mπ ( π,π ] .
Δϕ'( x,y )={ G'( x,y )π/ 2 7 if B'( x,y )=0, G'( x,y )π/ 2 7 if B'( x,y )=1,

Metrics