Abstract

Light scattering limits the penetration depth of non-invasive Raman spectroscopy in biological media. While safe levels of irradiation may be adequate to analyze superficial tissue, scattering of the pump beam reduces the Raman signal to undetectable levels deeper within the tissue. Here we demonstrate how wavefront shaping techniques can significantly increase the Raman signal at depth, while keeping the total irradiance constant, thus increasing the amount of Raman signal available for detection.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Feedback-based wavefront shaping

Ivo M. Vellekoop
Opt. Express 23(9) 12189-12206 (2015)

Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping

Hyeonseung Yu, Jaeduck Jang, Jaeguyn Lim, Jung-Hoon Park, Wooyoung Jang, Ji-Yeun Kim, and YongKeun Park
Opt. Express 22(7) 7514-7523 (2014)

Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography

Jaeduck Jang, Jaeguyn Lim, Hyeonseung Yu, Hyun Choi, Jinyong Ha, Jung-Hoon Park, Wang-Yuhl Oh, Wooyoung Jang, SeongDeok Lee, and YongKeun Park
Opt. Express 21(3) 2890-2902 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121, 501 (1928).
    [Crossref]
  2. P. Graves and D. Gardiner, Practical Raman Spectroscopy (Springer, 1989).
  3. A. Mahadevan-Jansen and R. R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
    [Crossref] [PubMed]
  4. P. Matousek and N. Stone, “Development of deep subsurface raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45, 1794–1802 (2016).
    [Crossref]
  5. P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst. 134, 1058–1066 (2009).
    [Crossref] [PubMed]
  6. A. Ghita, P. Matousek, and N. Stone, “Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy,” The Analyst 141, 5738–5746 (2016).
    [Crossref] [PubMed]
  7. K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics: From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
    [Crossref] [PubMed]
  8. E. Akkermans and G. Montambaux, Mesoscopic physics of electrons and photons (Cambridge University., 2007).
    [Crossref]
  9. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309 (2007).
    [Crossref] [PubMed]
  10. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
    [Crossref]
  11. I. M. Vellekoop, E. Van Putten, A. Lagendijk, and A. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008).
    [Crossref] [PubMed]
  12. J. V. Thompson, G. A. Throckmorton, B. H. Hokr, and V. V. Yakovlev, “Wavefront shaping enhanced Raman scattering in a turbid medium,” Opt. Lett. 41, 1769 (2016).
    [Crossref] [PubMed]
  13. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23, 12189–12206 (2015).
    [Crossref] [PubMed]
  14. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
    [Crossref] [PubMed]
  15. J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44, 3948–3959 (1991).
    [Crossref] [PubMed]
  16. H. Yu, K. Lee, and Y. Park, “Energy leakage in partially measured scattering matrices of disordered media,” Phys. Rev. B 93, 104202 (2016).
    [Crossref]
  17. R. Berkovits and S. Feng, “Correlations in coherent multiple scattering,” Phys. Rep. 238, 135– 172 (1994).
    [Crossref]
  18. J. F. de Boer, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B 45, 658–666 (1992).
    [Crossref]
  19. M. P. V. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
    [Crossref] [PubMed]
  20. P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
    [Crossref] [PubMed]
  21. C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731 (1997).
    [Crossref]
  22. O. Dorokhov, “On the coexistence of localized and extended electronic states in the metallic phase,” Solid State Commun. 51, 381–384 (1984).
    [Crossref]
  23. W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
    [Crossref]
  24. M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
    [Crossref] [PubMed]
  25. M. Koirala, R. Sarma, H. Cao, and A. Yamilov, “Inverse design of perfectly transmitting eigenchannels in scattering media,” Phys. Rev. B 96, 054209 (2017).
    [Crossref]
  26. M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst 140, 5112–5119 (2015).
    [Crossref] [PubMed]
  27. A. Fick, “Uber diffusion,” Poggendorff’s Annalen der Physik und Cheimie 94, 59 (1855).
    [Crossref]
  28. O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
    [Crossref]
  29. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).
    [Crossref]
  30. W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q.-H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5, 11393 (2015).
    [Crossref]
  31. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
    [Crossref] [PubMed]
  32. A. Goetschy and A. Stone, “Filtering random matrices: the effect of incomplete channel control in multiple scattering,” Phys. Rev. Lett. 111, 063901 (2013).
    [Crossref] [PubMed]
  33. H. Yu, J.-H. Park, and Y. Park, “Measuring large optical reflection matrices of turbid media,” Opt. Commun. 352, 33–38 (2015).
    [Crossref]
  34. C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. Douglas Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13, 497 (2017).
    [Crossref]
  35. V. A. Marcenko and L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices,” Math. USSR-Sbornik 1, 457–483 (1967).
    [Crossref]
  36. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine Biol. 58, R37–R61 (2013).
    [Crossref]
  37. T. Vo-Dinh, Biomedical Photonics Handbook: Fundamentals, Devices and Techniques, vol. 1 (CRC press, 2014).
  38. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 11, 3071–3080 (2008).
    [Crossref]
  39. R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92, 214206 (2015).
    [Crossref]
  40. M. Mucalo, Hydroxyapatite (HAp) for biomedical applications (Elsevier, 2015).
  41. J. Cheng and X. S. Xie, Coherent Raman scattering microscopy (CRC press, 2016).
    [Crossref]
  42. S. Pahlow, K. Weber, J. Popp, B. R. Wood, K. Kochan, A. Rüijther, D. Perez-Guaita, P. Heraud, N. Stone, A. Dudgeon, B. Gardner, R. Reddy, D. Mayerich, and R. Bhargava, “Application of vibrational spectroscopy and imaging to point-of-care medicine: A review,” Appl. Spectrosc. 72, 52–84 (2018). PMID: .
    [PubMed]
  43. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in cars microscopy,” Opt. Express 15, 18209–18219 (2007).
    [Crossref] [PubMed]
  44. M. Z. Vardaki, P. Matousek, and N. Stone, “Characterisation of signal enhancements achieved when utilizing a photon diode in deep raman spectroscopy of tissue,” Biomed. Opt. Express 7, 2130–2141 (2016).
    [Crossref] [PubMed]
  45. N. Stone, M. Kerssens, G. R. Lloyd, K. Faulds, D. Graham, and P. Matousek, “Surface enhanced spatially offset raman spectroscopic (sesors) imaging–the next dimension,” Chem. Sci. 2, 776–780 (2011).
    [Crossref]
  46. A. M. Paniagua-Diaz, A. Ghita, T. Vettenburg, N. Stone, and J. Bertolotti, “Enhanced deep detection of raman scattered light by wavefront shaping,” http://doi.org/10.5281/zenodo.1319374 . Dataset, published 28 July 2018.

2018 (1)

2017 (2)

M. Koirala, R. Sarma, H. Cao, and A. Yamilov, “Inverse design of perfectly transmitting eigenchannels in scattering media,” Phys. Rev. B 96, 054209 (2017).
[Crossref]

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. Douglas Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13, 497 (2017).
[Crossref]

2016 (6)

A. Ghita, P. Matousek, and N. Stone, “Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy,” The Analyst 141, 5738–5746 (2016).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Development of deep subsurface raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45, 1794–1802 (2016).
[Crossref]

O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

H. Yu, K. Lee, and Y. Park, “Energy leakage in partially measured scattering matrices of disordered media,” Phys. Rev. B 93, 104202 (2016).
[Crossref]

J. V. Thompson, G. A. Throckmorton, B. H. Hokr, and V. V. Yakovlev, “Wavefront shaping enhanced Raman scattering in a turbid medium,” Opt. Lett. 41, 1769 (2016).
[Crossref] [PubMed]

M. Z. Vardaki, P. Matousek, and N. Stone, “Characterisation of signal enhancements achieved when utilizing a photon diode in deep raman spectroscopy of tissue,” Biomed. Opt. Express 7, 2130–2141 (2016).
[Crossref] [PubMed]

2015 (7)

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23, 12189–12206 (2015).
[Crossref] [PubMed]

M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst 140, 5112–5119 (2015).
[Crossref] [PubMed]

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q.-H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5, 11393 (2015).
[Crossref]

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics: From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92, 214206 (2015).
[Crossref]

H. Yu, J.-H. Park, and Y. Park, “Measuring large optical reflection matrices of turbid media,” Opt. Commun. 352, 33–38 (2015).
[Crossref]

2013 (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine Biol. 58, R37–R61 (2013).
[Crossref]

A. Goetschy and A. Stone, “Filtering random matrices: the effect of incomplete channel control in multiple scattering,” Phys. Rev. Lett. 111, 063901 (2013).
[Crossref] [PubMed]

2012 (3)

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[Crossref] [PubMed]

2011 (2)

N. Stone, M. Kerssens, G. R. Lloyd, K. Faulds, D. Graham, and P. Matousek, “Surface enhanced spatially offset raman spectroscopic (sesors) imaging–the next dimension,” Chem. Sci. 2, 776–780 (2011).
[Crossref]

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

2009 (1)

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst. 134, 1058–1066 (2009).
[Crossref] [PubMed]

2008 (3)

I. M. Vellekoop, E. Van Putten, A. Lagendijk, and A. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 11, 3071–3080 (2008).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref] [PubMed]

2007 (2)

1997 (1)

C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731 (1997).
[Crossref]

1996 (1)

A. Mahadevan-Jansen and R. R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[Crossref] [PubMed]

1994 (1)

R. Berkovits and S. Feng, “Correlations in coherent multiple scattering,” Phys. Rep. 238, 135– 172 (1994).
[Crossref]

1992 (1)

J. F. de Boer, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B 45, 658–666 (1992).
[Crossref]

1991 (1)

J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44, 3948–3959 (1991).
[Crossref] [PubMed]

1985 (2)

M. P. V. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[Crossref] [PubMed]

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[Crossref] [PubMed]

1984 (1)

O. Dorokhov, “On the coexistence of localized and extended electronic states in the metallic phase,” Solid State Commun. 51, 381–384 (1984).
[Crossref]

1967 (1)

V. A. Marcenko and L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices,” Math. USSR-Sbornik 1, 457–483 (1967).
[Crossref]

1928 (1)

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121, 501 (1928).
[Crossref]

1855 (1)

A. Fick, “Uber diffusion,” Poggendorff’s Annalen der Physik und Cheimie 94, 59 (1855).
[Crossref]

Akkermans, E.

E. Akkermans and G. Montambaux, Mesoscopic physics of electrons and photons (Cambridge University., 2007).
[Crossref]

Albada, M. P. V.

M. P. V. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[Crossref] [PubMed]

Beenakker, C. W. J.

C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731 (1997).
[Crossref]

Berkovits, R.

R. Berkovits and S. Feng, “Correlations in coherent multiple scattering,” Phys. Rep. 238, 135– 172 (1994).
[Crossref]

Bhargava, R.

Cao, H.

M. Koirala, R. Sarma, H. Cao, and A. Yamilov, “Inverse design of perfectly transmitting eigenchannels in scattering media,” Phys. Rev. B 96, 054209 (2017).
[Crossref]

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. Douglas Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13, 497 (2017).
[Crossref]

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92, 214206 (2015).
[Crossref]

Caravaca-Aguirre, A. M.

Cheng, J.

J. Cheng and X. S. Xie, Coherent Raman scattering microscopy (CRC press, 2016).
[Crossref]

Choi, W.

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q.-H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5, 11393 (2015).
[Crossref]

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q.-H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5, 11393 (2015).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).
[Crossref]

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

Choi, Y.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).
[Crossref]

Conkey, D. B.

Davy, M.

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

de Boer, J. F.

J. F. de Boer, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B 45, 658–666 (1992).
[Crossref]

Dorokhov, O.

O. Dorokhov, “On the coexistence of localized and extended electronic states in the metallic phase,” Solid State Commun. 51, 381–384 (1984).
[Crossref]

Douglas Stone, A.

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. Douglas Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13, 497 (2017).
[Crossref]

Dudgeon, A.

Evans, C. L.

Fang-Yen, C.

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q.-H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5, 11393 (2015).
[Crossref]

Faulds, K.

N. Stone, M. Kerssens, G. R. Lloyd, K. Faulds, D. Graham, and P. Matousek, “Surface enhanced spatially offset raman spectroscopic (sesors) imaging–the next dimension,” Chem. Sci. 2, 776–780 (2011).
[Crossref]

Feng, S.

R. Berkovits and S. Feng, “Correlations in coherent multiple scattering,” Phys. Rep. 238, 135– 172 (1994).
[Crossref]

Fick, A.

A. Fick, “Uber diffusion,” Poggendorff’s Annalen der Physik und Cheimie 94, 59 (1855).
[Crossref]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

Freudiger, C. W.

Gardiner, D.

P. Graves and D. Gardiner, Practical Raman Spectroscopy (Springer, 1989).

Gardner, B.

Genack, A. Z.

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

Ghita, A.

A. Ghita, P. Matousek, and N. Stone, “Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy,” The Analyst 141, 5738–5746 (2016).
[Crossref] [PubMed]

Girkin, J. M.

Goetschy, A.

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. Douglas Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13, 497 (2017).
[Crossref]

A. Goetschy and A. Stone, “Filtering random matrices: the effect of incomplete channel control in multiple scattering,” Phys. Rev. Lett. 111, 063901 (2013).
[Crossref] [PubMed]

Graham, D.

N. Stone, M. Kerssens, G. R. Lloyd, K. Faulds, D. Graham, and P. Matousek, “Surface enhanced spatially offset raman spectroscopic (sesors) imaging–the next dimension,” Chem. Sci. 2, 776–780 (2011).
[Crossref]

Graves, P.

P. Graves and D. Gardiner, Practical Raman Spectroscopy (Springer, 1989).

Guy, M.

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92, 214206 (2015).
[Crossref]

Heraud, P.

Hokr, B. H.

Hsu, C. W.

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. Douglas Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13, 497 (2017).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine Biol. 58, R37–R61 (2013).
[Crossref]

Kendall, C.

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics: From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

Kerssens, M.

N. Stone, M. Kerssens, G. R. Lloyd, K. Faulds, D. Graham, and P. Matousek, “Surface enhanced spatially offset raman spectroscopic (sesors) imaging–the next dimension,” Chem. Sci. 2, 776–780 (2011).
[Crossref]

Kim, D.

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q.-H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5, 11393 (2015).
[Crossref]

Kim, J.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).
[Crossref]

Kim, M.

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q.-H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5, 11393 (2015).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).
[Crossref]

Kochan, K.

Koirala, M.

M. Koirala, R. Sarma, H. Cao, and A. Yamilov, “Inverse design of perfectly transmitting eigenchannels in scattering media,” Phys. Rev. B 96, 054209 (2017).
[Crossref]

Kong, K.

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics: From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

Krishnan, K. S.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121, 501 (1928).
[Crossref]

Lagendijk, A.

O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

I. M. Vellekoop, E. Van Putten, A. Lagendijk, and A. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008).
[Crossref] [PubMed]

J. F. de Boer, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B 45, 658–666 (1992).
[Crossref]

M. P. V. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[Crossref] [PubMed]

Lee, K.

H. Yu, K. Lee, and Y. Park, “Energy leakage in partially measured scattering matrices of disordered media,” Phys. Rev. B 93, 104202 (2016).
[Crossref]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

Liew, S. F.

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. Douglas Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13, 497 (2017).
[Crossref]

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92, 214206 (2015).
[Crossref]

Lloyd, G. R.

N. Stone, M. Kerssens, G. R. Lloyd, K. Faulds, D. Graham, and P. Matousek, “Surface enhanced spatially offset raman spectroscopic (sesors) imaging–the next dimension,” Chem. Sci. 2, 776–780 (2011).
[Crossref]

Mahadevan-Jansen, A.

A. Mahadevan-Jansen and R. R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[Crossref] [PubMed]

Marcenko, V. A.

V. A. Marcenko and L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices,” Math. USSR-Sbornik 1, 457–483 (1967).
[Crossref]

Maret, G.

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[Crossref] [PubMed]

Matousek, P.

P. Matousek and N. Stone, “Development of deep subsurface raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45, 1794–1802 (2016).
[Crossref]

A. Ghita, P. Matousek, and N. Stone, “Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy,” The Analyst 141, 5738–5746 (2016).
[Crossref] [PubMed]

M. Z. Vardaki, P. Matousek, and N. Stone, “Characterisation of signal enhancements achieved when utilizing a photon diode in deep raman spectroscopy of tissue,” Biomed. Opt. Express 7, 2130–2141 (2016).
[Crossref] [PubMed]

M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst 140, 5112–5119 (2015).
[Crossref] [PubMed]

N. Stone, M. Kerssens, G. R. Lloyd, K. Faulds, D. Graham, and P. Matousek, “Surface enhanced spatially offset raman spectroscopic (sesors) imaging–the next dimension,” Chem. Sci. 2, 776–780 (2011).
[Crossref]

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst. 134, 1058–1066 (2009).
[Crossref] [PubMed]

Mayerich, D.

Montambaux, G.

E. Akkermans and G. Montambaux, Mesoscopic physics of electrons and photons (Cambridge University., 2007).
[Crossref]

Mosk, A.

Mosk, A. P.

O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 11, 3071–3080 (2008).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309 (2007).
[Crossref] [PubMed]

Mucalo, M.

M. Mucalo, Hydroxyapatite (HAp) for biomedical applications (Elsevier, 2015).

Notingher, I.

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics: From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

Ojambati, O. S.

O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

Pahlow, S.

Park, J.

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

Park, J.-H.

H. Yu, J.-H. Park, and Y. Park, “Measuring large optical reflection matrices of turbid media,” Opt. Commun. 352, 33–38 (2015).
[Crossref]

Park, Q.-H.

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q.-H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5, 11393 (2015).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).
[Crossref]

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

Park, Y.

H. Yu, K. Lee, and Y. Park, “Energy leakage in partially measured scattering matrices of disordered media,” Phys. Rev. B 93, 104202 (2016).
[Crossref]

H. Yu, J.-H. Park, and Y. Park, “Measuring large optical reflection matrices of turbid media,” Opt. Commun. 352, 33–38 (2015).
[Crossref]

Pastur, L. A.

V. A. Marcenko and L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices,” Math. USSR-Sbornik 1, 457–483 (1967).
[Crossref]

Perez-Guaita, D.

Piestun, R.

Pine, D. J.

J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44, 3948–3959 (1991).
[Crossref] [PubMed]

Poland, S. P.

Popp, J.

Raman, C. V.

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121, 501 (1928).
[Crossref]

Reddy, R.

Richards-Kortum, R. R.

A. Mahadevan-Jansen and R. R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[Crossref] [PubMed]

Rüijther, A.

Sarma, R.

M. Koirala, R. Sarma, H. Cao, and A. Yamilov, “Inverse design of perfectly transmitting eigenchannels in scattering media,” Phys. Rev. B 96, 054209 (2017).
[Crossref]

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92, 214206 (2015).
[Crossref]

Shi, Z.

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

Stone, A.

A. Goetschy and A. Stone, “Filtering random matrices: the effect of incomplete channel control in multiple scattering,” Phys. Rev. Lett. 111, 063901 (2013).
[Crossref] [PubMed]

Stone, N.

S. Pahlow, K. Weber, J. Popp, B. R. Wood, K. Kochan, A. Rüijther, D. Perez-Guaita, P. Heraud, N. Stone, A. Dudgeon, B. Gardner, R. Reddy, D. Mayerich, and R. Bhargava, “Application of vibrational spectroscopy and imaging to point-of-care medicine: A review,” Appl. Spectrosc. 72, 52–84 (2018). PMID: .
[PubMed]

M. Z. Vardaki, P. Matousek, and N. Stone, “Characterisation of signal enhancements achieved when utilizing a photon diode in deep raman spectroscopy of tissue,” Biomed. Opt. Express 7, 2130–2141 (2016).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Development of deep subsurface raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45, 1794–1802 (2016).
[Crossref]

A. Ghita, P. Matousek, and N. Stone, “Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy,” The Analyst 141, 5738–5746 (2016).
[Crossref] [PubMed]

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics: From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst 140, 5112–5119 (2015).
[Crossref] [PubMed]

N. Stone, M. Kerssens, G. R. Lloyd, K. Faulds, D. Graham, and P. Matousek, “Surface enhanced spatially offset raman spectroscopic (sesors) imaging–the next dimension,” Chem. Sci. 2, 776–780 (2011).
[Crossref]

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst. 134, 1058–1066 (2009).
[Crossref] [PubMed]

Thompson, J. V.

Throckmorton, G. A.

Tian, C.

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

van Albada, M. P.

J. F. de Boer, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B 45, 658–666 (1992).
[Crossref]

Van Putten, E.

Vardaki, M. Z.

M. Z. Vardaki, P. Matousek, and N. Stone, “Characterisation of signal enhancements achieved when utilizing a photon diode in deep raman spectroscopy of tissue,” Biomed. Opt. Express 7, 2130–2141 (2016).
[Crossref] [PubMed]

M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst 140, 5112–5119 (2015).
[Crossref] [PubMed]

Vellekoop, I. M.

Vo-Dinh, T.

T. Vo-Dinh, Biomedical Photonics Handbook: Fundamentals, Devices and Techniques, vol. 1 (CRC press, 2014).

Vos, W. L.

O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

Weber, K.

Weitz, D. A.

J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44, 3948–3959 (1991).
[Crossref] [PubMed]

Wolf, P.-E.

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[Crossref] [PubMed]

Wood, B. R.

Wright, A. J.

Xie, X. S.

Yakovlev, V. V.

Yamilov, A.

M. Koirala, R. Sarma, H. Cao, and A. Yamilov, “Inverse design of perfectly transmitting eigenchannels in scattering media,” Phys. Rev. B 96, 054209 (2017).
[Crossref]

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92, 214206 (2015).
[Crossref]

Yilmaz, H.

O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

Yoon, C.

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q.-H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5, 11393 (2015).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).
[Crossref]

Yu, H.

H. Yu, K. Lee, and Y. Park, “Energy leakage in partially measured scattering matrices of disordered media,” Phys. Rev. B 93, 104202 (2016).
[Crossref]

H. Yu, J.-H. Park, and Y. Park, “Measuring large optical reflection matrices of turbid media,” Opt. Commun. 352, 33–38 (2015).
[Crossref]

Zhu, J. X.

J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44, 3948–3959 (1991).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics: From in-vitro biofluid assays to in-vivo cancer detection,” Adv. Drug Deliv. Rev. 89, 121–134 (2015).
[Crossref] [PubMed]

Analyst (1)

M. Z. Vardaki, B. Gardner, N. Stone, and P. Matousek, “Studying the distribution of deep raman spectroscopy signals using liquid tissue phantoms with varying optical properties,” Analyst 140, 5112–5119 (2015).
[Crossref] [PubMed]

Analyst. (1)

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst. 134, 1058–1066 (2009).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

Chem. Sci. (1)

N. Stone, M. Kerssens, G. R. Lloyd, K. Faulds, D. Graham, and P. Matousek, “Surface enhanced spatially offset raman spectroscopic (sesors) imaging–the next dimension,” Chem. Sci. 2, 776–780 (2011).
[Crossref]

Chem. Soc. Rev. (1)

P. Matousek and N. Stone, “Development of deep subsurface raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45, 1794–1802 (2016).
[Crossref]

J. Biomed. Opt. (1)

A. Mahadevan-Jansen and R. R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[Crossref] [PubMed]

Math. USSR-Sbornik (1)

V. A. Marcenko and L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices,” Math. USSR-Sbornik 1, 457–483 (1967).
[Crossref]

Nat. Commun. (1)

M. Davy, Z. Shi, J. Park, C. Tian, and A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media,” Nat. Commun. 6, 6893 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6, 581–585 (2012).
[Crossref]

Nat. Phys. (1)

C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, and A. Douglas Stone, “Correlation-enhanced control of wave focusing in disordered media,” Nat. Phys. 13, 497 (2017).
[Crossref]

Nature (1)

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121, 501 (1928).
[Crossref]

New J. Phys. (1)

O. S. Ojambati, H. Yilmaz, A. Lagendijk, A. P. Mosk, and W. L. Vos, “Coupling of energy into the fundamental diffusion mode of a complex nanophotonic medium,” New J. Phys. 18, 043032 (2016).
[Crossref]

Opt. Commun. (2)

H. Yu, J.-H. Park, and Y. Park, “Measuring large optical reflection matrices of turbid media,” Opt. Commun. 352, 33–38 (2015).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 11, 3071–3080 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Medicine Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Medicine Biol. 58, R37–R61 (2013).
[Crossref]

Phys. Rep. (1)

R. Berkovits and S. Feng, “Correlations in coherent multiple scattering,” Phys. Rep. 238, 135– 172 (1994).
[Crossref]

Phys. Rev. A (1)

J. X. Zhu, D. J. Pine, and D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44, 3948–3959 (1991).
[Crossref] [PubMed]

Phys. Rev. B (5)

H. Yu, K. Lee, and Y. Park, “Energy leakage in partially measured scattering matrices of disordered media,” Phys. Rev. B 93, 104202 (2016).
[Crossref]

J. F. de Boer, M. P. van Albada, and A. Lagendijk, “Transmission and intensity correlations in wave propagation through random media,” Phys. Rev. B 45, 658–666 (1992).
[Crossref]

W. Choi, A. P. Mosk, Q.-H. Park, and W. Choi, “Transmission eigenchannels in a disordered medium,” Phys. Rev. B 83, 134207 (2011).
[Crossref]

M. Koirala, R. Sarma, H. Cao, and A. Yamilov, “Inverse design of perfectly transmitting eigenchannels in scattering media,” Phys. Rev. B 96, 054209 (2017).
[Crossref]

R. Sarma, A. Yamilov, S. F. Liew, M. Guy, and H. Cao, “Control of mesoscopic transport by modifying transmission channels in opaque media,” Phys. Rev. B 92, 214206 (2015).
[Crossref]

Phys. Rev. Lett. (4)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008).
[Crossref] [PubMed]

A. Goetschy and A. Stone, “Filtering random matrices: the effect of incomplete channel control in multiple scattering,” Phys. Rev. Lett. 111, 063901 (2013).
[Crossref] [PubMed]

M. P. V. Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 2692–2695 (1985).
[Crossref] [PubMed]

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[Crossref] [PubMed]

Poggendorff’s Annalen der Physik und Cheimie (1)

A. Fick, “Uber diffusion,” Poggendorff’s Annalen der Physik und Cheimie 94, 59 (1855).
[Crossref]

Rev. Mod. Phys. (1)

C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731 (1997).
[Crossref]

Sci. Rep. (1)

W. Choi, M. Kim, D. Kim, C. Yoon, C. Fang-Yen, Q.-H. Park, and W. Choi, “Preferential coupling of an incident wave to reflection eigenchannels of disordered media,” Sci. Rep. 5, 11393 (2015).
[Crossref]

Solid State Commun. (1)

O. Dorokhov, “On the coexistence of localized and extended electronic states in the metallic phase,” Solid State Commun. 51, 381–384 (1984).
[Crossref]

The Analyst (1)

A. Ghita, P. Matousek, and N. Stone, “Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy,” The Analyst 141, 5738–5746 (2016).
[Crossref] [PubMed]

Other (6)

E. Akkermans and G. Montambaux, Mesoscopic physics of electrons and photons (Cambridge University., 2007).
[Crossref]

P. Graves and D. Gardiner, Practical Raman Spectroscopy (Springer, 1989).

T. Vo-Dinh, Biomedical Photonics Handbook: Fundamentals, Devices and Techniques, vol. 1 (CRC press, 2014).

M. Mucalo, Hydroxyapatite (HAp) for biomedical applications (Elsevier, 2015).

J. Cheng and X. S. Xie, Coherent Raman scattering microscopy (CRC press, 2016).
[Crossref]

A. M. Paniagua-Diaz, A. Ghita, T. Vettenburg, N. Stone, and J. Bertolotti, “Enhanced deep detection of raman scattered light by wavefront shaping,” http://doi.org/10.5281/zenodo.1319374 . Dataset, published 28 July 2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Normalized intensity distribution of the pump light when the beam is not optimized (blue) and when all the incident energy is optimized and coupled to the fundamental solution of the diffusion equation (green). b) Intensity distribution of a point Raman element placed at position zR = 10 μm. c) Raman scattered light in transmission of a target at position zR/, when the beam is optimized (orange) and when it is not optimized (purple). d) Raman scattered light in reflection of a target at position zR/, when the beam is optimized (orange) and when it is not (purple).
Fig. 2
Fig. 2 Schematic of the experimental apparatus used to increase total transmission through a scattering medium whilst the Raman spectra is collected in reflection. Red arrows represent the pump light at 785 nm and the purple arrow represents the longer wavelengths generated due to the spontaneous Raman scattered light.
Fig. 3
Fig. 3 Normalized Raman spectra of the different materials of the sample: a) Anatase TiO2 spectrum, with three main peaks at 396,512 and 631 cm−1 b) Calcium Hydroxyapatite (HAP) with the main peak at 960 cm−1 and c) the collected spectrum of the combined sample of TiO2 and HAP, where we can see a strong signal coming from the first layer of TiO2 and a weak peak coming from the inner HAP at 960 cm−1, magnified in the inset. The broad contribution around 1500 cm−1 is due to the fluorescence of the microscope cover slide.
Fig. 4
Fig. 4 a) Normalized spectral data points of the HAP peak collected in reflection before (red) and after (green) the wavefront optimization. Dots represent the experimental data and the solid lines, the Lorentzian fits to the data. The data in the figure corresponds to an enhancement in the Raman signal of 41%, which was achieved with an increase in total transmission of 39%. b) Increase of the Raman signal against the increase in the total pump transmission. It is possible to see how the data points follow a linear trend (in green) with a slope of 1.07 ± 0.12.
Fig. 5
Fig. 5 a) Intensity distributions of Raman elements at two different positions giving rise to the same forward emission. The dashed blue curve represents the intensity distribution of a Raman element excited with a non-optimized pump at position zR. The green curve represents the intensity distribution of a Raman element at a position z R O excited with an optimized pump (with 1.5 times higher intensity), farther away from the back-surface (L = 29μm), yet resulting in the same forward emission. b) Normalized increase in the distance at which an optimized Raman element would give rise to the same forward emission as a non-optimized one, dependent on the position of the Raman element (zR). Note that the vertical axis is in logarithmic scale. c) Intensity distribution of the optimized and non-optimized Raman elements resulting in the same backward emission. d) Normalized increase in the distance at which the optimized Raman element should be in order to give the same backwards emission as the non-optimized emission.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d I d t = D 2 I α I + S ,
g ( z , z j ) = H ( z j z ) e α D ( z z j ) + H ( z z j ) e α D ( z j z ) 2 α D + C 1 e α D ( z z j ) + C 2 e α D ( z z j ) ,
g ( z , z j ) = I 0 D ( ( z + z e 1 ) ( L + z e 2 z j ) L + z e 2 + z e 1 + ( z j z ) H ( z z j ) ) ,
T = D I 0 d I ( z ) d z | z = L and R = D I 0 d I ( z ) d z | z = 0 .
I ( z ) L z R + z e 2 | z = z R = I O P ( z ) L z R O + z e 2 | z = z R O = tan ( α ) .
I ( z R ) L z R + z e 2 = β I ( z R d ) L z R + z e 2 + d .
d = 1 2 β ( β G C L z R + z e 2 ) + 1 2 β ( β G C L z R + z e 2 ) 2 4 β ( C ( 1 β ) )

Metrics