Abstract

In this paper, we propose a visual-cryptographic image hiding method based on visual cryptography (VC) and volume grating optics. The secret image is converted to the encrypted visual keys (VKs) according to the normal VC algorithm. Then the VKs are further embellished to the QR-code-like appearance and hidden as the holographic optical elements (HOEs), which are fabricated by the holographic exposure of photopolymer. In the decryption process, the fabricated HOE-VKs are illuminated with the laser beam. The reconstructed VKs are overlaid to extract the hidden information directly in the optical facility, without additional computation. Optical experiments verify that the VKs in HOE mode improves the system with high security and good robustness on the random noise attack. Besides, the volume grating nature also enlarges the system bandwidth by using the multiplexing technique. The proposed method may provide a promising potential for the practical image hiding systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Binary-tree encryption strategy for optical multiple-image encryption

Jiawang Yi and Guanzheng Tan
Appl. Opt. 55(20) 5280-5291 (2016)

Optical watermarking based on single-shot-ptychography encoding

WenHui Xu, HongFeng Xu, Yong Luo, Tuo Li, and YiShi Shi
Opt. Express 24(24) 27922-27936 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Khan and T. Shah, “A literature review on image encryption techniques,” 3D Res. 5(4), 29–1722 (2014).
    [Crossref]
  2. W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
    [Crossref]
  3. S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
    [Crossref]
  4. Y. Shi, G. Situ, and J. Zhang, “Multiple-image hiding in the Fresnel domain,” Opt. Lett. 32(13), 1914–1916 (2007).
    [Crossref] [PubMed]
  5. Y. Shi, G. Situ, and J. Zhang, “Multiple-image hiding by information prechoosing,” Opt. Lett. 33(6), 542–544 (2008).
    [Crossref] [PubMed]
  6. Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, and H. Li, “Optical image encryption via ptychography,” Opt. Lett. 38(9), 1425–1427 (2013).
    [Crossref] [PubMed]
  7. Q. Gao, Y. Wang, T. Li, and Y. Shi, “Optical encryption of unlimited-size images based on ptychographic scanning digital holography,” Appl. Opt. 53(21), 4700–4707 (2014).
    [Crossref] [PubMed]
  8. A. Chanana, A. Paulsen, S. Guruswamy, and A. Nahata, “Hiding multi-level multi-color images in terahertz metasurfaces,” Optica 3(12), 1466–1470 (2016).
    [Crossref]
  9. W. Xu, H. Xu, Y. Luo, T. Li, and Y. Shi, “Optical watermarking based on single-shot-ptychography encoding,” Opt. Express 24(24), 27922–27936 (2016).
    [Crossref] [PubMed]
  10. T. Shimobaba, Y. Endo, R. Hirayama, D. Hiyama, Y. Nagahama, S. Hasegawa, M. Sano, T. Takahashi, T. Kakue, M. Oikawa, and T. Ito, “Holographic microinformation hiding,” Appl. Opt. 56(4), 833–837 (2017).
    [Crossref] [PubMed]
  11. D. Kong, X. Shen, L. Cao, and G. Jin, “Phase retrieval for attacking fractional Fourier transform encryption,” Appl. Opt. 56(12), 3449–3456 (2017).
    [Crossref] [PubMed]
  12. F. Xu, G. Shulkind, C. Thrampoulidis, J. H. Shapiro, A. Torralba, F. N. C. Wong, and G. W. Wornell, “Revealing hidden scenes by photon-efficient occlusion-based opportunistic active imaging,” Opt. Express 26(8), 9945–9962 (2018).
    [Crossref] [PubMed]
  13. L. Zhang, X. Yuan, D. Zhang, and J. Chen, “Research on multiple-image encryption scheme based on Fourier transform and ghost imaging algorithm,” Curr. Opt. Photon. 2(4), 315–323 (2018).
  14. O. Kafri and E. Keren, “Encryption of pictures and shapes by random grids,” Opt. Lett. 12(6), 377–379 (1987).
    [Crossref] [PubMed]
  15. M. Naor and A. Shamir, “Visual cryptography,” Lect. Notes Comput. Sci. 950, 1–12 (1995).
    [Crossref]
  16. S. P. Kannojia and J. Kumar, “Role of visual cryptography schemes in information security: A review,” Int. J. Appl. Eng. Res. 13(13), 11340–11343 (2018).
  17. S. Jiao, C. Zhou, Y. Shi, W. Zou, and X. Li, “Review on optical image hiding and watermarking techniques,” Opt. Laser Technol. 109, 370–380 (2019).
    [Crossref]
  18. C. Blundo, A. D. Bonis, and A. D. Santis, “Improved schemes for visual cryptography,” Des. Codes Cryptogr. 24(3), 255–278 (2001).
    [Crossref]
  19. S. Cimato, A. De Santis, A. L. Ferrara, and B. Masucci, “Ideal contrast visual cryptography schemes with reversing,” Inf. Process. Lett. 93(4), 199–206 (2005).
    [Crossref]
  20. C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75(6), 255–259 (2000).
    [Crossref]
  21. C. Lin and W. Tsai, “Visual cryptography for gray-level images by dithering techniques,” Pattern Recognit. Lett. 24(1–3), 349–358 (2003).
    [Crossref]
  22. R. Lukac and K. Plataniotis, “Bit-level based secret sharing for image encryption,” Pattern Recognit. 38(5), 767–772 (2005).
    [Crossref]
  23. Y. Hou, “Visual cryptography for color images,” Pattern Recognit. 36(7), 1619–1629 (2003).
    [Crossref]
  24. H. Yamamoto, Y. Hayasaki, and N. Nishida, “Secure information display with limited viewing zone by use of multi-color visual cryptography,” Opt. Express 12(7), 1258–1270 (2004).
    [Crossref] [PubMed]
  25. J. Machizaud and T. Fournel, “Two-out-of-two color matching based visual cryptography schemes,” Opt. Express 20(20), 22847–22859 (2012).
    [Crossref] [PubMed]
  26. H. Wu and C. Chang, “Sharing visual multi-secrets using circle shares,” Comp. Stand. Inter. 28(1), 123–135 (2005).
    [Crossref]
  27. J. Feng, H. Wu, C. Tsai, Y. Chang, and Y. Chu, “Visual secret sharing for multiple secrets,” Pattern Recognit. 41(12), 3572–3581 (2008).
    [Crossref]
  28. A. Mishra and A. Gupta, “Multi secret sharing scheme using iterative method,” J. Inf. and Optim. Sci. 39(3), 631–641 (2018).
    [Crossref]
  29. C. Blundo, S. Cimato, and A. De Santis, “Visual cryptography schemes with optimal pixel expansion,” Theor. Comput. Sci. 369(1–3), 169–182 (2006).
    [Crossref]
  30. Y. Chen, Y. Chan, C. Huang, M. Tsai, and Y. Chu, “A multiple-level visual secret-sharing scheme without image size expansion,” Inf. Sci. 177(21), 4696–4710 (2007).
    [Crossref]
  31. W. Fang, “Offline QR code authorization based on visual cryptography,” in Proceedings of 2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing, (IEEE, 2011), pp. 89–92.
    [Crossref]
  32. S. Thamer and B. Ameen, “A new method for ciphering a message using QR code,” Comput. Sci. Eng. 6(2), 19–24 (2016).
  33. X. Cao, L. Feng, P. Cao, and J. Hu, “Secure QR code scheme based on visual cryptography,” in Proceedings of 2nd International Conference on Artificial Intelligence and Industrial Engineering, (Atlantis, 2016), pp. 433–436.
  34. J. Lu, Z. Yang, L. Li, W. Yuan, L. Li, and C. Chang, “Multiple schemes for mobile payment authentication using QR code and visual cryptography,” Mob. Inf. Syst. 2017, 4356038 (2017).
    [Crossref]
  35. M. Nakajima and Y. Yamaguchi, “Extended visual cryptography for natural images,” J. WSCG 10(2), 303–310 (2002).
  36. Z. Zhou, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15(8), 2441–2453 (2006).
    [Crossref] [PubMed]
  37. Z. Wang, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography via error diffusion,” IEEE Trans. Inf. Forensics Security 4(3), 383–396 (2009).
    [Crossref]
  38. Y. Shi and X. Yang, “Optical hiding with visual cryptography,” J. Opt. 19(11), 115703 (2017).
    [Crossref]
  39. Y. Shi and X. Yang, “Invisible visual cryptography,” Chin. Phys. Lett. 34(11), 114204 (2017).
    [Crossref]
  40. H. Yamamoto, Y. Hayasaki, and N. Nishida, “Securing information display by use of visual cryptography,” Opt. Lett. 28(17), 1564–1566 (2003).
    [Crossref] [PubMed]
  41. J. Machizaud, P. Chavel, and T. Fournel, “Fourier-based automatic alignment for improved Visual Cryptography schemes,” Opt. Express 19(23), 22709–22722 (2011).
    [Crossref] [PubMed]
  42. S. Jaya, Malik, A. Aggarwal, and A. Sardana, “Novel authentication system using visual cryptography,” in Proceedings of 2011 World Congress on Information and Communication Technologies, (IEEE, 2011), pp. 1181–1186.
    [Crossref]
  43. G. Wang, W. Yan, and M. Kankanhalli, “Content based authentication of visual cryptography,” Multimedia Tools Appl. 76(7), 9427–9441 (2017).
    [Crossref]
  44. V. Daisy, C. Joe, and S. Sugi, “An image based authentication technique using visual cryptography scheme,” in Proceedings of 2017 International Conference on Inventive Systems and Control (ICISC), (IEEE, 2017), pp. 1–6.
    [Crossref]
  45. S. Vyas, P. H. Wang, and Y. Luo, “Spatial mode multiplexing using volume holographic gratings,” Opt. Express 25(20), 23726–23737 (2017).
    [Crossref] [PubMed]
  46. L. Puyo, J. P. Huignard, and M. Atlan, “Off-axis digital holography with multiplexed volume Bragg gratings,” Appl. Opt. 57(12), 3281–3287 (2018).
    [Crossref] [PubMed]
  47. J. W. Goodman, Introduction to Fourier optics (Robert & Company Publishers, 2005).

2019 (1)

S. Jiao, C. Zhou, Y. Shi, W. Zou, and X. Li, “Review on optical image hiding and watermarking techniques,” Opt. Laser Technol. 109, 370–380 (2019).
[Crossref]

2018 (5)

2017 (7)

T. Shimobaba, Y. Endo, R. Hirayama, D. Hiyama, Y. Nagahama, S. Hasegawa, M. Sano, T. Takahashi, T. Kakue, M. Oikawa, and T. Ito, “Holographic microinformation hiding,” Appl. Opt. 56(4), 833–837 (2017).
[Crossref] [PubMed]

D. Kong, X. Shen, L. Cao, and G. Jin, “Phase retrieval for attacking fractional Fourier transform encryption,” Appl. Opt. 56(12), 3449–3456 (2017).
[Crossref] [PubMed]

S. Vyas, P. H. Wang, and Y. Luo, “Spatial mode multiplexing using volume holographic gratings,” Opt. Express 25(20), 23726–23737 (2017).
[Crossref] [PubMed]

J. Lu, Z. Yang, L. Li, W. Yuan, L. Li, and C. Chang, “Multiple schemes for mobile payment authentication using QR code and visual cryptography,” Mob. Inf. Syst. 2017, 4356038 (2017).
[Crossref]

Y. Shi and X. Yang, “Optical hiding with visual cryptography,” J. Opt. 19(11), 115703 (2017).
[Crossref]

Y. Shi and X. Yang, “Invisible visual cryptography,” Chin. Phys. Lett. 34(11), 114204 (2017).
[Crossref]

G. Wang, W. Yan, and M. Kankanhalli, “Content based authentication of visual cryptography,” Multimedia Tools Appl. 76(7), 9427–9441 (2017).
[Crossref]

2016 (3)

2014 (4)

Q. Gao, Y. Wang, T. Li, and Y. Shi, “Optical encryption of unlimited-size images based on ptychographic scanning digital holography,” Appl. Opt. 53(21), 4700–4707 (2014).
[Crossref] [PubMed]

M. Khan and T. Shah, “A literature review on image encryption techniques,” 3D Res. 5(4), 29–1722 (2014).
[Crossref]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

2009 (1)

Z. Wang, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography via error diffusion,” IEEE Trans. Inf. Forensics Security 4(3), 383–396 (2009).
[Crossref]

2008 (2)

Y. Shi, G. Situ, and J. Zhang, “Multiple-image hiding by information prechoosing,” Opt. Lett. 33(6), 542–544 (2008).
[Crossref] [PubMed]

J. Feng, H. Wu, C. Tsai, Y. Chang, and Y. Chu, “Visual secret sharing for multiple secrets,” Pattern Recognit. 41(12), 3572–3581 (2008).
[Crossref]

2007 (2)

Y. Shi, G. Situ, and J. Zhang, “Multiple-image hiding in the Fresnel domain,” Opt. Lett. 32(13), 1914–1916 (2007).
[Crossref] [PubMed]

Y. Chen, Y. Chan, C. Huang, M. Tsai, and Y. Chu, “A multiple-level visual secret-sharing scheme without image size expansion,” Inf. Sci. 177(21), 4696–4710 (2007).
[Crossref]

2006 (2)

Z. Zhou, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15(8), 2441–2453 (2006).
[Crossref] [PubMed]

C. Blundo, S. Cimato, and A. De Santis, “Visual cryptography schemes with optimal pixel expansion,” Theor. Comput. Sci. 369(1–3), 169–182 (2006).
[Crossref]

2005 (3)

H. Wu and C. Chang, “Sharing visual multi-secrets using circle shares,” Comp. Stand. Inter. 28(1), 123–135 (2005).
[Crossref]

R. Lukac and K. Plataniotis, “Bit-level based secret sharing for image encryption,” Pattern Recognit. 38(5), 767–772 (2005).
[Crossref]

S. Cimato, A. De Santis, A. L. Ferrara, and B. Masucci, “Ideal contrast visual cryptography schemes with reversing,” Inf. Process. Lett. 93(4), 199–206 (2005).
[Crossref]

2004 (1)

2003 (3)

H. Yamamoto, Y. Hayasaki, and N. Nishida, “Securing information display by use of visual cryptography,” Opt. Lett. 28(17), 1564–1566 (2003).
[Crossref] [PubMed]

Y. Hou, “Visual cryptography for color images,” Pattern Recognit. 36(7), 1619–1629 (2003).
[Crossref]

C. Lin and W. Tsai, “Visual cryptography for gray-level images by dithering techniques,” Pattern Recognit. Lett. 24(1–3), 349–358 (2003).
[Crossref]

2002 (1)

M. Nakajima and Y. Yamaguchi, “Extended visual cryptography for natural images,” J. WSCG 10(2), 303–310 (2002).

2001 (1)

C. Blundo, A. D. Bonis, and A. D. Santis, “Improved schemes for visual cryptography,” Des. Codes Cryptogr. 24(3), 255–278 (2001).
[Crossref]

2000 (1)

C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75(6), 255–259 (2000).
[Crossref]

1995 (1)

M. Naor and A. Shamir, “Visual cryptography,” Lect. Notes Comput. Sci. 950, 1–12 (1995).
[Crossref]

1987 (1)

Ameen, B.

S. Thamer and B. Ameen, “A new method for ciphering a message using QR code,” Comput. Sci. Eng. 6(2), 19–24 (2016).

Arce, G. R.

Z. Wang, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography via error diffusion,” IEEE Trans. Inf. Forensics Security 4(3), 383–396 (2009).
[Crossref]

Z. Zhou, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15(8), 2441–2453 (2006).
[Crossref] [PubMed]

Atlan, M.

Blundo, C.

C. Blundo, S. Cimato, and A. De Santis, “Visual cryptography schemes with optimal pixel expansion,” Theor. Comput. Sci. 369(1–3), 169–182 (2006).
[Crossref]

C. Blundo, A. D. Bonis, and A. D. Santis, “Improved schemes for visual cryptography,” Des. Codes Cryptogr. 24(3), 255–278 (2001).
[Crossref]

C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75(6), 255–259 (2000).
[Crossref]

Bonis, A. D.

C. Blundo, A. D. Bonis, and A. D. Santis, “Improved schemes for visual cryptography,” Des. Codes Cryptogr. 24(3), 255–278 (2001).
[Crossref]

Cao, L.

Chan, Y.

Y. Chen, Y. Chan, C. Huang, M. Tsai, and Y. Chu, “A multiple-level visual secret-sharing scheme without image size expansion,” Inf. Sci. 177(21), 4696–4710 (2007).
[Crossref]

Chanana, A.

Chang, C.

J. Lu, Z. Yang, L. Li, W. Yuan, L. Li, and C. Chang, “Multiple schemes for mobile payment authentication using QR code and visual cryptography,” Mob. Inf. Syst. 2017, 4356038 (2017).
[Crossref]

H. Wu and C. Chang, “Sharing visual multi-secrets using circle shares,” Comp. Stand. Inter. 28(1), 123–135 (2005).
[Crossref]

Chang, Y.

J. Feng, H. Wu, C. Tsai, Y. Chang, and Y. Chu, “Visual secret sharing for multiple secrets,” Pattern Recognit. 41(12), 3572–3581 (2008).
[Crossref]

Chavel, P.

Chen, J.

Chen, W.

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

Chen, X.

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

Chen, Y.

Y. Chen, Y. Chan, C. Huang, M. Tsai, and Y. Chu, “A multiple-level visual secret-sharing scheme without image size expansion,” Inf. Sci. 177(21), 4696–4710 (2007).
[Crossref]

Chu, Y.

J. Feng, H. Wu, C. Tsai, Y. Chang, and Y. Chu, “Visual secret sharing for multiple secrets,” Pattern Recognit. 41(12), 3572–3581 (2008).
[Crossref]

Y. Chen, Y. Chan, C. Huang, M. Tsai, and Y. Chu, “A multiple-level visual secret-sharing scheme without image size expansion,” Inf. Sci. 177(21), 4696–4710 (2007).
[Crossref]

Cimato, S.

C. Blundo, S. Cimato, and A. De Santis, “Visual cryptography schemes with optimal pixel expansion,” Theor. Comput. Sci. 369(1–3), 169–182 (2006).
[Crossref]

S. Cimato, A. De Santis, A. L. Ferrara, and B. Masucci, “Ideal contrast visual cryptography schemes with reversing,” Inf. Process. Lett. 93(4), 199–206 (2005).
[Crossref]

Daisy, V.

V. Daisy, C. Joe, and S. Sugi, “An image based authentication technique using visual cryptography scheme,” in Proceedings of 2017 International Conference on Inventive Systems and Control (ICISC), (IEEE, 2017), pp. 1–6.
[Crossref]

De Santis, A.

C. Blundo, S. Cimato, and A. De Santis, “Visual cryptography schemes with optimal pixel expansion,” Theor. Comput. Sci. 369(1–3), 169–182 (2006).
[Crossref]

S. Cimato, A. De Santis, A. L. Ferrara, and B. Masucci, “Ideal contrast visual cryptography schemes with reversing,” Inf. Process. Lett. 93(4), 199–206 (2005).
[Crossref]

C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75(6), 255–259 (2000).
[Crossref]

Di Crescenzo, G.

Z. Wang, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography via error diffusion,” IEEE Trans. Inf. Forensics Security 4(3), 383–396 (2009).
[Crossref]

Z. Zhou, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15(8), 2441–2453 (2006).
[Crossref] [PubMed]

Endo, Y.

Fang, W.

W. Fang, “Offline QR code authorization based on visual cryptography,” in Proceedings of 2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing, (IEEE, 2011), pp. 89–92.
[Crossref]

Feng, J.

J. Feng, H. Wu, C. Tsai, Y. Chang, and Y. Chu, “Visual secret sharing for multiple secrets,” Pattern Recognit. 41(12), 3572–3581 (2008).
[Crossref]

Ferrara, A. L.

S. Cimato, A. De Santis, A. L. Ferrara, and B. Masucci, “Ideal contrast visual cryptography schemes with reversing,” Inf. Process. Lett. 93(4), 199–206 (2005).
[Crossref]

Fournel, T.

Gao, Q.

Guo, C.

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

Gupta, A.

A. Mishra and A. Gupta, “Multi secret sharing scheme using iterative method,” J. Inf. and Optim. Sci. 39(3), 631–641 (2018).
[Crossref]

Guruswamy, S.

Hasegawa, S.

Hayasaki, Y.

Hirayama, R.

Hiyama, D.

Hou, Y.

Y. Hou, “Visual cryptography for color images,” Pattern Recognit. 36(7), 1619–1629 (2003).
[Crossref]

Huang, C.

Y. Chen, Y. Chan, C. Huang, M. Tsai, and Y. Chu, “A multiple-level visual secret-sharing scheme without image size expansion,” Inf. Sci. 177(21), 4696–4710 (2007).
[Crossref]

Huignard, J. P.

Ito, T.

Javidi, B.

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

Jaya, S.

S. Jaya, Malik, A. Aggarwal, and A. Sardana, “Novel authentication system using visual cryptography,” in Proceedings of 2011 World Congress on Information and Communication Technologies, (IEEE, 2011), pp. 1181–1186.
[Crossref]

Jiao, S.

S. Jiao, C. Zhou, Y. Shi, W. Zou, and X. Li, “Review on optical image hiding and watermarking techniques,” Opt. Laser Technol. 109, 370–380 (2019).
[Crossref]

Jin, G.

Joe, C.

V. Daisy, C. Joe, and S. Sugi, “An image based authentication technique using visual cryptography scheme,” in Proceedings of 2017 International Conference on Inventive Systems and Control (ICISC), (IEEE, 2017), pp. 1–6.
[Crossref]

Kafri, O.

Kakue, T.

Kankanhalli, M.

G. Wang, W. Yan, and M. Kankanhalli, “Content based authentication of visual cryptography,” Multimedia Tools Appl. 76(7), 9427–9441 (2017).
[Crossref]

Kannojia, S. P.

S. P. Kannojia and J. Kumar, “Role of visual cryptography schemes in information security: A review,” Int. J. Appl. Eng. Res. 13(13), 11340–11343 (2018).

Keren, E.

Khan, M.

M. Khan and T. Shah, “A literature review on image encryption techniques,” 3D Res. 5(4), 29–1722 (2014).
[Crossref]

Kong, D.

Kumar, J.

S. P. Kannojia and J. Kumar, “Role of visual cryptography schemes in information security: A review,” Int. J. Appl. Eng. Res. 13(13), 11340–11343 (2018).

Li, H.

Li, L.

J. Lu, Z. Yang, L. Li, W. Yuan, L. Li, and C. Chang, “Multiple schemes for mobile payment authentication using QR code and visual cryptography,” Mob. Inf. Syst. 2017, 4356038 (2017).
[Crossref]

J. Lu, Z. Yang, L. Li, W. Yuan, L. Li, and C. Chang, “Multiple schemes for mobile payment authentication using QR code and visual cryptography,” Mob. Inf. Syst. 2017, 4356038 (2017).
[Crossref]

Li, T.

Li, X.

S. Jiao, C. Zhou, Y. Shi, W. Zou, and X. Li, “Review on optical image hiding and watermarking techniques,” Opt. Laser Technol. 109, 370–380 (2019).
[Crossref]

Lin, C.

C. Lin and W. Tsai, “Visual cryptography for gray-level images by dithering techniques,” Pattern Recognit. Lett. 24(1–3), 349–358 (2003).
[Crossref]

Liu, S.

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

Lu, J.

J. Lu, Z. Yang, L. Li, W. Yuan, L. Li, and C. Chang, “Multiple schemes for mobile payment authentication using QR code and visual cryptography,” Mob. Inf. Syst. 2017, 4356038 (2017).
[Crossref]

Lukac, R.

R. Lukac and K. Plataniotis, “Bit-level based secret sharing for image encryption,” Pattern Recognit. 38(5), 767–772 (2005).
[Crossref]

Luo, Y.

Machizaud, J.

Masucci, B.

S. Cimato, A. De Santis, A. L. Ferrara, and B. Masucci, “Ideal contrast visual cryptography schemes with reversing,” Inf. Process. Lett. 93(4), 199–206 (2005).
[Crossref]

Mishra, A.

A. Mishra and A. Gupta, “Multi secret sharing scheme using iterative method,” J. Inf. and Optim. Sci. 39(3), 631–641 (2018).
[Crossref]

Nagahama, Y.

Nahata, A.

Nakajima, M.

M. Nakajima and Y. Yamaguchi, “Extended visual cryptography for natural images,” J. WSCG 10(2), 303–310 (2002).

Naor, M.

C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75(6), 255–259 (2000).
[Crossref]

M. Naor and A. Shamir, “Visual cryptography,” Lect. Notes Comput. Sci. 950, 1–12 (1995).
[Crossref]

Nishida, N.

Oikawa, M.

Paulsen, A.

Plataniotis, K.

R. Lukac and K. Plataniotis, “Bit-level based secret sharing for image encryption,” Pattern Recognit. 38(5), 767–772 (2005).
[Crossref]

Puyo, L.

Sano, M.

Santis, A. D.

C. Blundo, A. D. Bonis, and A. D. Santis, “Improved schemes for visual cryptography,” Des. Codes Cryptogr. 24(3), 255–278 (2001).
[Crossref]

Shah, T.

M. Khan and T. Shah, “A literature review on image encryption techniques,” 3D Res. 5(4), 29–1722 (2014).
[Crossref]

Shamir, A.

M. Naor and A. Shamir, “Visual cryptography,” Lect. Notes Comput. Sci. 950, 1–12 (1995).
[Crossref]

Shapiro, J. H.

Shen, X.

Sheridan, J. T.

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

Shi, Y.

Shimobaba, T.

Shulkind, G.

Situ, G.

Sugi, S.

V. Daisy, C. Joe, and S. Sugi, “An image based authentication technique using visual cryptography scheme,” in Proceedings of 2017 International Conference on Inventive Systems and Control (ICISC), (IEEE, 2017), pp. 1–6.
[Crossref]

Takahashi, T.

Thamer, S.

S. Thamer and B. Ameen, “A new method for ciphering a message using QR code,” Comput. Sci. Eng. 6(2), 19–24 (2016).

Thrampoulidis, C.

Torralba, A.

Tsai, C.

J. Feng, H. Wu, C. Tsai, Y. Chang, and Y. Chu, “Visual secret sharing for multiple secrets,” Pattern Recognit. 41(12), 3572–3581 (2008).
[Crossref]

Tsai, M.

Y. Chen, Y. Chan, C. Huang, M. Tsai, and Y. Chu, “A multiple-level visual secret-sharing scheme without image size expansion,” Inf. Sci. 177(21), 4696–4710 (2007).
[Crossref]

Tsai, W.

C. Lin and W. Tsai, “Visual cryptography for gray-level images by dithering techniques,” Pattern Recognit. Lett. 24(1–3), 349–358 (2003).
[Crossref]

Vyas, S.

Wang, G.

G. Wang, W. Yan, and M. Kankanhalli, “Content based authentication of visual cryptography,” Multimedia Tools Appl. 76(7), 9427–9441 (2017).
[Crossref]

Wang, P. H.

Wang, Y.

Wang, Z.

Z. Wang, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography via error diffusion,” IEEE Trans. Inf. Forensics Security 4(3), 383–396 (2009).
[Crossref]

Wong, F. N. C.

Wornell, G. W.

Wu, H.

J. Feng, H. Wu, C. Tsai, Y. Chang, and Y. Chu, “Visual secret sharing for multiple secrets,” Pattern Recognit. 41(12), 3572–3581 (2008).
[Crossref]

H. Wu and C. Chang, “Sharing visual multi-secrets using circle shares,” Comp. Stand. Inter. 28(1), 123–135 (2005).
[Crossref]

Xu, F.

Xu, H.

Xu, W.

Yamaguchi, Y.

M. Nakajima and Y. Yamaguchi, “Extended visual cryptography for natural images,” J. WSCG 10(2), 303–310 (2002).

Yamamoto, H.

Yan, W.

G. Wang, W. Yan, and M. Kankanhalli, “Content based authentication of visual cryptography,” Multimedia Tools Appl. 76(7), 9427–9441 (2017).
[Crossref]

Yang, X.

Y. Shi and X. Yang, “Optical hiding with visual cryptography,” J. Opt. 19(11), 115703 (2017).
[Crossref]

Y. Shi and X. Yang, “Invisible visual cryptography,” Chin. Phys. Lett. 34(11), 114204 (2017).
[Crossref]

Yang, Z.

J. Lu, Z. Yang, L. Li, W. Yuan, L. Li, and C. Chang, “Multiple schemes for mobile payment authentication using QR code and visual cryptography,” Mob. Inf. Syst. 2017, 4356038 (2017).
[Crossref]

Yuan, W.

J. Lu, Z. Yang, L. Li, W. Yuan, L. Li, and C. Chang, “Multiple schemes for mobile payment authentication using QR code and visual cryptography,” Mob. Inf. Syst. 2017, 4356038 (2017).
[Crossref]

Yuan, X.

Zhang, D.

Zhang, J.

Zhang, L.

Zhang, S.

Zhou, C.

S. Jiao, C. Zhou, Y. Shi, W. Zou, and X. Li, “Review on optical image hiding and watermarking techniques,” Opt. Laser Technol. 109, 370–380 (2019).
[Crossref]

Zhou, Z.

Z. Zhou, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15(8), 2441–2453 (2006).
[Crossref] [PubMed]

Zou, W.

S. Jiao, C. Zhou, Y. Shi, W. Zou, and X. Li, “Review on optical image hiding and watermarking techniques,” Opt. Laser Technol. 109, 370–380 (2019).
[Crossref]

3D Res. (1)

M. Khan and T. Shah, “A literature review on image encryption techniques,” 3D Res. 5(4), 29–1722 (2014).
[Crossref]

Adv. Opt. Photonics (1)

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photonics 6(2), 120–155 (2014).
[Crossref]

Appl. Opt. (4)

Chin. Phys. Lett. (1)

Y. Shi and X. Yang, “Invisible visual cryptography,” Chin. Phys. Lett. 34(11), 114204 (2017).
[Crossref]

Comp. Stand. Inter. (1)

H. Wu and C. Chang, “Sharing visual multi-secrets using circle shares,” Comp. Stand. Inter. 28(1), 123–135 (2005).
[Crossref]

Comput. Sci. Eng. (1)

S. Thamer and B. Ameen, “A new method for ciphering a message using QR code,” Comput. Sci. Eng. 6(2), 19–24 (2016).

Curr. Opt. Photon. (1)

Des. Codes Cryptogr. (1)

C. Blundo, A. D. Bonis, and A. D. Santis, “Improved schemes for visual cryptography,” Des. Codes Cryptogr. 24(3), 255–278 (2001).
[Crossref]

IEEE Trans. Image Process. (1)

Z. Zhou, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15(8), 2441–2453 (2006).
[Crossref] [PubMed]

IEEE Trans. Inf. Forensics Security (1)

Z. Wang, G. R. Arce, and G. Di Crescenzo, “Halftone visual cryptography via error diffusion,” IEEE Trans. Inf. Forensics Security 4(3), 383–396 (2009).
[Crossref]

Inf. Process. Lett. (2)

S. Cimato, A. De Santis, A. L. Ferrara, and B. Masucci, “Ideal contrast visual cryptography schemes with reversing,” Inf. Process. Lett. 93(4), 199–206 (2005).
[Crossref]

C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75(6), 255–259 (2000).
[Crossref]

Inf. Sci. (1)

Y. Chen, Y. Chan, C. Huang, M. Tsai, and Y. Chu, “A multiple-level visual secret-sharing scheme without image size expansion,” Inf. Sci. 177(21), 4696–4710 (2007).
[Crossref]

Int. J. Appl. Eng. Res. (1)

S. P. Kannojia and J. Kumar, “Role of visual cryptography schemes in information security: A review,” Int. J. Appl. Eng. Res. 13(13), 11340–11343 (2018).

J. Inf. and Optim. Sci. (1)

A. Mishra and A. Gupta, “Multi secret sharing scheme using iterative method,” J. Inf. and Optim. Sci. 39(3), 631–641 (2018).
[Crossref]

J. Opt. (1)

Y. Shi and X. Yang, “Optical hiding with visual cryptography,” J. Opt. 19(11), 115703 (2017).
[Crossref]

J. WSCG (1)

M. Nakajima and Y. Yamaguchi, “Extended visual cryptography for natural images,” J. WSCG 10(2), 303–310 (2002).

Lect. Notes Comput. Sci. (1)

M. Naor and A. Shamir, “Visual cryptography,” Lect. Notes Comput. Sci. 950, 1–12 (1995).
[Crossref]

Mob. Inf. Syst. (1)

J. Lu, Z. Yang, L. Li, W. Yuan, L. Li, and C. Chang, “Multiple schemes for mobile payment authentication using QR code and visual cryptography,” Mob. Inf. Syst. 2017, 4356038 (2017).
[Crossref]

Multimedia Tools Appl. (1)

G. Wang, W. Yan, and M. Kankanhalli, “Content based authentication of visual cryptography,” Multimedia Tools Appl. 76(7), 9427–9441 (2017).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (2)

S. Jiao, C. Zhou, Y. Shi, W. Zou, and X. Li, “Review on optical image hiding and watermarking techniques,” Opt. Laser Technol. 109, 370–380 (2019).
[Crossref]

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

Opt. Lett. (5)

Optica (1)

Pattern Recognit. (3)

J. Feng, H. Wu, C. Tsai, Y. Chang, and Y. Chu, “Visual secret sharing for multiple secrets,” Pattern Recognit. 41(12), 3572–3581 (2008).
[Crossref]

R. Lukac and K. Plataniotis, “Bit-level based secret sharing for image encryption,” Pattern Recognit. 38(5), 767–772 (2005).
[Crossref]

Y. Hou, “Visual cryptography for color images,” Pattern Recognit. 36(7), 1619–1629 (2003).
[Crossref]

Pattern Recognit. Lett. (1)

C. Lin and W. Tsai, “Visual cryptography for gray-level images by dithering techniques,” Pattern Recognit. Lett. 24(1–3), 349–358 (2003).
[Crossref]

Theor. Comput. Sci. (1)

C. Blundo, S. Cimato, and A. De Santis, “Visual cryptography schemes with optimal pixel expansion,” Theor. Comput. Sci. 369(1–3), 169–182 (2006).
[Crossref]

Other (5)

W. Fang, “Offline QR code authorization based on visual cryptography,” in Proceedings of 2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing, (IEEE, 2011), pp. 89–92.
[Crossref]

V. Daisy, C. Joe, and S. Sugi, “An image based authentication technique using visual cryptography scheme,” in Proceedings of 2017 International Conference on Inventive Systems and Control (ICISC), (IEEE, 2017), pp. 1–6.
[Crossref]

J. W. Goodman, Introduction to Fourier optics (Robert & Company Publishers, 2005).

X. Cao, L. Feng, P. Cao, and J. Hu, “Secure QR code scheme based on visual cryptography,” in Proceedings of 2nd International Conference on Artificial Intelligence and Industrial Engineering, (Atlantis, 2016), pp. 433–436.

S. Jaya, Malik, A. Aggarwal, and A. Sardana, “Novel authentication system using visual cryptography,” in Proceedings of 2011 World Congress on Information and Communication Technologies, (IEEE, 2011), pp. 1181–1186.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Six possible expansions P1-P6 for 2 × 2 case, (b) An example of the encoding process for white and black pixel of the secret image, (c) and (d) The encoded VK1 and VK2, respectively, (e) The revealed message of “surprise”.
Fig. 2
Fig. 2 Hiding procedure of the proposed visual-cryptographic image hiding system.
Fig. 3
Fig. 3 Optical fabrication schematic of visual keys.
Fig. 4
Fig. 4 Illustration of the holographic exposure with transmission type, (a) exposure, (b) extraction and (c) vector diagram of the HOE.
Fig. 5
Fig. 5 (a) Printed VKs as objects in the holographic exposure, (b) and (c) The fabricated two HOE-VKs.
Fig. 6
Fig. 6 Optical extraction facility for the HOE-VKs.
Fig. 7
Fig. 7 (a) and (b) The extracted results from the fabricated HOE-VKs, (c) Revealed image of “OK” by overlaying the two VKs.
Fig. 8
Fig. 8 Random noise analysis, (a) and (b) are the VKs with dust attack.
Fig. 9
Fig. 9 (a) and (b) are the reconstructed VKs with dust-noise pollution, (c) is the revealed image of “OK”.
Fig. 10
Fig. 10 Occlusion attack analysis, (a) and (b) are the HOE-VKs with 40% zone occlusion, (c) and (d) are the reconstructed two VKs, (e) is the decoded image of “OK”.
Fig. 11
Fig. 11 Bandwidth expansion with multiplexing technique of (a) incident angles, (b) polarization, and (c) wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

O( x,y )= 1 jλd exp( jkd ) U( x vk , y vk )exp{ j k 2d [ ( x x vk ) 2 + ( y y vk ) 2 ] }d x vk d y vk ,
k o = k r k h ,