Abstract

We have developed an approach to Fresnel domain ptychography in which the illumination consists of an interference pattern. This pattern is conveniently created by overlapping two coherent beams at an angle. Only the phase and orientation of the interferometric fringe pattern needs to be scanned to reconstruct a high-fidelity object image, which alleviates the requirements for accurate sample positioning and system stability. As such, the resulting imaging systems can be constructed in an extremely simple and robust way. Object images are reconstructed from recorded Fresnel diffraction data using a modified ptychographical iterative engine. We demonstrate the capabilities of this imaging system by recording images of various biological samples, demonstrating quantitative phase contrast as well as a spatial resolution better than 2.2 μm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced intensity variation for multiple-plane phase retrieval using a spatial light modulator as a convenient tunable diffuser

Percival F. Almoro, Quang Duc Pham, David Ignacio Serrano-Garcia, Satoshi Hasegawa, Yoshio Hayasaki, Mitsuo Takeda, and Toyohiko Yatagai
Opt. Lett. 41(10) 2161-2164 (2016)

Phase retrieval with resolution enhancement by using structured illumination

Peng Gao, Giancarlo Pedrini, and Wolfgang Osten
Opt. Lett. 38(24) 5204-5207 (2013)

X-ray ptychography using randomized zone plates

G. R. Morrison, F. Zhang, A. Gianoncelli, and I. K. Robinson
Opt. Express 26(12) 14915-14927 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Fienup, “Phase retrieval algorithms: A personal tour [Invited],” Appl. Opt. 52, 45–56 (2013).
    [Crossref] [PubMed]
  2. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [Crossref] [PubMed]
  3. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978).
    [Crossref] [PubMed]
  4. S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).
    [Crossref]
  5. D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction,” Opt. Lett. 39, 193–196 (2014).
    [Crossref] [PubMed]
  6. D. W. E. Noom, D. E. Boonzajer Flaes, E. Labordus, K. S. E. Eikema, and S. Witte, “High-speed multi-wavelength Fresnel diffraction imaging,” Opt. Express 22, 30504–30511 (2014).
    [Crossref]
  7. M. Sanz, J. A. Picazo-Bueno, J. García, and V. Micó, “Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm,” Opt. Express 23, 21352–21365 (2015).
    [Crossref] [PubMed]
  8. W. Harm, C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Lensless imaging through thin diffusive media,” Opt. Express 22, 22146–22156 (2014).
    [Crossref] [PubMed]
  9. R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728 (2015).
    [Crossref] [PubMed]
  10. M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: Phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
    [Crossref] [PubMed]
  11. J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
    [Crossref]
  12. F. Zhang, I. Peterson, J. Vila-Comamala, A. Diaz, F. Berenguer, R. Bean, B. Chen, A. Menzel, I. K. Robinson, and J. M. Rodenburg, “Translation position determination in ptychographic coherent diffraction imaging,” Opt. Express 21, 13592–13606 (2013).
    [Crossref] [PubMed]
  13. P. Dwivedi, A. P. Konijnenberg, S. F. Pereira, and H. P. Urbach, “Lateral position correction in ptychography using the gradient of intensity patterns,” Ultramicroscopy 192, 29–36 (2018).
    [Crossref] [PubMed]
  14. P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494, 68–71 (2013).
    [Crossref] [PubMed]
  15. J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlinear Optimization Algorithm for Partially Coherent Phase Retrieval and Source Recovery,” IEEE Trans. Comput. Imaging 2, 310–322 (2016).
    [Crossref]
  16. N. Burdet, X. Shi, D. Parks, J. N. Clark, X. Huang, S. D. Kevan, and I. K. Robinson, “Evaluation of partial coherence correction in X-ray ptychography,” Opt. Express 23, 5452 (2015).
    [Crossref] [PubMed]
  17. P. Li, T. Edo, D. J. Batey, J. M. Rodenburg, and A. M. Maiden, “Breaking ambiguities in mixed state ptychography,” Opt. Express 24, 9038–9052 (2016).
    [Crossref] [PubMed]
  18. L. Loetgering, H. Froese, T. Wilhein, and M. Rose, “Phase retrieval via propagation-based interferometry,” Phys. Rev. A 95, 033819 (2017).
    [Crossref]
  19. M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
    [Crossref] [PubMed]
  20. C. Falldorf, C. von Kopylow, and R. B. Bergmann, “Wave field sensing by means of computational shear interferometry,” J. Opt. Soc. Am. A 30, 1905 (2013).
    [Crossref]
  21. A. M. Maiden, M. J. Humphry, F. Zhang, and J. M. Rodenburg, “Superresolution imaging via ptychography,” J. Opt. Soc. Am. A 28, 604–612 (2011).
    [Crossref]
  22. J. Rodenburg, A. Hurst, and A. Cullis, “Transmission microscopy without lenses for objects of unlimited size,” Ultramicroscopy 107, 227–231 (2007).
    [Crossref]
  23. A. Maiden, D. Johnson, and P. Li, “Further improvements to the ptychographical iterative engine,” Optica 4, 736 (2017).
    [Crossref]
  24. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
    [Crossref] [PubMed]
  25. M. Odstrcil, P. Baksh, S. A. Boden, R. Card, J. E. Chad, J. G. Frey, and W. S. Brocklesby, “Ptychographic coherent diffractive imaging with orthogonal probe relaxation,” Opt. Express 24, 8360 (2016).
    [Crossref] [PubMed]
  26. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett., OL  24, 291–293 (1999).
    [Crossref]
  27. J. Vargas, J. A. Quiroga, and T. Belenguer, “Phase-shifting interferometry based on principal component analysis,” Opt. Lett. 36, 1326 (2011).
    [Crossref] [PubMed]
  28. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33, 156 (2008).
    [Crossref] [PubMed]
  29. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104, 100601 (2010).
    [Crossref] [PubMed]
  30. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
    [Crossref]
  31. W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181 (2010).
    [Crossref] [PubMed]
  32. G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” PNAS 108, 16889–16894 (2011).
    [Crossref] [PubMed]
  33. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref] [PubMed]
  34. M. Lei, X. Zhou, D. Dan, J. Qian, and B. Yao, “Fast DMD based super-resolution structured illumination microscopy,” in Frontiers in Optics 2016 (2016), Paper FF3A.5, (Optical Society of America, 2016), p. FF3A.5.
    [Crossref]
  35. D. J. Batey, Ptychographic imaging of mixed states, Ph.D. thesis (University of Sheffield, 2014).

2018 (1)

P. Dwivedi, A. P. Konijnenberg, S. F. Pereira, and H. P. Urbach, “Lateral position correction in ptychography using the gradient of intensity patterns,” Ultramicroscopy 192, 29–36 (2018).
[Crossref] [PubMed]

2017 (3)

L. Loetgering, H. Froese, T. Wilhein, and M. Rose, “Phase retrieval via propagation-based interferometry,” Phys. Rev. A 95, 033819 (2017).
[Crossref]

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

A. Maiden, D. Johnson, and P. Li, “Further improvements to the ptychographical iterative engine,” Optica 4, 736 (2017).
[Crossref]

2016 (3)

2015 (3)

2014 (3)

2013 (5)

2011 (3)

2010 (3)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181 (2010).
[Crossref] [PubMed]

2009 (1)

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

J. Rodenburg, A. Hurst, and A. Cullis, “Transmission microscopy without lenses for objects of unlimited size,” Ultramicroscopy 107, 227–231 (2007).
[Crossref]

2004 (1)

J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

2003 (1)

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).
[Crossref]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

1999 (1)

1997 (1)

1978 (1)

Antebi, Y.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” PNAS 108, 16889–16894 (2011).
[Crossref] [PubMed]

Baksh, P.

Batey, D. J.

Bean, R.

Belenguer, T.

Berenguer, F.

Bergmann, R. B.

Bernet, S.

Bevilacqua, F.

Bishara, W.

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Boden, S. A.

Boonzajer Flaes, D. E.

Brocklesby, W. S.

Burdet, N.

Card, R.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Chad, J. E.

Chapman, H. N.

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).
[Crossref]

Chen, B.

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Clare, R. M.

Clark, J. N.

Cloetens, P.

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: Phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref] [PubMed]

Coskun, A. F.

Cuche, E.

Cullis, A.

J. Rodenburg, A. Hurst, and A. Cullis, “Transmission microscopy without lenses for objects of unlimited size,” Ultramicroscopy 107, 227–231 (2007).
[Crossref]

Dan, D.

M. Lei, X. Zhou, D. Dan, J. Qian, and B. Yao, “Fast DMD based super-resolution structured illumination microscopy,” in Frontiers in Optics 2016 (2016), Paper FF3A.5, (Optical Society of America, 2016), p. FF3A.5.
[Crossref]

Depeursinge, C.

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Diaz, A.

Dierolf, M.

R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728 (2015).
[Crossref] [PubMed]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: Phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref] [PubMed]

Dwivedi, P.

P. Dwivedi, A. P. Konijnenberg, S. F. Pereira, and H. P. Urbach, “Lateral position correction in ptychography using the gradient of intensity patterns,” Ultramicroscopy 192, 29–36 (2018).
[Crossref] [PubMed]

Edo, T.

Eikema, K. S. E.

Elowitz, M. B.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” PNAS 108, 16889–16894 (2011).
[Crossref] [PubMed]

Enders, B.

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: Phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref] [PubMed]

Falldorf, C.

Faulkner, H. M.

J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

Fienup, J. R.

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Frey, J. G.

Froese, H.

L. Loetgering, H. Froese, T. Wilhein, and M. Rose, “Phase retrieval via propagation-based interferometry,” Phys. Rev. A 95, 033819 (2017).
[Crossref]

García, J.

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Guizar-Sicairos, M.

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

Harm, W.

Hau-Riege, S. P.

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).
[Crossref]

He, H.

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).
[Crossref]

Howells, M. R.

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).
[Crossref]

Huang, X.

Humphry, M. J.

Hurst, A.

J. Rodenburg, A. Hurst, and A. Cullis, “Transmission microscopy without lenses for objects of unlimited size,” Ultramicroscopy 107, 227–231 (2007).
[Crossref]

Jesacher, A.

Johnson, D.

Kevan, S. D.

Koch, F. J.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Konijnenberg, A. P.

P. Dwivedi, A. P. Konijnenberg, S. F. Pereira, and H. P. Urbach, “Lateral position correction in ptychography using the gradient of intensity patterns,” Ultramicroscopy 192, 29–36 (2018).
[Crossref] [PubMed]

Labordus, E.

Last, A.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Lee, S. A.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” PNAS 108, 16889–16894 (2011).
[Crossref] [PubMed]

Lei, M.

M. Lei, X. Zhou, D. Dan, J. Qian, and B. Yao, “Fast DMD based super-resolution structured illumination microscopy,” in Frontiers in Optics 2016 (2016), Paper FF3A.5, (Optical Society of America, 2016), p. FF3A.5.
[Crossref]

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Li, P.

Loetgering, L.

L. Loetgering, H. Froese, T. Wilhein, and M. Rose, “Phase retrieval via propagation-based interferometry,” Phys. Rev. A 95, 033819 (2017).
[Crossref]

Maiden, A.

Maiden, A. M.

Marchesini, S.

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).
[Crossref]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Menzel, A.

Micó, V.

Noom, D. W. E.

Noy, A.

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).
[Crossref]

Odstrcil, M.

Ozcan, A.

Parks, D.

Pereira, S. F.

P. Dwivedi, A. P. Konijnenberg, S. F. Pereira, and H. P. Urbach, “Lateral position correction in ptychography using the gradient of intensity patterns,” Ultramicroscopy 192, 29–36 (2018).
[Crossref] [PubMed]

Peterson, I.

Pfeiffer, F.

R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728 (2015).
[Crossref] [PubMed]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: Phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref] [PubMed]

Picazo-Bueno, J. A.

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

Qian, J.

M. Lei, X. Zhou, D. Dan, J. Qian, and B. Yao, “Fast DMD based super-resolution structured illumination microscopy,” in Frontiers in Optics 2016 (2016), Paper FF3A.5, (Optical Society of America, 2016), p. FF3A.5.
[Crossref]

Quiroga, J. A.

Rau, C.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Ritsch-Marte, M.

Robinson, I. K.

Rodenburg, J.

J. Rodenburg, A. Hurst, and A. Cullis, “Transmission microscopy without lenses for objects of unlimited size,” Ultramicroscopy 107, 227–231 (2007).
[Crossref]

Rodenburg, J. M.

Roider, C.

Romell, J.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Rose, M.

L. Loetgering, H. Froese, T. Wilhein, and M. Rose, “Phase retrieval via propagation-based interferometry,” Phys. Rev. A 95, 033819 (2017).
[Crossref]

Sala, S.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Sanz, M.

Shi, X.

Spence, J. C. H.

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).
[Crossref]

Stockmar, M.

R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728 (2015).
[Crossref] [PubMed]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: Phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref] [PubMed]

Su, T.-W.

Thibault, P.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494, 68–71 (2013).
[Crossref] [PubMed]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: Phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref] [PubMed]

Thurman, S. T.

Tian, L.

J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlinear Optimization Algorithm for Partially Coherent Phase Retrieval and Source Recovery,” IEEE Trans. Comput. Imaging 2, 310–322 (2016).
[Crossref]

Urbach, H. P.

P. Dwivedi, A. P. Konijnenberg, S. F. Pereira, and H. P. Urbach, “Lateral position correction in ptychography using the gradient of intensity patterns,” Ultramicroscopy 192, 29–36 (2018).
[Crossref] [PubMed]

Vargas, J.

Varma, P.

J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlinear Optimization Algorithm for Partially Coherent Phase Retrieval and Source Recovery,” IEEE Trans. Comput. Imaging 2, 310–322 (2016).
[Crossref]

Vila-Comamala, J.

von Kopylow, C.

Waller, L.

J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlinear Optimization Algorithm for Partially Coherent Phase Retrieval and Source Recovery,” IEEE Trans. Comput. Imaging 2, 310–322 (2016).
[Crossref]

Weierstall, U.

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).
[Crossref]

Wilhein, T.

L. Loetgering, H. Froese, T. Wilhein, and M. Rose, “Phase retrieval via propagation-based interferometry,” Phys. Rev. A 95, 033819 (2017).
[Crossref]

Witte, S.

Yamaguchi, I.

Yang, C.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” PNAS 108, 16889–16894 (2011).
[Crossref] [PubMed]

Yao, B.

M. Lei, X. Zhou, D. Dan, J. Qian, and B. Yao, “Fast DMD based super-resolution structured illumination microscopy,” in Frontiers in Optics 2016 (2016), Paper FF3A.5, (Optical Society of America, 2016), p. FF3A.5.
[Crossref]

Zanette, I.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728 (2015).
[Crossref] [PubMed]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: Phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref] [PubMed]

Zdora, M.-C.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Zhang, F.

Zhang, T.

Zheng, G.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” PNAS 108, 16889–16894 (2011).
[Crossref] [PubMed]

Zhong, J.

J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlinear Optimization Algorithm for Partially Coherent Phase Retrieval and Source Recovery,” IEEE Trans. Comput. Imaging 2, 310–322 (2016).
[Crossref]

Zhou, T.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Zhou, X.

M. Lei, X. Zhou, D. Dan, J. Qian, and B. Yao, “Fast DMD based super-resolution structured illumination microscopy,” in Frontiers in Optics 2016 (2016), Paper FF3A.5, (Optical Society of America, 2016), p. FF3A.5.
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

IEEE Trans. Comput. Imaging (1)

J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlinear Optimization Algorithm for Partially Coherent Phase Retrieval and Source Recovery,” IEEE Trans. Comput. Imaging 2, 310–322 (2016).
[Crossref]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Nat. Photonics (1)

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010).
[Crossref]

Nature (1)

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494, 68–71 (2013).
[Crossref] [PubMed]

Opt. Express (9)

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181 (2010).
[Crossref] [PubMed]

F. Zhang, I. Peterson, J. Vila-Comamala, A. Diaz, F. Berenguer, R. Bean, B. Chen, A. Menzel, I. K. Robinson, and J. M. Rodenburg, “Translation position determination in ptychographic coherent diffraction imaging,” Opt. Express 21, 13592–13606 (2013).
[Crossref] [PubMed]

W. Harm, C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Lensless imaging through thin diffusive media,” Opt. Express 22, 22146–22156 (2014).
[Crossref] [PubMed]

D. W. E. Noom, D. E. Boonzajer Flaes, E. Labordus, K. S. E. Eikema, and S. Witte, “High-speed multi-wavelength Fresnel diffraction imaging,” Opt. Express 22, 30504–30511 (2014).
[Crossref]

N. Burdet, X. Shi, D. Parks, J. N. Clark, X. Huang, S. D. Kevan, and I. K. Robinson, “Evaluation of partial coherence correction in X-ray ptychography,” Opt. Express 23, 5452 (2015).
[Crossref] [PubMed]

R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728 (2015).
[Crossref] [PubMed]

M. Sanz, J. A. Picazo-Bueno, J. García, and V. Micó, “Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm,” Opt. Express 23, 21352–21365 (2015).
[Crossref] [PubMed]

M. Odstrcil, P. Baksh, S. A. Boden, R. Card, J. E. Chad, J. G. Frey, and W. S. Brocklesby, “Ptychographic coherent diffractive imaging with orthogonal probe relaxation,” Opt. Express 24, 8360 (2016).
[Crossref] [PubMed]

P. Li, T. Edo, D. J. Batey, J. M. Rodenburg, and A. M. Maiden, “Breaking ambiguities in mixed state ptychography,” Opt. Express 24, 9038–9052 (2016).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (1)

Phys. Rev. A (1)

L. Loetgering, H. Froese, T. Wilhein, and M. Rose, “Phase retrieval via propagation-based interferometry,” Phys. Rev. A 95, 033819 (2017).
[Crossref]

Phys. Rev. B (1)

S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).
[Crossref]

Phys. Rev. Lett. (2)

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104, 100601 (2010).
[Crossref] [PubMed]

PNAS (1)

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” PNAS 108, 16889–16894 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: Phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref] [PubMed]

Ultramicroscopy (3)

P. Dwivedi, A. P. Konijnenberg, S. F. Pereira, and H. P. Urbach, “Lateral position correction in ptychography using the gradient of intensity patterns,” Ultramicroscopy 192, 29–36 (2018).
[Crossref] [PubMed]

J. Rodenburg, A. Hurst, and A. Cullis, “Transmission microscopy without lenses for objects of unlimited size,” Ultramicroscopy 107, 227–231 (2007).
[Crossref]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

Other (2)

M. Lei, X. Zhou, D. Dan, J. Qian, and B. Yao, “Fast DMD based super-resolution structured illumination microscopy,” in Frontiers in Optics 2016 (2016), Paper FF3A.5, (Optical Society of America, 2016), p. FF3A.5.
[Crossref]

D. J. Batey, Ptychographic imaging of mixed states, Ph.D. thesis (University of Sheffield, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Optical setup for interference probe ptychography. A laser (450 nm, Thorlabs LP450-SF15 or 520 nm, Thorlabs LP520-SF15) illuminates a grating (120 lp/mm, Edmund optics, #66-342), which is imaged onto the sample using a 4f-imaging system (f1=25 mm, f2=100mm), while blocking the zero order diffraction. The camera (IDS UI-5482LE-M) is positioned a short distance (approximately 1 mm) behind the sample. The illumination beams are called P(0) and P(1), at the sample plane. The grating is mounted on a rotatable mount to allow easy changing of the orientation of the fringes. The sample is mounted on a transition stage in order to repeatedly remove and insert it for the reference measurement. In order to shift the illumination pattern over the sample, the setup is mechanically disturbed. The laser is triggered to the camera to minimize motion blurring.
Fig. 2
Fig. 2 (a): estimated object shifts for probe orientations 1–8 of the USAF target. Most of the shifts are in the vertical direction, indicating that the object was slowly drifting down. (b): Geometrical indication of tilting a probe in order to shift the location of the reconstructed object without affecting the measured intensity patterns. If for a particular orientation i the initial back propagated image is shifted by Δx with respect to the required position, the overall angle of the two probes P i ( 0 ), P i ( 1 ) is tilted by angle −θ, such that after a new back propagation using Eq. (15), the object estimate is shifted to the desired position.
Fig. 3
Fig. 3 (a1–a3) Measured diffraction patterns for different path length differences (a1–a2) and different orientations (a3). (b) Back-focussed image of group 7.3–7.6, computed using a single measured diffraction pattern �� d [ I ( 0 ) ], showing artefacts created by the twin image. (c) Reconstructed intensity without taking into account the forward model as defined in Eq. (8). The area shown in a1-3 is roughly indicated by the red dashed area. (d) Reconstructed intensity including the forward model to account for imperfect mutual coherence.
Fig. 4
Fig. 4 (a–d) Intensity reconstruction of group 7 from a retrieved USAF sample, for a reconstruction with a numerical wavefront tilt corresponding to an object shift of 0, 0.25, 0.50, and 0.75 pixel. The smallest features that can be resolved are dependent on the numerical shift, even though the input data is identical. Reconstructing the data using MSR-PIE (e), reveals that the bars in group 7.6 with a width of 2.2 μm can now be separated.
Fig. 5
Fig. 5 (a) Amplitude-phase reconstruction of a mosquito wing, color represents phase as indicated in the lower left corner. (b) Amplitude of reconstructed field. (c1) A detail of the edge of the wing shows that the optical thickness increases from the edge to the center of the cell. (c2) Amplitude contrast closely resembles the smallest features visible with a microscope at similar resolution (c3). (d1) A thin vein in the center (indicated by the white arrow) can easily be tracked with the amplitude-phase reconstruction but is hardly visible in the amplitude reconstruction (d2) or under the microscope (d3). The structure within each cell is caused by tiny hairs and is properly reconstructed as shown in the green inset.
Fig. 6
Fig. 6 (a) Reconstructed amplitude image of an anesthesized C. elegans worm, with three insets, showing the edge of the worm (I), eggs (II) and the uterus (III). While the uterus can be recognized, most of the other features are not resolved. (b) Same dataset reconstructed with the s-PIE algorithm. The increase in resolution allows to see that the edge of the worm consists of two layers (I). Some egg-like features are visible (II), and more detail can be seen in the uterus. (c) Conventional bright-field microscope image of the same worm. In order to enhance the contrast in dark parts of the worm, the amplitude is shown instead of the intensity.
Fig. 7
Fig. 7 l2 norm of the remaining patterns in I′n after selecting npat measurements using the described procedure, for all orientations of the dataset used to reconstruct the USAF sample. For the orange dataset, the background patterns I i r ( 0 , 1 ) have been subtracted, indicating that typically only two patterns are required to extract most of the information. For the blue dataset, the raw measurements have been used without background subtraction, which seems to give slightly better results when more than three measurements have been included.
Fig. 8
Fig. 8 Reconstruction results for different numbers of input measurements. Three parameters have been varied: 1) the number of orientations nor, 2) the number of fringe patterns per orientation nφ, and 3) the number of orientations that are skipped when selecting a subset nskip (i.e. nskip=2 means 2× larger angle between consecutive orientations). The left column in every image is the retrieval result for the regular (S)PIE, right column is retrieved using our mean-(SR)-PIE. The top row (Orig) is without sub-pixel resolution, bottom row (Subpix.) is with 2×2 sub-pixel resolution. The number of iterations has been adjusted in such a way that the total number of feedback loops have been processed is nits = 1836/(nor · nφ).

Tables (1)

Tables Icon

Table 1 Overview of settings used for retrieval of all the objects in the paper. d : Automatically retrieved back-propagation distance. nor: Number of fringe orientations measured. nϕ: Number of diffraction patterns selected per fringe orientation. nits: Number of ptychographical iterations used for reconstruction. λ: Illumination wavelength. : Average coherence as extracted from the reference measurements. α: Angle between different grating orientations. CM: Coherence multiplier as defined in the main text.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

Ψ g , n , i , j = Ψ g , n , i , j ( 0 ) + Ψ g , n , i , j ( 1 )
Ψ g , n , i , j ( 0 ) = P i ( 0 ) O g , n exp ( + ι δ i , j / 2 )
Ψ g , n , i , j ( 1 ) = P i ( 1 ) O g , n exp ( ι δ i , j / 2 )
Ψ ˜ g , n , i , j = Ψ ˜ g , n , i , j ( 0 ) + Ψ ˜ g , n , i , j ( 1 )
Ψ ˜ g , n , i , j ( 0 ) = 𝒫 d [ Ψ g , n , i , j ( 0 ) ]
Ψ ˜ g , n , i , j ( 1 ) = 𝒫 d [ Ψ g , n , i , j ( 1 ) ]
Ψ ˜ = Ψ ˜ I measured I ˜ expected
J ˜ g , n , i , j = | Ψ ˜ g , n , i , j ( 0 ) | 2 + | Ψ ˜ g , n , i , j ( 1 ) | 2 + 2 γ C i ( Ψ ˜ g , n , i , j ( 0 ) Ψ ˜ g , n , i , j ( 1 ) * )
Ψ c , n , i , j = 𝒫 d [ Ψ ˜ g , n , i , j I i , j J ˜ g , n , i , j ]
P i , j = P i ( 0 ) exp ( + ι δ i , j / 2 ) + P i ( 1 ) exp ( ι δ i , j / 2 )
O c , n = O g , n + P i , j * ( 1 α ) | P i , j | 2 + α | P i , j | max ( Ψ c , n , i , j Ψ g , n , i , j ) .
Q ˜ i ( 0 ) = I i r ( 0 ) exp ( ι 2 ( k x x + k y y ) )
Q ˜ i ( 1 ) = I i r ( 1 ) exp ( ι 2 ( k x x + k y y ) + ι Φ i ) .
D i ( 0 ) ( z ) = | 𝒫 z [ ( I i ( 0 ) I i r ( 0 ) ) ] | 2
D i ( 1 ) ( z ) = | 𝒫 z [ ( I i ( 1 ) I i r ( 1 ) ) e + ι Φ i ] | 2
d i = argmin z D i ( 0 ) ( z ) D i ( 1 ) ( z ) 2
tan θ = Δ x i p d = Y
Y = Δ x i p / d ,
T ( θ ) = 2 π λ tan θ .
Δ k Δ x i ( x ) = 2 π λ p 2 Δ x i d x 2 N
P i ( 0 ) = 𝒫 d [ Q ˜ i ( 0 ) exp ( ι ( Δ k Δ y i ( y ) + Δ k Δ x i ( x ) ) ) ]
P i ( 1 ) = 𝒫 d [ Q ˜ i ( 1 ) exp ( ι ( Δ k Δ y i ( y ) + Δ k Δ x i ( x ) ) ) ]
I i , j mod = I i , j | Ψ ˜ i ( 0 ) | 2 + | Ψ ˜ i ( 1 ) | 2
δ i , j = argmax δ ( F i , j ( δ ) )
f i , j ( δ ) = K i ( δ ) | I i , j mod
K i ( δ ) = 2 C i ( Ψ ˜ i ( 0 ) Ψ ˜ i ( 1 ) * exp ι δ )
δ i , j = Arg ( 1 N i = 0 N f i , j ( δ ) exp ι δ ) .
J ˜ g , n , i , j ( x , y ) = J ˜ g , n , i , j ( 2 x + 0 , 2 y + 0 ) + J ˜ g , n , i , j ( 2 x + 0 , 2 y + 1 ) + J ˜ g , n , i , j ( 2 x + 1 , 2 y + 0 ) + J ˜ g , n , i , j ( 2 x + 1 , 2 y + 1 )
I n = I n I n | I 0 I n | I n I 0
n next = argmax n ( I n 2 )
O = O g , n + 5 Δ

Metrics