Abstract

Surface waves (SWs) have attracted a widespread attention due to the characteristic of subwavelength confinement and convenient manipulation in photonic integrated circuits. Though metasurface provides a powerful tool in realizing the conversion between freely propagating waves and surface modes in recent years, a gulf between guided waves (GWs) and SWs in terahertz (THz) range still exists as a bottleneck for on-chip photonic integrated devices. Here, we implemented the conversion from THz GWs to SWs through the coupling of a lithium niobate (LN) subwavelength waveguide and metasurface antennas on an all-feature on-chip THz integrated platform. The conversion process and transmission mode of the THz waves were directly visualized via a time-resolved imaging system. Based on the dynamic process, the formation of SWs could be clarified through analyzing the dispersion relation of propagating modes, which is in good agreement with numerical models. In further, relying on the numerical simulation, SWs were induced from the collective oscillations of the metasurface antenna array and the maximum coupling efficiency was around 62.6 percent. Our work provides an efficient approach to control of GWs, and promotes the practicability of THz surface integrated devices, including THz surface spectroscopy sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Visualization of guided and leaky wave behaviors in an indium tin oxide metallic slab waveguide

Stephanie M. Teo, Christopher A. Werley, Congshun Wang, Kebin Fan, Benjamin K. Ofori-Okai, Xin Zhang, Richard D. Averitt, and Keith A. Nelson
Opt. Express 23(11) 14876-14896 (2015)

THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide

Bin Zhang, Qiang Wu, Chongpei Pan, Ruobai Feng, Jingjun Xu, Cibo Lou, Xiaodong Wang, and Fuhua Yang
Opt. Express 23(12) 16042-16051 (2015)

Smooth bridge between guided waves and spoof surface plasmon polaritons

Liangliang Liu, Zhuo Li, Changqing Gu, Bingzheng Xu, Pingping Ning, Chen Chen, Jian Yan, Zhenyi Niu, and Yongjiu Zhao
Opt. Lett. 40(8) 1810-1813 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
    [Crossref]
  2. M. G. Somekh, S. Liu, T. S. Velinov, and C. W. See, “High-resolution scanning surface-plasmon microscopy,” Appl. Opt. 39(34), 6279–6287 (2000).
    [Crossref] [PubMed]
  3. J. Chen, Z. Li, S. Yue, and Q. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett. 11(7), 2933–2937 (2011).
    [Crossref] [PubMed]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  5. J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79(5), 51801 (2009).
    [Crossref]
  6. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [Crossref]
  7. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
    [Crossref]
  8. T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
    [Crossref]
  9. J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
    [Crossref] [PubMed]
  10. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
    [Crossref] [PubMed]
  11. R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photon. Res. 2(1), 24–30 (2014).
    [Crossref]
  12. B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010).
    [Crossref] [PubMed]
  13. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref] [PubMed]
  14. M. Lee and M. C. Wanke, “Applied physics. Searching for a solid-state terahertz technology,” Science 316(5821), 64–65 (2007).
    [Crossref] [PubMed]
  15. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  16. B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
    [Crossref]
  17. D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation,” Rev. Quant. Nondestruct. Eval. 24, 570–577 (2005).
    [Crossref]
  18. J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
    [Crossref]
  19. S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
    [Crossref]
  20. Y. Fan, J. Wang, H. Ma, J. Zhang, D. Feng, M. Feng, and S. Qu, “In-plane feed antennas based on phase gradient metasurface,” IEEE Trans. Antenn. Propag. 64(9), 3760–3765 (2016).
    [Crossref]
  21. C. A. Werley and K. A. Nelson, “The LiNbO3 slab waveguide: a platform for terahertz signal generation, detection, and control,” in Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques, P. Ferraro, S. Grilli, and P. D. Natale, eds. (Springer, 2014), pp. 423–452.
  22. C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Opt. Express 18(25), 26351–26364 (2010).
    [Crossref] [PubMed]
  23. Q. Wu, Q. Chen, B. Zhang, and J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
    [Crossref]
  24. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
    [Crossref] [PubMed]
  25. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
    [Crossref]
  26. Q. Wu, C. A. Werley, K. H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
    [Crossref] [PubMed]
  27. C. Pan, Q. Wu, Q. Zhang, W. Zhao, J. Qi, J. Yao, C. Zhang, W. T. Hill, and J. Xu, “Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors,” Opt. Express 25(9), 9768–9777 (2017).
    [Crossref] [PubMed]
  28. Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
    [Crossref] [PubMed]
  29. M. Mansuripur, “The uncertainty principle in classical optics,” Opt. Photonics News 13, 44–48 (2002).
  30. A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14(5), 2896–2901 (2014).
    [Crossref] [PubMed]
  31. Z. Chen and K. A. Nelson, “Modeling phonon-polariton generation and control in ferroelectric crystals,” Master dissertation (Massachusetts Institute of Technology, 2009).

2017 (3)

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

C. Pan, Q. Wu, Q. Zhang, W. Zhao, J. Qi, J. Yao, C. Zhang, W. T. Hill, and J. Xu, “Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors,” Opt. Express 25(9), 9768–9777 (2017).
[Crossref] [PubMed]

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

2016 (2)

Y. Fan, J. Wang, H. Ma, J. Zhang, D. Feng, M. Feng, and S. Qu, “In-plane feed antennas based on phase gradient metasurface,” IEEE Trans. Antenn. Propag. 64(9), 3760–3765 (2016).
[Crossref]

L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
[Crossref]

2014 (3)

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photon. Res. 2(1), 24–30 (2014).
[Crossref]

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14(5), 2896–2901 (2014).
[Crossref] [PubMed]

2013 (1)

Q. Wu, Q. Chen, B. Zhang, and J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

2012 (3)

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

2011 (1)

J. Chen, Z. Li, S. Yue, and Q. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett. 11(7), 2933–2937 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (3)

Q. Wu, C. A. Werley, K. H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
[Crossref] [PubMed]

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79(5), 51801 (2009).
[Crossref]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

2008 (2)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

2007 (1)

M. Lee and M. C. Wanke, “Applied physics. Searching for a solid-state terahertz technology,” Science 316(5821), 64–65 (2007).
[Crossref] [PubMed]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[Crossref]

2005 (2)

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation,” Rev. Quant. Nondestruct. Eval. 24, 570–577 (2005).
[Crossref]

2004 (2)

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[Crossref]

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

2002 (1)

M. Mansuripur, “The uncertainty principle in classical optics,” Opt. Photonics News 13, 44–48 (2002).

2000 (1)

Aassime, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Agarwal, A. M.

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Almási, G.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

Alonso-González, P.

A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14(5), 2896–2901 (2014).
[Crossref] [PubMed]

Alù, A.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[Crossref]

Apuzzo, A.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photon. Res. 2(1), 24–30 (2014).
[Crossref]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Bartal, B.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

Bawendi, M. G.

Beigang, R.

Blaize, S.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photon. Res. 2(1), 24–30 (2014).
[Crossref]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Breese, M. B. H.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

Chelnokov, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Chen, C. A.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Chen, H.

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Chen, H. Y.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Chen, I. T.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Chen, J.

J. Chen, Z. Li, S. Yue, and Q. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett. 11(7), 2933–2937 (2011).
[Crossref] [PubMed]

Chen, Q.

Q. Wu, Q. Chen, B. Zhang, and J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

Chui, S. T.

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79(5), 51801 (2009).
[Crossref]

Dagens, B.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Dai, X.

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Delacour, C.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Dorn, A.

Du, J.

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79(5), 51801 (2009).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Fan, S.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

Fan, Y.

Y. Fan, J. Wang, H. Ma, J. Zhang, D. Feng, M. Feng, and S. Qu, “In-plane feed antennas based on phase gradient metasurface,” IEEE Trans. Antenn. Propag. 64(9), 3760–3765 (2016).
[Crossref]

Feng, D.

Y. Fan, J. Wang, H. Ma, J. Zhang, D. Feng, M. Feng, and S. Qu, “In-plane feed antennas based on phase gradient metasurface,” IEEE Trans. Antenn. Propag. 64(9), 3760–3765 (2016).
[Crossref]

Feng, M.

Y. Fan, J. Wang, H. Ma, J. Zhang, D. Feng, M. Feng, and S. Qu, “In-plane feed antennas based on phase gradient metasurface,” IEEE Trans. Antenn. Propag. 64(9), 3760–3765 (2016).
[Crossref]

Fernández-Domínguez, A. I.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Fevrier, M.

Février, M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Fukuda, H.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[Crossref]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Gogol, P.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Gong, Q.

J. Chen, Z. Li, S. Yue, and Q. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett. 11(7), 2933–2937 (2011).
[Crossref] [PubMed]

Goto, T.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[Crossref]

Guo, J.

Gwo, S.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Han, Z.

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Hanham, S. M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Hebling, J.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

Hill, W. T.

Hillenbrand, R.

A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14(5), 2896–2901 (2014).
[Crossref] [PubMed]

Hong, M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Katagiri, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[Crossref]

Kim, M. H.

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Klein, N.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Kobayashi, I.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[Crossref]

Kuhl, J.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Lee, M.

M. Lee and M. C. Wanke, “Applied physics. Searching for a solid-state terahertz technology,” Science 316(5821), 64–65 (2007).
[Crossref] [PubMed]

Lee, Y. H.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Li, X.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Li, Y.

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Li, Z.

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett. 11(7), 2933–2937 (2011).
[Crossref] [PubMed]

Liew, Y. F.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Lin, K. H.

Lin, M. H.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Lin, Z.

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79(5), 51801 (2009).
[Crossref]

Liu, S.

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79(5), 51801 (2009).
[Crossref]

M. G. Somekh, S. Liu, T. S. Velinov, and C. W. See, “High-resolution scanning surface-plasmon microscopy,” Appl. Opt. 39(34), 6279–6287 (2000).
[Crossref] [PubMed]

Loncar, M.

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Lourtioz, J. M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Lu, M.

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Ma, H.

Y. Fan, J. Wang, H. Ma, J. Zhang, D. Feng, M. Feng, and S. Qu, “In-plane feed antennas based on phase gradient metasurface,” IEEE Trans. Antenn. Propag. 64(9), 3760–3765 (2016).
[Crossref]

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Madaras, E. I.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation,” Rev. Quant. Nondestruct. Eval. 24, 570–577 (2005).
[Crossref]

Maier, S. A.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[Crossref]

Mansuripur, M.

M. Mansuripur, “The uncertainty principle in classical optics,” Opt. Photonics News 13, 44–48 (2002).

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Mégy, R.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Mitsuoka, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[Crossref]

Mohammadi Estakhri, N.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Nakano, Y.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[Crossref]

Nelson, K. A.

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Ng, B.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Nikitin, A. Y.

A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14(5), 2896–2901 (2014).
[Crossref] [PubMed]

Overvig, A. C.

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pan, C.

Paul, O.

Qi, J.

Qu, S.

Y. Fan, J. Wang, H. Ma, J. Zhang, D. Feng, M. Feng, and S. Qu, “In-plane feed antennas based on phase gradient metasurface,” IEEE Trans. Antenn. Propag. 64(9), 3760–3765 (2016).
[Crossref]

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Rahm, M.

Reinhard, B.

Salas-Montiel, R.

See, C. W.

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

Shi, J.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Shih, C. K.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Shinojima, H.

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[Crossref]

Shrestha, S.

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Somekh, M. G.

Stein, A.

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

Stuk, G.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation,” Rev. Quant. Nondestruct. Eval. 24, 570–577 (2005).
[Crossref]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Tellez-Limon, R.

Valdmanis, J. A.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation,” Rev. Quant. Nondestruct. Eval. 24, 570–577 (2005).
[Crossref]

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Velinov, T. S.

Wang, C.

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Wang, J.

Y. Fan, J. Wang, H. Ma, J. Zhang, D. Feng, M. Feng, and S. Qu, “In-plane feed antennas based on phase gradient metasurface,” IEEE Trans. Antenn. Propag. 64(9), 3760–3765 (2016).
[Crossref]

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Wang, Y.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Wanke, M. C.

M. Lee and M. C. Wanke, “Applied physics. Searching for a solid-state terahertz technology,” Science 316(5821), 64–65 (2007).
[Crossref] [PubMed]

Werley, C. A.

White, J. S.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation,” Rev. Quant. Nondestruct. Eval. 24, 570–577 (2005).
[Crossref]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Williamson, S.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation,” Rev. Quant. Nondestruct. Eval. 24, 570–577 (2005).
[Crossref]

Winfree, W. P.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation,” Rev. Quant. Nondestruct. Eval. 24, 570–577 (2005).
[Crossref]

Wu, J.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Wu, L.

Wu, Q.

Xiang, Y.

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, H.

Xu, J.

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, Z.

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Yang, C.

Yao, J.

Yu, N.

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Yue, S.

J. Chen, Z. Li, S. Yue, and Q. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett. 11(7), 2933–2937 (2011).
[Crossref] [PubMed]

Zhang, A.

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Zhang, B.

Q. Wu, Q. Chen, B. Zhang, and J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

Zhang, C.

Zhang, J.

Y. Fan, J. Wang, H. Ma, J. Zhang, D. Feng, M. Feng, and S. Qu, “In-plane feed antennas based on phase gradient metasurface,” IEEE Trans. Antenn. Propag. 64(9), 3760–3765 (2016).
[Crossref]

Zhang, Q.

Zhang, X. Q.

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Zhao, W.

Zhou, H.

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Zhou, L.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Zi, J.

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79(5), 51801 (2009).
[Crossref]

Zimdars, D.

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation,” Rev. Quant. Nondestruct. Eval. 24, 570–577 (2005).
[Crossref]

ACS Photonics (1)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photonics 1(10), 1059–1067 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

Appl. Phys. Lett. (3)

J. Wang, S. Qu, H. Ma, Z. Xu, A. Zhang, H. Zhou, H. Chen, and Y. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006).
[Crossref]

T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004).
[Crossref]

Front. Phys. (1)

Q. Wu, Q. Chen, B. Zhang, and J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

Y. Fan, J. Wang, H. Ma, J. Zhang, D. Feng, M. Feng, and S. Qu, “In-plane feed antennas based on phase gradient metasurface,” IEEE Trans. Antenn. Propag. 64(9), 3760–3765 (2016).
[Crossref]

Nano Lett. (3)

A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, “Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials,” Nano Lett. 14(5), 2896–2901 (2014).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett. 11(7), 2933–2937 (2011).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Shi, M. H. Lin, I. T. Chen, N. Mohammadi Estakhri, X. Q. Zhang, Y. Wang, H. Y. Chen, C. A. Chen, C. K. Shih, A. Alù, X. Li, Y. H. Lee, and S. Gwo, “Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton,” Nat. Commun. 8(1), 35 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Z. Li, M. H. Kim, C. Wang, Z. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, and N. Yu, “Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces,” Nat. Nanotechnol. 12(7), 675–683 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Photonics News (1)

M. Mansuripur, “The uncertainty principle in classical optics,” Opt. Photonics News 13, 44–48 (2002).

Photon. Res. (2)

Phys. Rev. A (1)

J. Du, S. Liu, Z. Lin, J. Zi, and S. T. Chui, “Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays,” Phys. Rev. A 79(5), 51801 (2009).
[Crossref]

Phys. Rev. Lett. (1)

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[Crossref] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Rev. Quant. Nondestruct. Eval. (1)

D. Zimdars, J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, “Technology and applications of terahertz imaging non-destructive examination: inspection of space shuttle sprayed on foam insulation,” Rev. Quant. Nondestruct. Eval. 24, 570–577 (2005).
[Crossref]

Science (2)

M. Lee and M. C. Wanke, “Applied physics. Searching for a solid-state terahertz technology,” Science 316(5821), 64–65 (2007).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Other (2)

C. A. Werley and K. A. Nelson, “The LiNbO3 slab waveguide: a platform for terahertz signal generation, detection, and control,” in Ferroelectric Crystals for Photonic Applications: Including Nanoscale Fabrication and Characterization Techniques, P. Ferraro, S. Grilli, and P. D. Natale, eds. (Springer, 2014), pp. 423–452.

Z. Chen and K. A. Nelson, “Modeling phonon-polariton generation and control in ferroelectric crystals,” Master dissertation (Massachusetts Institute of Technology, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The experimental geometry. 800 nm pump beam (red) is line-focused orthogonally into 50 μm thick LN slab to generate counterpropagating THz waves (black solid curve), one of which then encounters the hybrid structure. (b) Microscope image of a sample. Detailed designed parameters d, a, l and w are fixed as 12 µm, 6 µm, 70 µm and 30 µm, respectively. (c) Schematic diagram of the pump-probe setup. The focal lengths of the lenses are f1 = 10 cm and f2 = 15 cm, respectively. The sample is imaged into the CCD camera through lens group. The phase plate is placed in the Fourier plane of the first lens. The 400 nm probe branch (blue) illuminates the whole sample at normal incidence.
Fig. 2
Fig. 2 (a) and (b) The space-time plots of the hybrid structure with the image intensity showing THz E-field, which suggest the results of SWs propagating in the gap (|y| < 15 µm) from experiment and numerical simulations. (c) The space–time plot of the bare LN subwavelength waveguide as a reference. Two black dashed lines are the metasurface edges in Figs. 2(a)-2(c). These plots are divided into three regions: incidence (Inci.) and reflection region (Refl.), metasurface region (Meta. region) and transmitted region (Tran.). (d)-(f) The dispersion curves of excited modes are obtained from experiment and numerical simulation by performing 2D Fourier transform of the region between two dashed lines in Figs. 2(a)-2(c). In Figs. 2(d)-2(f), the black dashed curves: theoretically calculated the first two dispersion curves of the waveguide modes ( TE 0 andTE 1 ) for a bare 50 µm-thick LN slab. White lines: light line in air.
Fig. 3
Fig. 3 (a-b) and (c-d) The E-field intensity maps are recorded in the symmetrical plane (y = 0 plane) of the hybrid structure at f = 0.27 THz and 0.43 THz, respectively. Rectangular dashed frame and two black dashed lines indicate the locations of the antenna array and the LN subwavelength waveguide. The relative intensity |E| at the center of the gap (blue line) and the middle line (y = 0, z = 0) in the LN waveguide (red line) are shown in the Fig. 3(b) and 3(d). (e) Simulated coupling efficiency from the mode of stand-alone LN subwavelength waveguide to the SWs. (f) The field confinement in the SWs over the guided mode. The maximal field enhancement of the upper panel is 5 times relative to the lower. The black dashed line is the boundary of the cross section of the planar waveguide.
Fig. 4
Fig. 4 (a)-(d) Top view maps of the y and z components of the E-field in the midplane of the antenna array at f = 0.27 THz (up row) and 0.43 THz (down row), respectively. The dashed frames are the boundaries of the antenna array. (e) and (f) Phase profiles along the propagation direction extracted from both side of the single antenna. Red line is inner side of antenna at y = 15 µm, and blue line is outer side at y = 85 µm.
Fig. 5
Fig. 5 The perspective, top (XY), front (XZ), and left (YZ) view of the simulation model are provided. The red dielectric waveguide is a 50 μm thick LN waveguide. The optical axis of LN, long axis of the antenna and the polarization directions of dipoles are along the y direction. A column of dipoles with an interval of 4 μm is set inside the waveguide to produce the THz waves.
Fig. 6
Fig. 6 (a-d) The effects of different gap (g) on the dispersion relation of SWs mode. The width of the SWs mode, Δf, gives an estimate of the lifetime of the SWs. 1/ Δf65.8ps when g=5μm. The blue dash line is light line in air. (e) The electric intensity distribution of the SWs along the thickness of waveguide (z axis) at the symmetrical plane (y = 0) with varying g. The dash lines are the boundaries of the planar waveguide. (f) The blue solid line indicates the integration of the electric field immersed in the waveguide. The black solid line provides an estimate of the lifetime of the SWs.
Fig. 7
Fig. 7 (a-c) The influence of different antenna length (l) on the dispersion relation of SWs mode. The blue dash line is light line in air.

Tables (1)

Tables Icon

Table 1 Physical constants for THz waves in LN.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δφ( x,y,t )=2π L λ Δn(x,y,t)=2π L λ n eo 3 r 33 2 E THz (x,y,t).
E( k x ,f)= E(x,t) e i2π( k x x+ft) dxdt.
ε (w)= ε + w TO 2 ( ε 0 ε ) w TO 2 w 2 iw Γ ,
ε (w)= ε + w TO 2 ( ε 0 ε ) w TO 2 w 2 iw Γ .

Metrics