L. Han, “Scattering of a high-order Bessel beam by a spheroidal particle,” J. Quant. Spectrosc. Radiat. Transf. 211, 129–137 (2018).

[Crossref]

J. J. Wang, Y. P. Han, J. Y. Chang, and Z. Y. Chen, “Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model,” J. Quant. Spectrosc. Radiat. Transf. 206, 22–30 (2018).

[Crossref]

N. Mphuthi, R. Botha, and A. Forbes, “Are Bessel beams resilient to aberrations and turbulence?” J. Opt. Soc. Am. A 35(6), 1021–1027 (2018).

[Crossref]
[PubMed]

A. Chen, J. Wang, Y. Han, Z. Cui, and M. Yu, “Implementation of nondiffracting Bessel beam sources in FDTD for scattering by complex particles,” Opt. Express 26(20), 26766–26775 (2018).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).

[Crossref]

R. Li, C. Ding, and F. G. Mitri, “Optical spin torque induced by vector Bessel (vortex) beams with selective polarizations on a light-absorptive sphere of arbitrary size,” J. Quant. Spectrosc. Radiat. Transf. 196, 53–68 (2017).

[Crossref]

M. Yang, Y. Wu, X. Sheng, and K. F. Ren, “Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm,” J. Opt. 19(12), 125606 (2017).

[Crossref]

Z. Gong, W. Li, Y. Chai, Y. Zhao, and F. G. Mitri, “T-matrix method for acoustical Bessel beam scattering from a rigid finite cylinder with spheroidal endcaps,” Ocean Eng. 129, 507–519 (2017).

[Crossref]

W. Sun, Y. Hu, C. Weimer, K. Ayers, R. R. Baize, and T. Lee, “A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics,” J. Quant. Spectrosc. Radiat. Transf. 188, 200–213 (2017).

[Crossref]

B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow [Invited],” Opt. Mater. Express 7(6), 1820–1847 (2017).

[Crossref]

F. G. Mitri, “Reverse orbiting and spinning of a Rayleigh dielectric spheroid in a J0 Bessel optical beam,” J. Opt. Soc. Am. B 34(10), 2169–2178 (2017).

[Crossref]

Z. Gong, W. Li, F. G. Mitri, Y. Chai, and Y. Zhao, “Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio,” J. Sound Vibrat. 383, 233–247 (2016).

[Crossref]

J. J. Wang, T. Wriedt, J. A. Lock, and L. Mädler, “General description of circularly symmetric Bessel beams of arbitrary order,” J. Quant. Spectrosc. Radiat. Transf. 184, 218–232 (2016).

[Crossref]

D. Fan, L. Wang, and Y. Ekinci, “Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength,” Sci. Rep. 6(1), 31301 (2016).

[Crossref]
[PubMed]

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser Photonics Rev. 10(1), 147–152 (2016).

[Crossref]

F. Courvoisier, R. Stoian, and A. Couairon, "[INVITED] Ultrafast laser micro- and nano-processing with nondiffracting and curved beams,” Opt. Laser Technol. 80, 125–137 (2016).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations,” Ann. Phys. 361, 120–147 (2015).

[Crossref]

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).

[Crossref]
[PubMed]

X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Appl. Opt. 54(36), 10641–10649 (2015).

[Crossref]
[PubMed]

Z. Cui, Y. Han, Z. Chen, and L. Han, “Scattering of Bessel beam by arbitrarily shaped composite particles with core–shell structure,” J. Quant. Spectrosc. Radiat. Transf. 144, 108–116 (2014).

[Crossref]

R. Li, K. F. Ren, X. e. Han, Z. Wu, L. Guo, and S. Gong, “Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series,” J. Quant. Spectrosc. Radiat. Transf. 126, 69–77 (2013).

[Crossref]

İ. R. Çapoğlu, A. Taflove, and V. Backman, “Computation of tightly-focused laser beams in the FDTD method,” Opt. Express 21(1), 87–101 (2013).

[Crossref]
[PubMed]

J. A. Lock, “Angular spectrum and localized model of Davis-type beam,” J. Opt. Soc. Am. A 30(3), 489–500 (2013).

[Crossref]
[PubMed]

M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of Propagating Bessel Beams Using Leaky-Wave Modes: Experimental Validation,” IEEE Trans. Antenn. Propag. 60(6), 2645–2653 (2012).

[Crossref]

P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16(2), 507–523 (2008).

[Crossref]
[PubMed]

S.-Y. Sung and Y.-G. Lee, “Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method,” Opt. Express 16(5), 3463–3473 (2008).

[Crossref]
[PubMed]

İ. R. Çapoğlu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16(23), 19208–19220 (2008).

[Crossref]
[PubMed]

J. Xi, Q. Li, and J. Wang, “Numerical simulation of Bessel beams by FDTD employing the superposition principle,” Optik (Stuttg.) 118(7), 315–318 (2007).

[Crossref]

areT. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).

[Crossref]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).

[Crossref]

D. Li and K. Imasaki, “Vacuum laser-driven acceleration by a slits-truncated Bessel beam,” Appl. Phys. Lett. 86(3), 031110 (2005).

[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).

[Crossref]
[PubMed]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).

[Crossref]

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4–6), 207–211 (1998).

[Crossref]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85(2-3), 159–161 (1991).

[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).

[Crossref]

W. Sun, Y. Hu, C. Weimer, K. Ayers, R. R. Baize, and T. Lee, “A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics,” J. Quant. Spectrosc. Radiat. Transf. 188, 200–213 (2017).

[Crossref]

İ. R. Çapoğlu, A. Taflove, and V. Backman, “Computation of tightly-focused laser beams in the FDTD method,” Opt. Express 21(1), 87–101 (2013).

[Crossref]
[PubMed]

İ. R. Çapoğlu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16(23), 19208–19220 (2008).

[Crossref]
[PubMed]

W. Sun, Y. Hu, C. Weimer, K. Ayers, R. R. Baize, and T. Lee, “A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics,” J. Quant. Spectrosc. Radiat. Transf. 188, 200–213 (2017).

[Crossref]

areT. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).

[Crossref]

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4–6), 207–211 (1998).

[Crossref]

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).

[Crossref]
[PubMed]

İ. R. Çapoğlu, A. Taflove, and V. Backman, “Computation of tightly-focused laser beams in the FDTD method,” Opt. Express 21(1), 87–101 (2013).

[Crossref]
[PubMed]

İ. R. Çapoğlu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16(23), 19208–19220 (2008).

[Crossref]
[PubMed]

Z. Gong, W. Li, Y. Chai, Y. Zhao, and F. G. Mitri, “T-matrix method for acoustical Bessel beam scattering from a rigid finite cylinder with spheroidal endcaps,” Ocean Eng. 129, 507–519 (2017).

[Crossref]

Z. Gong, W. Li, F. G. Mitri, Y. Chai, and Y. Zhao, “Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio,” J. Sound Vibrat. 383, 233–247 (2016).

[Crossref]

J. J. Wang, Y. P. Han, J. Y. Chang, and Z. Y. Chen, “Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model,” J. Quant. Spectrosc. Radiat. Transf. 206, 22–30 (2018).

[Crossref]

Z. Cui, Y. Han, Z. Chen, and L. Han, “Scattering of Bessel beam by arbitrarily shaped composite particles with core–shell structure,” J. Quant. Spectrosc. Radiat. Transf. 144, 108–116 (2014).

[Crossref]

J. J. Wang, Y. P. Han, J. Y. Chang, and Z. Y. Chen, “Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model,” J. Quant. Spectrosc. Radiat. Transf. 206, 22–30 (2018).

[Crossref]

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4–6), 207–211 (1998).

[Crossref]

areT. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).

[Crossref]

F. Courvoisier, R. Stoian, and A. Couairon, "[INVITED] Ultrafast laser micro- and nano-processing with nondiffracting and curved beams,” Opt. Laser Technol. 80, 125–137 (2016).

[Crossref]

F. Courvoisier, R. Stoian, and A. Couairon, "[INVITED] Ultrafast laser micro- and nano-processing with nondiffracting and curved beams,” Opt. Laser Technol. 80, 125–137 (2016).

[Crossref]

A. Chen, J. Wang, Y. Han, Z. Cui, and M. Yu, “Implementation of nondiffracting Bessel beam sources in FDTD for scattering by complex particles,” Opt. Express 26(20), 26766–26775 (2018).

[Crossref]

Z. Cui, Y. Han, Z. Chen, and L. Han, “Scattering of Bessel beam by arbitrarily shaped composite particles with core–shell structure,” J. Quant. Spectrosc. Radiat. Transf. 144, 108–116 (2014).

[Crossref]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).

[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).

[Crossref]
[PubMed]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).

[Crossref]

R. Li, C. Ding, and F. G. Mitri, “Optical spin torque induced by vector Bessel (vortex) beams with selective polarizations on a light-absorptive sphere of arbitrary size,” J. Quant. Spectrosc. Radiat. Transf. 196, 53–68 (2017).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations,” Ann. Phys. 361, 120–147 (2015).

[Crossref]

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser Photonics Rev. 10(1), 147–152 (2016).

[Crossref]

D. Fan, L. Wang, and Y. Ekinci, “Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength,” Sci. Rep. 6(1), 31301 (2016).

[Crossref]
[PubMed]

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).

[Crossref]
[PubMed]

M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of Propagating Bessel Beams Using Leaky-Wave Modes: Experimental Validation,” IEEE Trans. Antenn. Propag. 60(6), 2645–2653 (2012).

[Crossref]

D. Fan, L. Wang, and Y. Ekinci, “Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength,” Sci. Rep. 6(1), 31301 (2016).

[Crossref]
[PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).

[Crossref]
[PubMed]

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser Photonics Rev. 10(1), 147–152 (2016).

[Crossref]

R. Li, K. F. Ren, X. e. Han, Z. Wu, L. Guo, and S. Gong, “Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series,” J. Quant. Spectrosc. Radiat. Transf. 126, 69–77 (2013).

[Crossref]

Z. Gong, W. Li, Y. Chai, Y. Zhao, and F. G. Mitri, “T-matrix method for acoustical Bessel beam scattering from a rigid finite cylinder with spheroidal endcaps,” Ocean Eng. 129, 507–519 (2017).

[Crossref]

Z. Gong, W. Li, F. G. Mitri, Y. Chai, and Y. Zhao, “Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio,” J. Sound Vibrat. 383, 233–247 (2016).

[Crossref]

M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of Propagating Bessel Beams Using Leaky-Wave Modes: Experimental Validation,” IEEE Trans. Antenn. Propag. 60(6), 2645–2653 (2012).

[Crossref]

R. Li, K. F. Ren, X. e. Han, Z. Wu, L. Guo, and S. Gong, “Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series,” J. Quant. Spectrosc. Radiat. Transf. 126, 69–77 (2013).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations,” Ann. Phys. 361, 120–147 (2015).

[Crossref]

L. Han, “Scattering of a high-order Bessel beam by a spheroidal particle,” J. Quant. Spectrosc. Radiat. Transf. 211, 129–137 (2018).

[Crossref]

Z. Cui, Y. Han, Z. Chen, and L. Han, “Scattering of Bessel beam by arbitrarily shaped composite particles with core–shell structure,” J. Quant. Spectrosc. Radiat. Transf. 144, 108–116 (2014).

[Crossref]

R. Li, K. F. Ren, X. e. Han, Z. Wu, L. Guo, and S. Gong, “Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series,” J. Quant. Spectrosc. Radiat. Transf. 126, 69–77 (2013).

[Crossref]

A. Chen, J. Wang, Y. Han, Z. Cui, and M. Yu, “Implementation of nondiffracting Bessel beam sources in FDTD for scattering by complex particles,” Opt. Express 26(20), 26766–26775 (2018).

[Crossref]

Z. Cui, Y. Han, Z. Chen, and L. Han, “Scattering of Bessel beam by arbitrarily shaped composite particles with core–shell structure,” J. Quant. Spectrosc. Radiat. Transf. 144, 108–116 (2014).

[Crossref]

J. J. Wang, Y. P. Han, J. Y. Chang, and Z. Y. Chen, “Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model,” J. Quant. Spectrosc. Radiat. Transf. 206, 22–30 (2018).

[Crossref]

W. Sun, Y. Hu, C. Weimer, K. Ayers, R. R. Baize, and T. Lee, “A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics,” J. Quant. Spectrosc. Radiat. Transf. 188, 200–213 (2017).

[Crossref]

D. Li and K. Imasaki, “Vacuum laser-driven acceleration by a slits-truncated Bessel beam,” Appl. Phys. Lett. 86(3), 031110 (2005).

[Crossref]

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser Photonics Rev. 10(1), 147–152 (2016).

[Crossref]

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).

[Crossref]
[PubMed]

areT. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).

[Crossref]

W. Sun, Y. Hu, C. Weimer, K. Ayers, R. R. Baize, and T. Lee, “A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics,” J. Quant. Spectrosc. Radiat. Transf. 188, 200–213 (2017).

[Crossref]

D. Li and K. Imasaki, “Vacuum laser-driven acceleration by a slits-truncated Bessel beam,” Appl. Phys. Lett. 86(3), 031110 (2005).

[Crossref]

J. Xi, Q. Li, and J. Wang, “Numerical simulation of Bessel beams by FDTD employing the superposition principle,” Optik (Stuttg.) 118(7), 315–318 (2007).

[Crossref]

R. Li, C. Ding, and F. G. Mitri, “Optical spin torque induced by vector Bessel (vortex) beams with selective polarizations on a light-absorptive sphere of arbitrary size,” J. Quant. Spectrosc. Radiat. Transf. 196, 53–68 (2017).

[Crossref]

R. Li, K. F. Ren, X. e. Han, Z. Wu, L. Guo, and S. Gong, “Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series,” J. Quant. Spectrosc. Radiat. Transf. 126, 69–77 (2013).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations,” Ann. Phys. 361, 120–147 (2015).

[Crossref]

Z. Gong, W. Li, Y. Chai, Y. Zhao, and F. G. Mitri, “T-matrix method for acoustical Bessel beam scattering from a rigid finite cylinder with spheroidal endcaps,” Ocean Eng. 129, 507–519 (2017).

[Crossref]

Z. Gong, W. Li, F. G. Mitri, Y. Chai, and Y. Zhao, “Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio,” J. Sound Vibrat. 383, 233–247 (2016).

[Crossref]

J. J. Wang, T. Wriedt, J. A. Lock, and L. Mädler, “General description of circularly symmetric Bessel beams of arbitrary order,” J. Quant. Spectrosc. Radiat. Transf. 184, 218–232 (2016).

[Crossref]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).

[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).

[Crossref]
[PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).

[Crossref]
[PubMed]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85(2-3), 159–161 (1991).

[Crossref]

F. G. Mitri, “Reverse orbiting and spinning of a Rayleigh dielectric spheroid in a J0 Bessel optical beam,” J. Opt. Soc. Am. B 34(10), 2169–2178 (2017).

[Crossref]

Z. Gong, W. Li, Y. Chai, Y. Zhao, and F. G. Mitri, “T-matrix method for acoustical Bessel beam scattering from a rigid finite cylinder with spheroidal endcaps,” Ocean Eng. 129, 507–519 (2017).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).

[Crossref]

R. Li, C. Ding, and F. G. Mitri, “Optical spin torque induced by vector Bessel (vortex) beams with selective polarizations on a light-absorptive sphere of arbitrary size,” J. Quant. Spectrosc. Radiat. Transf. 196, 53–68 (2017).

[Crossref]

Z. Gong, W. Li, F. G. Mitri, Y. Chai, and Y. Zhao, “Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio,” J. Sound Vibrat. 383, 233–247 (2016).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations,” Ann. Phys. 361, 120–147 (2015).

[Crossref]

F. G. Mitri, “Electromagnetic Wave Scattering of a High-Order Bessel Vortex Beam by a Dielectric Sphere,” IEEE Trans. Antenn. Propag. 59(11), 4375–4379 (2011).

[Crossref]

F. G. Mitri, “Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere,” Opt. Lett. 36(5), 766–768 (2011).

[Crossref]
[PubMed]

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).

[Crossref]
[PubMed]

M. Yang, Y. Wu, X. Sheng, and K. F. Ren, “Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm,” J. Opt. 19(12), 125606 (2017).

[Crossref]

R. Li, K. F. Ren, X. e. Han, Z. Wu, L. Guo, and S. Gong, “Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series,” J. Quant. Spectrosc. Radiat. Transf. 126, 69–77 (2013).

[Crossref]

M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of Propagating Bessel Beams Using Leaky-Wave Modes: Experimental Validation,” IEEE Trans. Antenn. Propag. 60(6), 2645–2653 (2012).

[Crossref]

M. Yang, Y. Wu, X. Sheng, and K. F. Ren, “Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm,” J. Opt. 19(12), 125606 (2017).

[Crossref]

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser Photonics Rev. 10(1), 147–152 (2016).

[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).

[Crossref]
[PubMed]

F. Courvoisier, R. Stoian, and A. Couairon, "[INVITED] Ultrafast laser micro- and nano-processing with nondiffracting and curved beams,” Opt. Laser Technol. 80, 125–137 (2016).

[Crossref]

W. Sun, Y. Hu, C. Weimer, K. Ayers, R. R. Baize, and T. Lee, “A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics,” J. Quant. Spectrosc. Radiat. Transf. 188, 200–213 (2017).

[Crossref]

İ. R. Çapoğlu, A. Taflove, and V. Backman, “Computation of tightly-focused laser beams in the FDTD method,” Opt. Express 21(1), 87–101 (2013).

[Crossref]
[PubMed]

İ. R. Çapoğlu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16(23), 19208–19220 (2008).

[Crossref]
[PubMed]

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4–6), 207–211 (1998).

[Crossref]

A. Chen, J. Wang, Y. Han, Z. Cui, and M. Yu, “Implementation of nondiffracting Bessel beam sources in FDTD for scattering by complex particles,” Opt. Express 26(20), 26766–26775 (2018).

[Crossref]

J. Xi, Q. Li, and J. Wang, “Numerical simulation of Bessel beams by FDTD employing the superposition principle,” Optik (Stuttg.) 118(7), 315–318 (2007).

[Crossref]

J. J. Wang, Y. P. Han, J. Y. Chang, and Z. Y. Chen, “Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model,” J. Quant. Spectrosc. Radiat. Transf. 206, 22–30 (2018).

[Crossref]

J. J. Wang, T. Wriedt, J. A. Lock, and L. Mädler, “General description of circularly symmetric Bessel beams of arbitrary order,” J. Quant. Spectrosc. Radiat. Transf. 184, 218–232 (2016).

[Crossref]

D. Fan, L. Wang, and Y. Ekinci, “Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength,” Sci. Rep. 6(1), 31301 (2016).

[Crossref]
[PubMed]

W. Sun, Y. Hu, C. Weimer, K. Ayers, R. R. Baize, and T. Lee, “A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics,” J. Quant. Spectrosc. Radiat. Transf. 188, 200–213 (2017).

[Crossref]

J. J. Wang, T. Wriedt, J. A. Lock, and L. Mädler, “General description of circularly symmetric Bessel beams of arbitrary order,” J. Quant. Spectrosc. Radiat. Transf. 184, 218–232 (2016).

[Crossref]

M. Yang, Y. Wu, X. Sheng, and K. F. Ren, “Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm,” J. Opt. 19(12), 125606 (2017).

[Crossref]

R. Li, K. F. Ren, X. e. Han, Z. Wu, L. Guo, and S. Gong, “Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series,” J. Quant. Spectrosc. Radiat. Transf. 126, 69–77 (2013).

[Crossref]

J. Xi, Q. Li, and J. Wang, “Numerical simulation of Bessel beams by FDTD employing the superposition principle,” Optik (Stuttg.) 118(7), 315–318 (2007).

[Crossref]

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser Photonics Rev. 10(1), 147–152 (2016).

[Crossref]

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser Photonics Rev. 10(1), 147–152 (2016).

[Crossref]

M. Yang, Y. Wu, X. Sheng, and K. F. Ren, “Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm,” J. Opt. 19(12), 125606 (2017).

[Crossref]

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser Photonics Rev. 10(1), 147–152 (2016).

[Crossref]

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser Photonics Rev. 10(1), 147–152 (2016).

[Crossref]

areT. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).

[Crossref]

Z. Gong, W. Li, Y. Chai, Y. Zhao, and F. G. Mitri, “T-matrix method for acoustical Bessel beam scattering from a rigid finite cylinder with spheroidal endcaps,” Ocean Eng. 129, 507–519 (2017).

[Crossref]

Z. Gong, W. Li, F. G. Mitri, Y. Chai, and Y. Zhao, “Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio,” J. Sound Vibrat. 383, 233–247 (2016).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations,” Ann. Phys. 361, 120–147 (2015).

[Crossref]

D. Li and K. Imasaki, “Vacuum laser-driven acceleration by a slits-truncated Bessel beam,” Appl. Phys. Lett. 86(3), 031110 (2005).

[Crossref]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).

[Crossref]

M. Ettorre, S. M. Rudolph, and A. Grbic, “Generation of Propagating Bessel Beams Using Leaky-Wave Modes: Experimental Validation,” IEEE Trans. Antenn. Propag. 60(6), 2645–2653 (2012).

[Crossref]

F. G. Mitri, “Electromagnetic Wave Scattering of a High-Order Bessel Vortex Beam by a Dielectric Sphere,” IEEE Trans. Antenn. Propag. 59(11), 4375–4379 (2011).

[Crossref]

A. Elmaklizi, D. Reitzle, A. Brandes, and A. Kienle, “Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell’s equations in two dimensions,” J. Biomed. Opt. 20(6), 065007 (2015).

[Crossref]
[PubMed]

M. Yang, Y. Wu, X. Sheng, and K. F. Ren, “Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm,” J. Opt. 19(12), 125606 (2017).

[Crossref]

N. Mphuthi, R. Botha, and A. Forbes, “Are Bessel beams resilient to aberrations and turbulence?” J. Opt. Soc. Am. A 35(6), 1021–1027 (2018).

[Crossref]
[PubMed]

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).

[Crossref]

J. A. Lock, “Angular spectrum and localized model of Davis-type beam,” J. Opt. Soc. Am. A 30(3), 489–500 (2013).

[Crossref]
[PubMed]

L. Han, “Scattering of a high-order Bessel beam by a spheroidal particle,” J. Quant. Spectrosc. Radiat. Transf. 211, 129–137 (2018).

[Crossref]

R. Li, K. F. Ren, X. e. Han, Z. Wu, L. Guo, and S. Gong, “Analysis of radiation pressure force exerted on a biological cell induced by high-order Bessel beams using Debye series,” J. Quant. Spectrosc. Radiat. Transf. 126, 69–77 (2013).

[Crossref]

J. J. Wang, Y. P. Han, J. Y. Chang, and Z. Y. Chen, “Light scattering of a Bessel beam by a nucleated biological cell: An eccentric sphere model,” J. Quant. Spectrosc. Radiat. Transf. 206, 22–30 (2018).

[Crossref]

F. G. Mitri, R. X. Li, L. X. Guo, and C. Y. Ding, “Optical tractor Bessel polarized beams,” J. Quant. Spectrosc. Radiat. Transf. 187, 97–115 (2017).

[Crossref]

R. Li, C. Ding, and F. G. Mitri, “Optical spin torque induced by vector Bessel (vortex) beams with selective polarizations on a light-absorptive sphere of arbitrary size,” J. Quant. Spectrosc. Radiat. Transf. 196, 53–68 (2017).

[Crossref]

Z. Cui, Y. Han, Z. Chen, and L. Han, “Scattering of Bessel beam by arbitrarily shaped composite particles with core–shell structure,” J. Quant. Spectrosc. Radiat. Transf. 144, 108–116 (2014).

[Crossref]

J. J. Wang, T. Wriedt, J. A. Lock, and L. Mädler, “General description of circularly symmetric Bessel beams of arbitrary order,” J. Quant. Spectrosc. Radiat. Transf. 184, 218–232 (2016).

[Crossref]

W. Sun, Y. Hu, C. Weimer, K. Ayers, R. R. Baize, and T. Lee, “A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics,” J. Quant. Spectrosc. Radiat. Transf. 188, 200–213 (2017).

[Crossref]

Z. Gong, W. Li, F. G. Mitri, Y. Chai, and Y. Zhao, “Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio,” J. Sound Vibrat. 383, 233–247 (2016).

[Crossref]

W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, and K. Shi, “Super-resolution deep imaging with hollow Bessel beam STED microscopy,” Laser Photonics Rev. 10(1), 147–152 (2016).

[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).

[Crossref]
[PubMed]

areT. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New J. Phys. 8(3), 43 (2006).

[Crossref]

Z. Gong, W. Li, Y. Chai, Y. Zhao, and F. G. Mitri, “T-matrix method for acoustical Bessel beam scattering from a rigid finite cylinder with spheroidal endcaps,” Ocean Eng. 129, 507–519 (2017).

[Crossref]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85(2-3), 159–161 (1991).

[Crossref]

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4–6), 207–211 (1998).

[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).

[Crossref]

S.-Y. Sung and Y.-G. Lee, “Trapping of a micro-bubble by non-paraxial Gaussian beam: computation using the FDTD method,” Opt. Express 16(5), 3463–3473 (2008).

[Crossref]
[PubMed]

A. Chen, J. Wang, Y. Han, Z. Cui, and M. Yu, “Implementation of nondiffracting Bessel beam sources in FDTD for scattering by complex particles,” Opt. Express 26(20), 26766–26775 (2018).

[Crossref]

İ. R. Çapoğlu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16(23), 19208–19220 (2008).

[Crossref]
[PubMed]

İ. R. Çapoğlu, A. Taflove, and V. Backman, “Computation of tightly-focused laser beams in the FDTD method,” Opt. Express 21(1), 87–101 (2013).

[Crossref]
[PubMed]

P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16(2), 507–523 (2008).

[Crossref]
[PubMed]

F. Courvoisier, R. Stoian, and A. Couairon, "[INVITED] Ultrafast laser micro- and nano-processing with nondiffracting and curved beams,” Opt. Laser Technol. 80, 125–137 (2016).

[Crossref]

J. Xi, Q. Li, and J. Wang, “Numerical simulation of Bessel beams by FDTD employing the superposition principle,” Optik (Stuttg.) 118(7), 315–318 (2007).

[Crossref]

D. Fan, L. Wang, and Y. Ekinci, “Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength,” Sci. Rep. 6(1), 31301 (2016).

[Crossref]
[PubMed]

G. Gouesbet and G. Gréhan, Generalized lorenz-mie theories (Springer, 2011).

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 3rd ed. (Artech house, 2005).

J. Stoer and R. Bulirsch, Introduction to numerical analysis (Springer Science & Business Media, 2013).

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge university, 2006).