Abstract

We describe a compact, all fiber, frequency stabilized diode laser system at 2051 nm using CO2 gas-filled Kagome Hollow Core Fiber (HCF), capable of tuning continuously over four transitions in 12C16O2: R(24), R(26), R(28), and R(30). This laser system has been designed for use in future space-based atmospheric monitoring using differential absorption lidar (DIAL). The fully spliced Kagome HCF gas cell is filled to 2 kPa CO2 partial pressure and we compare the observed CO2 lineshape features with those calculated using HITRAN, to quantify the properties of the CO2-filled fiber cell. In this first demonstration of Kagome HCF used in a fully sealed gas cell configuration for spectroscopy at 2 µm, we characterize the frequency stability of the locked system by beat frequency comparison against a reference laser. Results are presented for the laser locked to the center of the 12C16O2 R(30) transition, with frequency stability of ∼40 kHz or better at 1 s, and a frequency reproducibility at the 0.4-MHz level over a period of > 1 month. For DIAL applications, we also demonstrate two methods of stabilizing the laser frequency ~3 GHz from this line. Furthermore, no pressure degradation was observed during the ~15-month period in which frequency stability measurements were acquired.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited]

A. V. Vasudevan Nampoothiri, Andrew M. Jones, C. Fourcade-Dutin, Chenchen Mao, Neda Dadashzadeh, Bastian Baumgart, Y.Y. Wang, M. Alharbi, T. Bradley, Neil Campbell, F. Benabid, Brian R. Washburn, Kristan L. Corwin, and Wolfgang Rudolph
Opt. Mater. Express 2(7) 948-961 (2012)

Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm

Michał Nikodem, Karol Krzempek, Grzegorz Dudzik, and Krzysztof Abramski
Opt. Express 26(17) 21843-21848 (2018)

Mid-infrared fiber-optic photothermal interferometry

Zhili Li, Zhen Wang, Fan Yang, Wei Jin, and Wei Ren
Opt. Lett. 42(18) 3718-3721 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. W. Rothe, U. Brinkman, and H. Walter, “Applications of tunable dye lasers to air pollution detection: Measurements of atmospheric NO2 concentrations by differential absorption,” Applied Physics 3, 115–119 (1974).
    [Crossref]
  2. R. A. Robinson, T. D. Gardiner, F. Innocenti, A. Finlayson, P. T. Woods, and J. F. M. Few, “First Measurements of a Carbon Dioxide Plume from an Industrial Source Using a Ground Based Mobile Differential Absorption Lidar,” Environmental Science: Processes & Impacts 16, 1957–1966 (2014).
  3. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team R.K. Pachauri, and L.A. Meyer, (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  4. “A-SCOPE–Advanced Space Carbon and Climate Observation of Planet Earth, Report For Assessment,” ESA-SP1313/1 (European Space Agency, 2008). http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf
  5. J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
    [Crossref]
  6. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Applied Optics 42, 6569–6577 (2003).
    [Crossref] [PubMed]
  7. G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection,” Applied Optics 50, 2098–2111 (2011).
    [Crossref]
  8. J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Applied Optics 48, 5413–5422 (2009).
    [Crossref]
  9. P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency Stablization of a 2.05 µm Laser Using Hollow-Core Fiber CO2 Frequency Reference Cell,” Proc. SPIE 7677, 767713 (2010).
    [Crossref]
  10. P. G. Westergaard, J. W. Thomsen, M. R. Henriksen, M. Michieletto, M. Triches, J. K. Lyngsø, and J. Hald, “Compact, CO2-stabilized tuneable laser at 2.05 microns,” Optics Express 24, 4872–4880 (2016).
    [Crossref]
  11. J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
    [Crossref] [PubMed]
  12. T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
    [Crossref]
  13. J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Optics Communications 255, 272–277 (2005).
    [Crossref]
  14. J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Optics Express 13, 10475–10482 (2005).
    [Crossref] [PubMed]
  15. A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Optics Letters 36, 4776–4778 (2011).
    [Crossref] [PubMed]
  16. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).
  17. N. V. Wheeler, “Molecular and Atomic Confinement in Large Core Photonic Microcells for Slow Light and Laser Metrology Applications,” PhD Thesis, University of Bath, (2010).
  18. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
    [Crossref] [PubMed]
  19. G. C. Bjorklund, “Frequency modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Optics Letters 5, 15–17 (1980).
    [Crossref]
  20. R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 µm,” IEEE Photonics Technology Letters 24, 652–654 (2012).
    [Crossref]
  21. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
    [Crossref]
  22. J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” Journal of Quantitative Spectroscopy & Radiative Transfer 136, 28–44 (2014).
    [Crossref]
  23. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
    [Crossref]
  24. N. Wilding, P. S. Light, F. Couny, and F. Benabid, “Experimental Comparison of Electromagnetically Induced Transparency in Acetylene-Filled Kagome and Triangular Lattice Hollow Core Photonic Crystal Fiber,” In 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vol. 1–9, 1953-1954, IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting (2008).
  25. N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
    [Crossref] [PubMed]
  26. M. Maurel, M. Chafer, F. Delahaye, F. Amrani, B. Debord, F. Gerome, and F. Benabid, “2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF,” SPIE Proceedings Volume 10513, Components and Packaging for Laser Systems IV, 10513–10513–6 (2018).
  27. P. S. Light, F. Couny, and F. Benabid, “Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber,” Optics Letters 31, 2538–2540 (2006).
    [Crossref] [PubMed]
  28. E. A. Curtis, G. P. Barwood, G. Huang, C. S. Edwards, B. Gieseking, and P. J. Brewer, “Ultra-high-finesse NICE-OHMS spectroscopy at 1532 nm for calibrated online ammonia detection,” Journal of the Optical Society of America B 34, 950–958 (2017).
    [Crossref]

2017 (3)

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

E. A. Curtis, G. P. Barwood, G. Huang, C. S. Edwards, B. Gieseking, and P. J. Brewer, “Ultra-high-finesse NICE-OHMS spectroscopy at 1532 nm for calibrated online ammonia detection,” Journal of the Optical Society of America B 34, 950–958 (2017).
[Crossref]

2016 (2)

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

P. G. Westergaard, J. W. Thomsen, M. R. Henriksen, M. Michieletto, M. Triches, J. K. Lyngsø, and J. Hald, “Compact, CO2-stabilized tuneable laser at 2.05 microns,” Optics Express 24, 4872–4880 (2016).
[Crossref]

2014 (3)

R. A. Robinson, T. D. Gardiner, F. Innocenti, A. Finlayson, P. T. Woods, and J. F. M. Few, “First Measurements of a Carbon Dioxide Plume from an Industrial Source Using a Ground Based Mobile Differential Absorption Lidar,” Environmental Science: Processes & Impacts 16, 1957–1966 (2014).

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” Journal of Quantitative Spectroscopy & Radiative Transfer 136, 28–44 (2014).
[Crossref]

2013 (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

2012 (2)

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 µm,” IEEE Photonics Technology Letters 24, 652–654 (2012).
[Crossref]

2011 (2)

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection,” Applied Optics 50, 2098–2111 (2011).
[Crossref]

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Optics Letters 36, 4776–4778 (2011).
[Crossref] [PubMed]

2010 (1)

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency Stablization of a 2.05 µm Laser Using Hollow-Core Fiber CO2 Frequency Reference Cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

2009 (2)

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Applied Optics 48, 5413–5422 (2009).
[Crossref]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

2006 (1)

P. S. Light, F. Couny, and F. Benabid, “Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber,” Optics Letters 31, 2538–2540 (2006).
[Crossref] [PubMed]

2005 (3)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Optics Communications 255, 272–277 (2005).
[Crossref]

J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Optics Express 13, 10475–10482 (2005).
[Crossref] [PubMed]

2003 (1)

R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Applied Optics 42, 6569–6577 (2003).
[Crossref] [PubMed]

1980 (1)

G. C. Bjorklund, “Frequency modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Optics Letters 5, 15–17 (1980).
[Crossref]

1974 (1)

K. W. Rothe, U. Brinkman, and H. Walter, “Applications of tunable dye lasers to air pollution detection: Measurements of atmospheric NO2 concentrations by differential absorption,” Applied Physics 3, 115–119 (1974).
[Crossref]

Abokhamis, M. S.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

Amrani, F.

M. Maurel, M. Chafer, F. Delahaye, F. Amrani, B. Debord, F. Gerome, and F. Benabid, “2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF,” SPIE Proceedings Volume 10513, Components and Packaging for Laser Systems IV, 10513–10513–6 (2018).

Anstie, J. D.

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Optics Letters 36, 4776–4778 (2011).
[Crossref] [PubMed]

Axner, O.

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” Journal of Quantitative Spectroscopy & Radiative Transfer 136, 28–44 (2014).
[Crossref]

Barbe, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Barrientos Barria, J.

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

Barwood, G. P.

E. A. Curtis, G. P. Barwood, G. Huang, C. S. Edwards, B. Gieseking, and P. J. Brewer, “Ultra-high-finesse NICE-OHMS spectroscopy at 1532 nm for calibrated online ammonia detection,” Journal of the Optical Society of America B 34, 950–958 (2017).
[Crossref]

Baynes, F. N.

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Optics Letters 36, 4776–4778 (2011).
[Crossref] [PubMed]

Benabid, F.

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Optics Letters 36, 4776–4778 (2011).
[Crossref] [PubMed]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

P. S. Light, F. Couny, and F. Benabid, “Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber,” Optics Letters 31, 2538–2540 (2006).
[Crossref] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

M. Maurel, M. Chafer, F. Delahaye, F. Amrani, B. Debord, F. Gerome, and F. Benabid, “2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF,” SPIE Proceedings Volume 10513, Components and Packaging for Laser Systems IV, 10513–10513–6 (2018).

N. Wilding, P. S. Light, F. Couny, and F. Benabid, “Experimental Comparison of Electromagnetically Induced Transparency in Acetylene-Filled Kagome and Triangular Lattice Hollow Core Photonic Crystal Fiber,” In 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vol. 1–9, 1953-1954, IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting (2008).

Bernath, P. F.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Birk, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Bjorklund, G. C.

G. C. Bjorklund, “Frequency modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Optics Letters 5, 15–17 (1980).
[Crossref]

Boudon, V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Bradley, T. D.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

Bresson, A.

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

Brewer, P. J.

E. A. Curtis, G. P. Barwood, G. Huang, C. S. Edwards, B. Gieseking, and P. J. Brewer, “Ultra-high-finesse NICE-OHMS spectroscopy at 1532 nm for calibrated online ammonia detection,” Journal of the Optical Society of America B 34, 950–958 (2017).
[Crossref]

Brinkman, U.

K. W. Rothe, U. Brinkman, and H. Walter, “Applications of tunable dye lasers to air pollution detection: Measurements of atmospheric NO2 concentrations by differential absorption,” Applied Physics 3, 115–119 (1974).
[Crossref]

Browell, E. V.

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection,” Applied Optics 50, 2098–2111 (2011).
[Crossref]

Byrne, D.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 µm,” IEEE Photonics Technology Letters 24, 652–654 (2012).
[Crossref]

Cadiou, E.

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

Campargue, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Caron, J.

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Applied Optics 48, 5413–5422 (2009).
[Crossref]

Chafer, M.

M. Maurel, M. Chafer, F. Delahaye, F. Amrani, B. Debord, F. Gerome, and F. Benabid, “2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF,” SPIE Proceedings Volume 10513, Components and Packaging for Laser Systems IV, 10513–10513–6 (2018).

Chance, K. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Chang, D. H.

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency Stablization of a 2.05 µm Laser Using Hollow-Core Fiber CO2 Frequency Reference Cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

Chen, Y.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

Choi, Y.

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection,” Applied Optics 50, 2098–2111 (2011).
[Crossref]

Christensen, L. E.

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection,” Applied Optics 50, 2098–2111 (2011).
[Crossref]

Corwin, K. L.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

Couny, F.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

P. S. Light, F. Couny, and F. Benabid, “Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber,” Optics Letters 31, 2538–2540 (2006).
[Crossref] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

N. Wilding, P. S. Light, F. Couny, and F. Benabid, “Experimental Comparison of Electromagnetically Induced Transparency in Acetylene-Filled Kagome and Triangular Lattice Hollow Core Photonic Crystal Fiber,” In 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vol. 1–9, 1953-1954, IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting (2008).

Császár, A. G.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Curtis, E. A.

E. A. Curtis, G. P. Barwood, G. Huang, C. S. Edwards, B. Gieseking, and P. J. Brewer, “Ultra-high-finesse NICE-OHMS spectroscopy at 1532 nm for calibrated online ammonia detection,” Journal of the Optical Society of America B 34, 950–958 (2017).
[Crossref]

Debord, B.

M. Maurel, M. Chafer, F. Delahaye, F. Amrani, B. Debord, F. Gerome, and F. Benabid, “2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF,” SPIE Proceedings Volume 10513, Components and Packaging for Laser Systems IV, 10513–10513–6 (2018).

Delahaye, F.

M. Maurel, M. Chafer, F. Delahaye, F. Amrani, B. Debord, F. Gerome, and F. Benabid, “2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF,” SPIE Proceedings Volume 10513, Components and Packaging for Laser Systems IV, 10513–10513–6 (2018).

DeSantolo, A.

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

Devi, V. M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Dherbecourt, J. B.

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

DiMarcello, F.

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

Drouin, B. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Dulashko, Y.

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

Durand, Y.

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Applied Optics 48, 5413–5422 (2009).
[Crossref]

Edwards, C. S.

E. A. Curtis, G. P. Barwood, G. Huang, C. S. Edwards, B. Gieseking, and P. J. Brewer, “Ultra-high-finesse NICE-OHMS spectroscopy at 1532 nm for calibrated online ammonia detection,” Journal of the Optical Society of America B 34, 950–958 (2017).
[Crossref]

Ehlers, P.

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” Journal of Quantitative Spectroscopy & Radiative Transfer 136, 28–44 (2014).
[Crossref]

Few, J. F. M.

R. A. Robinson, T. D. Gardiner, F. Innocenti, A. Finlayson, P. T. Woods, and J. F. M. Few, “First Measurements of a Carbon Dioxide Plume from an Industrial Source Using a Ground Based Mobile Differential Absorption Lidar,” Environmental Science: Processes & Impacts 16, 1957–1966 (2014).

Fini, J. M.

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

Finlayson, A.

R. A. Robinson, T. D. Gardiner, F. Innocenti, A. Finlayson, P. T. Woods, and J. F. M. Few, “First Measurements of a Carbon Dioxide Plume from an Industrial Source Using a Ground Based Mobile Differential Absorption Lidar,” Environmental Science: Processes & Impacts 16, 1957–1966 (2014).

Flaud, J.-M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Furtenbacher, T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Gamache, R. R.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Gardiner, T. D.

R. A. Robinson, T. D. Gardiner, F. Innocenti, A. Finlayson, P. T. Woods, and J. F. M. Few, “First Measurements of a Carbon Dioxide Plume from an Industrial Source Using a Ground Based Mobile Differential Absorption Lidar,” Environmental Science: Processes & Impacts 16, 1957–1966 (2014).

Gerome, F.

M. Maurel, M. Chafer, F. Delahaye, F. Amrani, B. Debord, F. Gerome, and F. Benabid, “2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF,” SPIE Proceedings Volume 10513, Components and Packaging for Laser Systems IV, 10513–10513–6 (2018).

Gieseking, B.

E. A. Curtis, G. P. Barwood, G. Huang, C. S. Edwards, B. Gieseking, and P. J. Brewer, “Ultra-high-finesse NICE-OHMS spectroscopy at 1532 nm for calibrated online ammonia detection,” Journal of the Optical Society of America B 34, 950–958 (2017).
[Crossref]

Godard, A.

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

Gordon, I. E.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Gouveia, M. A.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

Grey, D.

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

Hald, J.

P. G. Westergaard, J. W. Thomsen, M. R. Henriksen, M. Michieletto, M. Triches, J. K. Lyngsø, and J. Hald, “Compact, CO2-stabilized tuneable laser at 2.05 microns,” Optics Express 24, 4872–4880 (2016).
[Crossref]

J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Optics Express 13, 10475–10482 (2005).
[Crossref] [PubMed]

Harrison, J. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Hartmann, J.-M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Hassan, M.

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

Hayes, J.

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

Hayes, J. R.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

Henningsen, J.

J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Optics Express 13, 10475–10482 (2005).
[Crossref] [PubMed]

Henriksen, M. R.

P. G. Westergaard, J. W. Thomsen, M. R. Henriksen, M. Michieletto, M. Triches, J. K. Lyngsø, and J. Hald, “Compact, CO2-stabilized tuneable laser at 2.05 microns,” Optics Express 24, 4872–4880 (2016).
[Crossref]

Herbert, C.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 µm,” IEEE Photonics Technology Letters 24, 652–654 (2012).
[Crossref]

Hill, C.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Hodges, J. T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Huang, G.

E. A. Curtis, G. P. Barwood, G. Huang, C. S. Edwards, B. Gieseking, and P. J. Brewer, “Ultra-high-finesse NICE-OHMS spectroscopy at 1532 nm for calibrated online ammonia detection,” Journal of the Optical Society of America B 34, 950–958 (2017).
[Crossref]

Innocenti, F.

R. A. Robinson, T. D. Gardiner, F. Innocenti, A. Finlayson, P. T. Woods, and J. F. M. Few, “First Measurements of a Carbon Dioxide Plume from an Industrial Source Using a Ground Based Mobile Differential Absorption Lidar,” Environmental Science: Processes & Impacts 16, 1957–1966 (2014).

Jacob, J.

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection,” Applied Optics 50, 2098–2111 (2011).
[Crossref]

Jacquemart, D.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Jasion, G. T.

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

Johnson, T. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Jolly, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Jones, A. M.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

Karman, T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Kelly, B.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 µm,” IEEE Photonics Technology Letters 24, 652–654 (2012).
[Crossref]

Kleiner, I.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Knabe, K.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Kochanov, R. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Kyuberis, A. A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Lefebvre, M.

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

Liang, S.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

Light, P. S.

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Optics Letters 36, 4776–4778 (2011).
[Crossref] [PubMed]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

P. S. Light, F. Couny, and F. Benabid, “Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber,” Optics Letters 31, 2538–2540 (2006).
[Crossref] [PubMed]

N. Wilding, P. S. Light, F. Couny, and F. Benabid, “Experimental Comparison of Electromagnetically Induced Transparency in Acetylene-Filled Kagome and Triangular Lattice Hollow Core Photonic Crystal Fiber,” In 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vol. 1–9, 1953-1954, IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting (2008).

Lim, J.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

Loos, J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Ludvigsen, H.

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Optics Communications 255, 272–277 (2005).
[Crossref]

Luiten, A. N.

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Optics Letters 36, 4776–4778 (2011).
[Crossref] [PubMed]

Lurie, A.

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Optics Letters 36, 4776–4778 (2011).
[Crossref] [PubMed]

Lyngsø, J. K.

P. G. Westergaard, J. W. Thomsen, M. R. Henriksen, M. Michieletto, M. Triches, J. K. Lyngsø, and J. Hald, “Compact, CO2-stabilized tuneable laser at 2.05 microns,” Optics Express 24, 4872–4880 (2016).
[Crossref]

Lyulin, O. M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Mammez, D.

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

Massie, S. T.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Maurel, M.

M. Maurel, M. Chafer, F. Delahaye, F. Amrani, B. Debord, F. Gerome, and F. Benabid, “2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF,” SPIE Proceedings Volume 10513, Components and Packaging for Laser Systems IV, 10513–10513–6 (2018).

Melkonian, J. M.

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

Meng, L.

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

Menzies, R. T.

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection,” Applied Optics 50, 2098–2111 (2011).
[Crossref]

R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Applied Optics 42, 6569–6577 (2003).
[Crossref] [PubMed]

Meras, P.

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency Stablization of a 2.05 µm Laser Using Hollow-Core Fiber CO2 Frequency Reference Cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

Meyer, L.A.

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team R.K. Pachauri, and L.A. Meyer, (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Michieletto, M.

P. G. Westergaard, J. W. Thomsen, M. R. Henriksen, M. Michieletto, M. Triches, J. K. Lyngsø, and J. Hald, “Compact, CO2-stabilized tuneable laser at 2.05 microns,” Optics Express 24, 4872–4880 (2016).
[Crossref]

Mikhailenko, S. N.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Moazzen-Ahmadi, N.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Monberg, E.

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

Müller, H. S. P.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Naumenko, O. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Nicholson, J. W.

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

Nikitin, A. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

O’Carroll, J.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 µm,” IEEE Photonics Technology Letters 24, 652–654 (2012).
[Crossref]

Ortiz, R.

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

Pachauri, R.K.

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team R.K. Pachauri, and L.A. Meyer, (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Pelon, J.

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

Perevalov, V. I.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Perrin, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Petersen, J. C.

J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Optics Express 13, 10475–10482 (2005).
[Crossref] [PubMed]

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Optics Communications 255, 272–277 (2005).
[Crossref]

Petrovich, M. N.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

Phelan, R.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 µm,” IEEE Photonics Technology Letters 24, 652–654 (2012).
[Crossref]

Phillips, M. W.

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection,” Applied Optics 50, 2098–2111 (2011).
[Crossref]

Poberezhskiy, I. Y.

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency Stablization of a 2.05 µm Laser Using Hollow-Core Fiber CO2 Frequency Reference Cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

Poletti, F.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

Polyansky, O. L.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Raybaut, M.

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

Rey, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Richardson, D.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

Richardson, D. J.

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

Ritari, T.

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Optics Communications 255, 272–277 (2005).
[Crossref]

Robinson, R. A.

R. A. Robinson, T. D. Gardiner, F. Innocenti, A. Finlayson, P. T. Woods, and J. F. M. Few, “First Measurements of a Carbon Dioxide Plume from an Industrial Source Using a Ground Based Mobile Differential Absorption Lidar,” Environmental Science: Processes & Impacts 16, 1957–1966 (2014).

Rotger, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Rothe, K. W.

K. W. Rothe, U. Brinkman, and H. Walter, “Applications of tunable dye lasers to air pollution detection: Measurements of atmospheric NO2 concentrations by differential absorption,” Applied Physics 3, 115–119 (1974).
[Crossref]

Rothman, L. S.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Russell, P. St J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Sandoghchi, S. R.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

Schmid, T.

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

Sharpe, S. W.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Shine, K. P.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Silander, I.

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” Journal of Quantitative Spectroscopy & Radiative Transfer 136, 28–44 (2014).
[Crossref]

Smith, M.-A. H.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Somers, J.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 µm,” IEEE Photonics Technology Letters 24, 652–654 (2012).
[Crossref]

Spiers, G. D.

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection,” Applied Optics 50, 2098–2111 (2011).
[Crossref]

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency Stablization of a 2.05 µm Laser Using Hollow-Core Fiber CO2 Frequency Reference Cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

Stace, T. M.

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Optics Letters 36, 4776–4778 (2011).
[Crossref] [PubMed]

Starikova, E.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Sung, K.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Tan, Y.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Tashkun, S. A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Tennyson, J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Thapa, R.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

Thomsen, J. W.

P. G. Westergaard, J. W. Thomsen, M. R. Henriksen, M. Michieletto, M. Triches, J. K. Lyngsø, and J. Hald, “Compact, CO2-stabilized tuneable laser at 2.05 microns,” Optics Express 24, 4872–4880 (2016).
[Crossref]

Tillman, K. A.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

Toon, G. C.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Tran, H.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Tratt, D. M.

R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Applied Optics 42, 6569–6577 (2003).
[Crossref] [PubMed]

Triches, M.

P. G. Westergaard, J. W. Thomsen, M. R. Henriksen, M. Michieletto, M. Triches, J. K. Lyngsø, and J. Hald, “Compact, CO2-stabilized tuneable laser at 2.05 microns,” Optics Express 24, 4872–4880 (2016).
[Crossref]

Tuominen, J.

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Optics Communications 255, 272–277 (2005).
[Crossref]

Tyuterev, V. G.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Vander Auwera, J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Wagner, G.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Walter, H.

K. W. Rothe, U. Brinkman, and H. Walter, “Applications of tunable dye lasers to air pollution detection: Measurements of atmospheric NO2 concentrations by differential absorption,” Applied Physics 3, 115–119 (1974).
[Crossref]

Wang, J.

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” Journal of Quantitative Spectroscopy & Radiative Transfer 136, 28–44 (2014).
[Crossref]

Washburn, B. R.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

Wcislo, P.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Westergaard, P. G.

P. G. Westergaard, J. W. Thomsen, M. R. Henriksen, M. Michieletto, M. Triches, J. K. Lyngsø, and J. Hald, “Compact, CO2-stabilized tuneable laser at 2.05 microns,” Optics Express 24, 4872–4880 (2016).
[Crossref]

Wheeler, N.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

Wheeler, N. V.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

N. V. Wheeler, “Molecular and Atomic Confinement in Large Core Photonic Microcells for Slow Light and Laser Metrology Applications,” PhD Thesis, University of Bath, (2010).

Wilding, N.

N. Wilding, P. S. Light, F. Couny, and F. Benabid, “Experimental Comparison of Electromagnetically Induced Transparency in Acetylene-Filled Kagome and Triangular Lattice Hollow Core Photonic Crystal Fiber,” In 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vol. 1–9, 1953-1954, IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting (2008).

Wilzewski, J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Windeler, R. S.

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

Woods, P. T.

R. A. Robinson, T. D. Gardiner, F. Innocenti, A. Finlayson, P. T. Woods, and J. F. M. Few, “First Measurements of a Carbon Dioxide Plume from an Industrial Source Using a Ground Based Mobile Differential Absorption Lidar,” Environmental Science: Processes & Impacts 16, 1957–1966 (2014).

Wu, S.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

Yu, S.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Zak, E. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

Applied Optics (3)

R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Applied Optics 42, 6569–6577 (2003).
[Crossref] [PubMed]

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection,” Applied Optics 50, 2098–2111 (2011).
[Crossref]

J. Caron and Y. Durand, “Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2,” Applied Optics 48, 5413–5422 (2009).
[Crossref]

Applied Physics (1)

K. W. Rothe, U. Brinkman, and H. Walter, “Applications of tunable dye lasers to air pollution detection: Measurements of atmospheric NO2 concentrations by differential absorption,” Applied Physics 3, 115–119 (1974).
[Crossref]

Environmental Science: Processes & Impacts (1)

R. A. Robinson, T. D. Gardiner, F. Innocenti, A. Finlayson, P. T. Woods, and J. F. M. Few, “First Measurements of a Carbon Dioxide Plume from an Industrial Source Using a Ground Based Mobile Differential Absorption Lidar,” Environmental Science: Processes & Impacts 16, 1957–1966 (2014).

IEEE Photonics Technology Letters (1)

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP Multiple Quantum-Well Discrete-Mode Laser Diode Emitting at 2 µm,” IEEE Photonics Technology Letters 24, 652–654 (2012).
[Crossref]

Journal of Quantitative Spectroscopy & Radiative Transfer (2)

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” Journal of Quantitative Spectroscopy & Radiative Transfer,  203, 3-69 (2017).
[Crossref]

J. Wang, P. Ehlers, I. Silander, and O. Axner, “On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS,” Journal of Quantitative Spectroscopy & Radiative Transfer 136, 28–44 (2014).
[Crossref]

Journal of the Optical Society of America B (1)

E. A. Curtis, G. P. Barwood, G. Huang, C. S. Edwards, B. Gieseking, and P. J. Brewer, “Ultra-high-finesse NICE-OHMS spectroscopy at 1532 nm for calibrated online ammonia detection,” Journal of the Optical Society of America B 34, 950–958 (2017).
[Crossref]

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref] [PubMed]

Optics Communications (1)

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Optics Communications 255, 272–277 (2005).
[Crossref]

Optics Express (4)

J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Optics Express 13, 10475–10482 (2005).
[Crossref] [PubMed]

P. G. Westergaard, J. W. Thomsen, M. R. Henriksen, M. Michieletto, M. Triches, J. K. Lyngsø, and J. Hald, “Compact, CO2-stabilized tuneable laser at 2.05 microns,” Optics Express 24, 4872–4880 (2016).
[Crossref]

J. W. Nicholson, L. Meng, J. M. Fini, R. S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz, “Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber,” Optics Express 20, 20494–20505 (2012).
[Crossref] [PubMed]

T. D. Bradley, N. V. Wheeler, G. T. Jasion, D. Grey, J. Hayes, M. A. Gouveia, S. R. Sandoghchi, Y. Chen, F. Poletti, D. Richardson, and M. N. Petrovich, “Modal content in hypocycloid Kagomé hollow core photonic crystal fibers,” Optics Express 24, 104–113 (2016).
[Crossref]

Optics Letters (6)

G. C. Bjorklund, “Frequency modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Optics Letters 5, 15–17 (1980).
[Crossref]

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Optics Letters 36, 4776–4778 (2011).
[Crossref] [PubMed]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Optics Letters 17, 16017–16026 (2009).

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, M. S. Abokhamis, F. Poletti, M. N. Petrovich, and D. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Optics Letters 42, 2571–2574 (2017).
[Crossref] [PubMed]

J. Barrientos Barria, D. Mammez, E. Cadiou, J. B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J. M. Melkonian, A. Godard, J. Pelon, and M. Lefebvre, “Multispecies high-energy emitter for CO2, CH4 and H2O monitoring in the 2 µm range,” Optics Letters 39, 6719–6722 (2014).
[Crossref]

P. S. Light, F. Couny, and F. Benabid, “Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber,” Optics Letters 31, 2538–2540 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

P. Meras, I. Y. Poberezhskiy, D. H. Chang, and G. D. Spiers, “Frequency Stablization of a 2.05 µm Laser Using Hollow-Core Fiber CO2 Frequency Reference Cell,” Proc. SPIE 7677, 767713 (2010).
[Crossref]

Other (5)

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team R.K. Pachauri, and L.A. Meyer, (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

“A-SCOPE–Advanced Space Carbon and Climate Observation of Planet Earth, Report For Assessment,” ESA-SP1313/1 (European Space Agency, 2008). http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf

N. V. Wheeler, “Molecular and Atomic Confinement in Large Core Photonic Microcells for Slow Light and Laser Metrology Applications,” PhD Thesis, University of Bath, (2010).

M. Maurel, M. Chafer, F. Delahaye, F. Amrani, B. Debord, F. Gerome, and F. Benabid, “2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF,” SPIE Proceedings Volume 10513, Components and Packaging for Laser Systems IV, 10513–10513–6 (2018).

N. Wilding, P. S. Light, F. Couny, and F. Benabid, “Experimental Comparison of Electromagnetically Induced Transparency in Acetylene-Filled Kagome and Triangular Lattice Hollow Core Photonic Crystal Fiber,” In 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vol. 1–9, 1953-1954, IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Main figure: (Data from February 2016) A 5-cm−1 (∼150-GHz) scan over four strong features in the vicinity of R(30) for a 5-m long, fully spliced Kagome HCF cell filled with 2 kPa of CO2. The weaker lines have approximately 5 % of the linear absorption of the stronger lines. The scan was taken by temperature tuning of the laser. This gives rise to a small linear change of power with frequency, but the baseline changes mainly arise from frequency-dependent transmission variations in the fiber cell. Inset: data from a short-range, 0.3 cm−1 (∼9 GHz) scan (produced by laser current tuning) taken in May 2017 over the 12C16O2 R(30) and 13C16O2 P(14) transitions; the result can be compared with the R(30) and P(14) features in the main figure, which were taken using the same fiber cell 15 months prior. At these times, the peak absorption of the main feature was measured as 87(5) % (Feb 16) and 92(5) % (May 17), the same to within the experimental uncertainty. A total pressure is estimated from the fit (linear background subtracted), consistent with the targeted 2 kPa partial pressure. The reduction of baseline noise between the two measurements is also due to a change in the fiber configuration between measurements.
Fig. 2
Fig. 2 Experimental layout for the frequency stabilized laser systems using fully spliced CO2-filled Kagome HCF and a free-space cell. Fiber links are indicated by solid red lines; free space beams are dashed and blue lines are electronic connections: SOA (semiconductor optical amplifier), WMS (wavelength modulation spectroscopy), PDH (Pound-Drever-Hall), EOM (electro-optic modulator). Optical outputs from both systems were combined on a beam combiner and focused onto a free-space photo diode (beats detector) with ∼12-GHz bandwidth. The resulting beat frequency was monitored and recorded using a frequency counter coupled to a computer with GPIB interface.
Fig. 3
Fig. 3 (a) Optical micrograph showing the microstructure of the Kagome HCF. The fiber has a core composed of seven missing elements and three full rings of large holes surrounding it. The thickness of the core surround is approximately 0.8 µm and the negative curvature design contributes to achieving low transmission loss. (b) Transmission spectrum (black trace) through 5 m of Kagome HCF when a broadband source is launched with solid large mode area single mode fiber. Loss of a comparable Kagome HCF measured by cutback from 51 m to 5 m (green trace).
Fig. 4
Fig. 4 The enclosed, compact, all-fiber system includes the laser module, fiber isolator, fiber splitter, fiber EOM, and fiber-coupled detector, as well as the Kagome HCF cell, which is coiled and held on an upper shelf in the enclosure of dimensions 25 × 25 × 5 cm.
Fig. 5
Fig. 5 PDH output spectrum at two modulation frequencies using a 2-kPa partial pressure Kagome HCF cell; produced by frequency tuning via the laser current. A 581.7 MHz modulation frequency allows us to lock either to the strong R(30) line or the weaker P(14) line in 13C16O2. The higher modulation frequency allowed us to investigate a novel way to lock the laser off resonance, here at ± 3 GHz (see text).
Fig. 6
Fig. 6 Frequency stability (Allan deviation) and related fractional frequency instability of a 2051-nm (146-THz) laser stabilized to a 5-m-long Kagome HCF cell with a partial pressure of 2 kPa of CO2. For these results, a zero dead-time counter was used (Stanford SR620) for the short gate time results (≤1 s), and an Agilent 53181A for gate times 1 s and longer.
Fig. 7
Fig. 7 Reproducibility of the laser locked to component R(30); each data point is the mean of between 4200 and 14700 one-second gate time beat frequency measurements. The weighted mean of the complete data set (∼91 MHz) has been subtracted from each beat frequency value. The data were taken over a period of more than a month and the results show a reproducibility (expressed as a standard deviation) of 0.4 MHz.
Fig. 8
Fig. 8 Frequency stability (Allan deviation) and related fractional frequency instability of a 2051-nm (146-THz) laser stabilized to a 5-m-long Kagome HCF cell with a partial pressure of 2 kPa of CO2, locked to the weak transition ~2.7 GHz away (red trace), and to the PDH ∼3 GHz sideband (blue trace). An Agilent 53181A counter was used the measure the beat frequency between this laser and a reference laser. For short gate times (<1 s) the results were taken by averaging data observed using a 10-ms gate although this results in a significant dead time in the measurement at timescales <1 s.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

z = ( ν ν 0 ) Γ D + i Γ L Γ D
A = N L j S j V j ( ν )
T exp ( A )