Abstract

The premixed ethylene and oxygen flame that is burning in a narrow channel is investigated with digital holographic interferometry (DHI). Combustion in either a narrow tube or channel is quite different. This is caused by the significant effects of the boundary layer. The flame’s acceleration rate will be enhanced as the tube diameter decreases. Usually, flame and shock wave propagation, which occurs during the premixed ethylene/oxygen flame combustion in the measurement area, is less than few milliseconds, so that general camera can rarely capture this fast event. This paper demonstrates that, by introducing the high-speed camera to DHI, the propagation of weak compression wave, flame, and shock wave generated in the narrow channel is successfully measured with a temporal resolution of 10 μs. The ultrafast processes of the flame front changing, as well as the shock wave coupling and separating, are clearly shown from the reconstructed phase distributions of the recorded holograms; corresponding density variations are simultaneously calculated. The results could provide references for the micro-scale propulsion and power devices design and use, and this proposed configuration can also easily adapt to other kinds of ultrafast processes in fluids.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy

Awad B. S. Alquaity, Et-touhami Es-sebbar, and Aamir Farooq
Opt. Express 23(6) 7217-7226 (2015)

Digital recording and numerical reconstruction of holograms: an optical diagnostic for combustion

Xudong Xiao and Ishwar K. Puri
Appl. Opt. 41(19) 3890-3899 (2002)

References

  • View by:
  • |
  • |
  • |

  1. S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50(10), 1436–1444 (2012).
    [Crossref]
  2. M. Wu, M. P. Burke, S. F. Son, and R. A. Yetter, “Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes,” Proc. Combust. Inst. 31(2), 2429–2436 (2007).
    [Crossref]
  3. S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Opt. 51(16), 3228–3235 (2012).
    [Crossref] [PubMed]
  4. M. Wu and C. Wang, “Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures,” Proc. Combust. Inst. 33(2), 2287–2293 (2011).
    [Crossref]
  5. Z. Pan, K. Chen, J. Pan, P. Zhang, Y. Zhu, and J. Qi, “An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps,” Exp. Therm. Fluid Sci. 88, 354–360 (2017).
    [Crossref]
  6. J. Wan, A. Fan, Y. Liu, H. Yao, W. Liu, X. Gou, and D. Zhao, “Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities,” Combust. Flame 162(4), 1035–1045 (2015).
    [Crossref]
  7. H. Wang, E. R. Hawkes, B. Zhou, J. H. Chen, Z. Li, and M. Alden, “A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number,” Proc. Combust. Inst. 36(2), 2045–2053 (2017).
    [Crossref]
  8. D. Valiev, V. Akkerman, M. Kuznetsov, L. Eriksson, C. Law, and V. Bychkov, “Influence of gas compression on flame acceleration in the early stage of burning in tubes,” Combust. Flame 160(1), 97–111 (2013).
    [Crossref]
  9. Z. Chen, “On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure,” Combust. Flame 162(6), 2442–2453 (2015).
    [Crossref]
  10. R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Opt. 52(1), A319–A325 (2013).
    [Crossref] [PubMed]
  11. S. Agarwal, V. Kumar, and C. Shakher, “Temperature measurement of wick stabilized micro diffusion flame under the influence of magnetic field using digital holographic interferometry,” Opt. Lasers Eng. 102, 161–169 (2018).
    [Crossref]
  12. C. Qi, S. Zheng, and H. Zhou, “Experimental investigation on gas-phase temperature of axisymmetric ethylene flames by large lateral shearing interferometry,” Int. J. Therm. Sci. 115(3), 104–111 (2017).
    [Crossref]
  13. V. Kumar and C. Shakher, “Measurement of temperature and temperature profile of candle flame using holo-shear lens and Fourier fringe analysis technique,” Opt. Eng. 54(8), 084105 (2015).
    [Crossref]
  14. X. Chen, Y. Zhang, and Y. Zhang, “Effect of CH4–Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors,” Energies 5(10), 4132–4146 (2012).
    [Crossref]
  15. H. Lycksam, M. Sjödahl, P. Gren, M. Öhman, and R. Gebart, “High-speed interferometric measurement and visualization of the conversion of a black liquor droplet during laser heating,” Opt. Lasers Eng. 50(11), 1654–1661 (2012).
    [Crossref]
  16. T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44(6), 535–554 (2006).
    [Crossref]
  17. T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
    [Crossref] [PubMed]
  18. J. Di, Y. Yu, Z. Wang, W. Qu, C. Y. Cheng, and J. Zhao, “Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry,” Opt. Express 24(25), 28185–28193 (2016).
    [Crossref] [PubMed]
  19. W. Sun, J. Zhao, J. Di, Q. Wang, and L. Wang, “Real-time visualization of Karman vortex street in water flow field by using digital holography,” Opt. Express 17(22), 20342–20348 (2009).
    [Crossref] [PubMed]
  20. Z. N. Ashrafi, M. Ashjaee, and M. H. Askari, “Two-dimensional temperature field measurement of a premixed methane/air flame using Mach–Zehnder interferometry,” Opt. Commun. 341, 55–63 (2015).
    [Crossref]
  21. M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49(7), 859–865 (2011).
    [Crossref]
  22. J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder Interferometry,” Appl. Therm. Eng. 28(14-15), 1806–1812 (2008).
    [Crossref]
  23. J. S. Pérez-Huerta, T. Saucedo-Anaya, I. Moreno, D. Ariza-Flores, and B. Saucedo-Orozco, “Digital holographic interferometry applied to the investigation of ignition process,” Opt. Express 25(12), 13190–13198 (2017).
    [Crossref] [PubMed]
  24. C. Ma, Y Li, J. Zhang, P Li, T. Xi, J. Di, and J. Zhao, "Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer," Opt. Express 25(12), 13659 (2017).
  25. J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, "Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry," Appl. Opt. 55(26), 7287-7293 (2016).
  26. J. Zhang, C. Ma, S. Dai, J. Di, Y Li, T. Xi, and J. Zhao, "Transmission and total internal reflection integrated digital holographic microscopy," Opt. Lett. 41(16), 3844-3847 (2016).

2018 (1)

S. Agarwal, V. Kumar, and C. Shakher, “Temperature measurement of wick stabilized micro diffusion flame under the influence of magnetic field using digital holographic interferometry,” Opt. Lasers Eng. 102, 161–169 (2018).
[Crossref]

2017 (6)

C. Qi, S. Zheng, and H. Zhou, “Experimental investigation on gas-phase temperature of axisymmetric ethylene flames by large lateral shearing interferometry,” Int. J. Therm. Sci. 115(3), 104–111 (2017).
[Crossref]

Z. Pan, K. Chen, J. Pan, P. Zhang, Y. Zhu, and J. Qi, “An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps,” Exp. Therm. Fluid Sci. 88, 354–360 (2017).
[Crossref]

H. Wang, E. R. Hawkes, B. Zhou, J. H. Chen, Z. Li, and M. Alden, “A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number,” Proc. Combust. Inst. 36(2), 2045–2053 (2017).
[Crossref]

T. Xi, J. Di, X. Guan, Y. Li, C. Ma, J. Zhang, and J. Zhao, “Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter,” Appl. Opt. 56(10), 2686–2690 (2017).
[Crossref] [PubMed]

J. S. Pérez-Huerta, T. Saucedo-Anaya, I. Moreno, D. Ariza-Flores, and B. Saucedo-Orozco, “Digital holographic interferometry applied to the investigation of ignition process,” Opt. Express 25(12), 13190–13198 (2017).
[Crossref] [PubMed]

C. Ma, Y Li, J. Zhang, P Li, T. Xi, J. Di, and J. Zhao, "Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer," Opt. Express 25(12), 13659 (2017).

2016 (3)

2015 (4)

J. Wan, A. Fan, Y. Liu, H. Yao, W. Liu, X. Gou, and D. Zhao, “Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities,” Combust. Flame 162(4), 1035–1045 (2015).
[Crossref]

V. Kumar and C. Shakher, “Measurement of temperature and temperature profile of candle flame using holo-shear lens and Fourier fringe analysis technique,” Opt. Eng. 54(8), 084105 (2015).
[Crossref]

Z. Chen, “On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure,” Combust. Flame 162(6), 2442–2453 (2015).
[Crossref]

Z. N. Ashrafi, M. Ashjaee, and M. H. Askari, “Two-dimensional temperature field measurement of a premixed methane/air flame using Mach–Zehnder interferometry,” Opt. Commun. 341, 55–63 (2015).
[Crossref]

2013 (2)

D. Valiev, V. Akkerman, M. Kuznetsov, L. Eriksson, C. Law, and V. Bychkov, “Influence of gas compression on flame acceleration in the early stage of burning in tubes,” Combust. Flame 160(1), 97–111 (2013).
[Crossref]

R. Doleček, P. Psota, V. Lédl, T. Vít, J. Václavík, and V. Kopecký, “General temperature field measurement by digital holography,” Appl. Opt. 52(1), A319–A325 (2013).
[Crossref] [PubMed]

2012 (4)

X. Chen, Y. Zhang, and Y. Zhang, “Effect of CH4–Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors,” Energies 5(10), 4132–4146 (2012).
[Crossref]

H. Lycksam, M. Sjödahl, P. Gren, M. Öhman, and R. Gebart, “High-speed interferometric measurement and visualization of the conversion of a black liquor droplet during laser heating,” Opt. Lasers Eng. 50(11), 1654–1661 (2012).
[Crossref]

S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Opt. 51(16), 3228–3235 (2012).
[Crossref] [PubMed]

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50(10), 1436–1444 (2012).
[Crossref]

2011 (2)

M. Wu and C. Wang, “Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures,” Proc. Combust. Inst. 33(2), 2287–2293 (2011).
[Crossref]

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49(7), 859–865 (2011).
[Crossref]

2009 (1)

2008 (1)

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder Interferometry,” Appl. Therm. Eng. 28(14-15), 1806–1812 (2008).
[Crossref]

2007 (1)

M. Wu, M. P. Burke, S. F. Son, and R. A. Yetter, “Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes,” Proc. Combust. Inst. 31(2), 2429–2436 (2007).
[Crossref]

2006 (1)

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44(6), 535–554 (2006).
[Crossref]

Agarwal, S.

S. Agarwal, V. Kumar, and C. Shakher, “Temperature measurement of wick stabilized micro diffusion flame under the influence of magnetic field using digital holographic interferometry,” Opt. Lasers Eng. 102, 161–169 (2018).
[Crossref]

Ahmadi, M.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49(7), 859–865 (2011).
[Crossref]

Akkerman, V.

D. Valiev, V. Akkerman, M. Kuznetsov, L. Eriksson, C. Law, and V. Bychkov, “Influence of gas compression on flame acceleration in the early stage of burning in tubes,” Combust. Flame 160(1), 97–111 (2013).
[Crossref]

Alden, M.

H. Wang, E. R. Hawkes, B. Zhou, J. H. Chen, Z. Li, and M. Alden, “A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number,” Proc. Combust. Inst. 36(2), 2045–2053 (2017).
[Crossref]

Ariza-Flores, D.

Ashjaee, M.

Z. N. Ashrafi, M. Ashjaee, and M. H. Askari, “Two-dimensional temperature field measurement of a premixed methane/air flame using Mach–Zehnder interferometry,” Opt. Commun. 341, 55–63 (2015).
[Crossref]

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49(7), 859–865 (2011).
[Crossref]

Ashrafi, Z. N.

Z. N. Ashrafi, M. Ashjaee, and M. H. Askari, “Two-dimensional temperature field measurement of a premixed methane/air flame using Mach–Zehnder interferometry,” Opt. Commun. 341, 55–63 (2015).
[Crossref]

Askari, M. H.

Z. N. Ashrafi, M. Ashjaee, and M. H. Askari, “Two-dimensional temperature field measurement of a premixed methane/air flame using Mach–Zehnder interferometry,” Opt. Commun. 341, 55–63 (2015).
[Crossref]

Burke, M. P.

M. Wu, M. P. Burke, S. F. Son, and R. A. Yetter, “Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes,” Proc. Combust. Inst. 31(2), 2429–2436 (2007).
[Crossref]

Bychkov, V.

D. Valiev, V. Akkerman, M. Kuznetsov, L. Eriksson, C. Law, and V. Bychkov, “Influence of gas compression on flame acceleration in the early stage of burning in tubes,” Combust. Flame 160(1), 97–111 (2013).
[Crossref]

Carlsson, T. E.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44(6), 535–554 (2006).
[Crossref]

Chen, J. H.

H. Wang, E. R. Hawkes, B. Zhou, J. H. Chen, Z. Li, and M. Alden, “A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number,” Proc. Combust. Inst. 36(2), 2045–2053 (2017).
[Crossref]

Chen, K.

Z. Pan, K. Chen, J. Pan, P. Zhang, Y. Zhu, and J. Qi, “An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps,” Exp. Therm. Fluid Sci. 88, 354–360 (2017).
[Crossref]

Chen, X.

X. Chen, Y. Zhang, and Y. Zhang, “Effect of CH4–Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors,” Energies 5(10), 4132–4146 (2012).
[Crossref]

Chen, Z.

Z. Chen, “On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure,” Combust. Flame 162(6), 2442–2453 (2015).
[Crossref]

Cheng, C. Y.

Dai, S.

Di, J.

Dolecek, R.

Elfsberg, M.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44(6), 535–554 (2006).
[Crossref]

Eriksson, L.

D. Valiev, V. Akkerman, M. Kuznetsov, L. Eriksson, C. Law, and V. Bychkov, “Influence of gas compression on flame acceleration in the early stage of burning in tubes,” Combust. Flame 160(1), 97–111 (2013).
[Crossref]

Fan, A.

J. Wan, A. Fan, Y. Liu, H. Yao, W. Liu, X. Gou, and D. Zhao, “Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities,” Combust. Flame 162(4), 1035–1045 (2015).
[Crossref]

Gebart, R.

H. Lycksam, M. Sjödahl, P. Gren, M. Öhman, and R. Gebart, “High-speed interferometric measurement and visualization of the conversion of a black liquor droplet during laser heating,” Opt. Lasers Eng. 50(11), 1654–1661 (2012).
[Crossref]

Goharkhah, M.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49(7), 859–865 (2011).
[Crossref]

Gou, X.

J. Wan, A. Fan, Y. Liu, H. Yao, W. Liu, X. Gou, and D. Zhao, “Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities,” Combust. Flame 162(4), 1035–1045 (2015).
[Crossref]

Gren, P.

H. Lycksam, M. Sjödahl, P. Gren, M. Öhman, and R. Gebart, “High-speed interferometric measurement and visualization of the conversion of a black liquor droplet during laser heating,” Opt. Lasers Eng. 50(11), 1654–1661 (2012).
[Crossref]

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44(6), 535–554 (2006).
[Crossref]

Guan, X.

Hawkes, E. R.

H. Wang, E. R. Hawkes, B. Zhou, J. H. Chen, Z. Li, and M. Alden, “A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number,” Proc. Combust. Inst. 36(2), 2045–2053 (2017).
[Crossref]

Kopecký, V.

Kumar, V.

S. Agarwal, V. Kumar, and C. Shakher, “Temperature measurement of wick stabilized micro diffusion flame under the influence of magnetic field using digital holographic interferometry,” Opt. Lasers Eng. 102, 161–169 (2018).
[Crossref]

V. Kumar and C. Shakher, “Measurement of temperature and temperature profile of candle flame using holo-shear lens and Fourier fringe analysis technique,” Opt. Eng. 54(8), 084105 (2015).
[Crossref]

Kuznetsov, M.

D. Valiev, V. Akkerman, M. Kuznetsov, L. Eriksson, C. Law, and V. Bychkov, “Influence of gas compression on flame acceleration in the early stage of burning in tubes,” Combust. Flame 160(1), 97–111 (2013).
[Crossref]

Law, C.

D. Valiev, V. Akkerman, M. Kuznetsov, L. Eriksson, C. Law, and V. Bychkov, “Influence of gas compression on flame acceleration in the early stage of burning in tubes,” Combust. Flame 160(1), 97–111 (2013).
[Crossref]

Lédl, V.

Leung, C. W.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder Interferometry,” Appl. Therm. Eng. 28(14-15), 1806–1812 (2008).
[Crossref]

Li, E.

Li, P

Li, Y

Li, Y.

Li, Z.

H. Wang, E. R. Hawkes, B. Zhou, J. H. Chen, Z. Li, and M. Alden, “A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number,” Proc. Combust. Inst. 36(2), 2045–2053 (2017).
[Crossref]

Liu, W.

J. Wan, A. Fan, Y. Liu, H. Yao, W. Liu, X. Gou, and D. Zhao, “Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities,” Combust. Flame 162(4), 1035–1045 (2015).
[Crossref]

Liu, Y.

J. Wan, A. Fan, Y. Liu, H. Yao, W. Liu, X. Gou, and D. Zhao, “Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities,” Combust. Flame 162(4), 1035–1045 (2015).
[Crossref]

Lycksam, H.

H. Lycksam, M. Sjödahl, P. Gren, M. Öhman, and R. Gebart, “High-speed interferometric measurement and visualization of the conversion of a black liquor droplet during laser heating,” Opt. Lasers Eng. 50(11), 1654–1661 (2012).
[Crossref]

Ma, C.

Mattsson, R.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44(6), 535–554 (2006).
[Crossref]

Moreno, I.

Nasr, B.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49(7), 859–865 (2011).
[Crossref]

Öhman, M.

H. Lycksam, M. Sjödahl, P. Gren, M. Öhman, and R. Gebart, “High-speed interferometric measurement and visualization of the conversion of a black liquor droplet during laser heating,” Opt. Lasers Eng. 50(11), 1654–1661 (2012).
[Crossref]

Pan, J.

Z. Pan, K. Chen, J. Pan, P. Zhang, Y. Zhu, and J. Qi, “An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps,” Exp. Therm. Fluid Sci. 88, 354–360 (2017).
[Crossref]

Pan, Z.

Z. Pan, K. Chen, J. Pan, P. Zhang, Y. Zhu, and J. Qi, “An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps,” Exp. Therm. Fluid Sci. 88, 354–360 (2017).
[Crossref]

Pérez-Huerta, J. S.

Psota, P.

Qi, C.

C. Qi, S. Zheng, and H. Zhou, “Experimental investigation on gas-phase temperature of axisymmetric ethylene flames by large lateral shearing interferometry,” Int. J. Therm. Sci. 115(3), 104–111 (2017).
[Crossref]

Qi, J.

Z. Pan, K. Chen, J. Pan, P. Zhang, Y. Zhu, and J. Qi, “An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps,” Exp. Therm. Fluid Sci. 88, 354–360 (2017).
[Crossref]

Qi, J. A.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder Interferometry,” Appl. Therm. Eng. 28(14-15), 1806–1812 (2008).
[Crossref]

Qu, W.

Saffar Avval, M.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49(7), 859–865 (2011).
[Crossref]

Saucedo-Anaya, T.

Saucedo-Orozco, B.

Shakher, C.

S. Agarwal, V. Kumar, and C. Shakher, “Temperature measurement of wick stabilized micro diffusion flame under the influence of magnetic field using digital holographic interferometry,” Opt. Lasers Eng. 102, 161–169 (2018).
[Crossref]

V. Kumar and C. Shakher, “Measurement of temperature and temperature profile of candle flame using holo-shear lens and Fourier fringe analysis technique,” Opt. Eng. 54(8), 084105 (2015).
[Crossref]

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50(10), 1436–1444 (2012).
[Crossref]

S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Opt. 51(16), 3228–3235 (2012).
[Crossref] [PubMed]

Sharma, S.

S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Opt. 51(16), 3228–3235 (2012).
[Crossref] [PubMed]

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50(10), 1436–1444 (2012).
[Crossref]

Sheoran, G.

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50(10), 1436–1444 (2012).
[Crossref]

S. Sharma, G. Sheoran, and C. Shakher, “Digital holographic interferometry for measurement of temperature in axisymmetric flames,” Appl. Opt. 51(16), 3228–3235 (2012).
[Crossref] [PubMed]

Sjödahl, M.

H. Lycksam, M. Sjödahl, P. Gren, M. Öhman, and R. Gebart, “High-speed interferometric measurement and visualization of the conversion of a black liquor droplet during laser heating,” Opt. Lasers Eng. 50(11), 1654–1661 (2012).
[Crossref]

Son, S. F.

M. Wu, M. P. Burke, S. F. Son, and R. A. Yetter, “Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes,” Proc. Combust. Inst. 31(2), 2429–2436 (2007).
[Crossref]

Sun, W.

Tegner, J.

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44(6), 535–554 (2006).
[Crossref]

Václavík, J.

Valiev, D.

D. Valiev, V. Akkerman, M. Kuznetsov, L. Eriksson, C. Law, and V. Bychkov, “Influence of gas compression on flame acceleration in the early stage of burning in tubes,” Combust. Flame 160(1), 97–111 (2013).
[Crossref]

Vít, T.

Wan, J.

J. Wan, A. Fan, Y. Liu, H. Yao, W. Liu, X. Gou, and D. Zhao, “Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities,” Combust. Flame 162(4), 1035–1045 (2015).
[Crossref]

Wang, C.

M. Wu and C. Wang, “Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures,” Proc. Combust. Inst. 33(2), 2287–2293 (2011).
[Crossref]

Wang, H.

H. Wang, E. R. Hawkes, B. Zhou, J. H. Chen, Z. Li, and M. Alden, “A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number,” Proc. Combust. Inst. 36(2), 2045–2053 (2017).
[Crossref]

Wang, L.

Wang, Q.

Wang, Z.

Wong, W. O.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder Interferometry,” Appl. Therm. Eng. 28(14-15), 1806–1812 (2008).
[Crossref]

Wu, M.

M. Wu and C. Wang, “Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures,” Proc. Combust. Inst. 33(2), 2287–2293 (2011).
[Crossref]

M. Wu, M. P. Burke, S. F. Son, and R. A. Yetter, “Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes,” Proc. Combust. Inst. 31(2), 2429–2436 (2007).
[Crossref]

Xi, T.

Xie, M.

Yao, H.

J. Wan, A. Fan, Y. Liu, H. Yao, W. Liu, X. Gou, and D. Zhao, “Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities,” Combust. Flame 162(4), 1035–1045 (2015).
[Crossref]

Yetter, R. A.

M. Wu, M. P. Burke, S. F. Son, and R. A. Yetter, “Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes,” Proc. Combust. Inst. 31(2), 2429–2436 (2007).
[Crossref]

Yousefi, T.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49(7), 859–865 (2011).
[Crossref]

Yu, Y.

Yuen, D. W.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder Interferometry,” Appl. Therm. Eng. 28(14-15), 1806–1812 (2008).
[Crossref]

Zhang, J.

Zhang, P.

Z. Pan, K. Chen, J. Pan, P. Zhang, Y. Zhu, and J. Qi, “An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps,” Exp. Therm. Fluid Sci. 88, 354–360 (2017).
[Crossref]

Zhang, Y.

X. Chen, Y. Zhang, and Y. Zhang, “Effect of CH4–Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors,” Energies 5(10), 4132–4146 (2012).
[Crossref]

X. Chen, Y. Zhang, and Y. Zhang, “Effect of CH4–Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors,” Energies 5(10), 4132–4146 (2012).
[Crossref]

Zhao, D.

J. Wan, A. Fan, Y. Liu, H. Yao, W. Liu, X. Gou, and D. Zhao, “Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities,” Combust. Flame 162(4), 1035–1045 (2015).
[Crossref]

Zhao, J.

Zheng, S.

C. Qi, S. Zheng, and H. Zhou, “Experimental investigation on gas-phase temperature of axisymmetric ethylene flames by large lateral shearing interferometry,” Int. J. Therm. Sci. 115(3), 104–111 (2017).
[Crossref]

Zhou, B.

H. Wang, E. R. Hawkes, B. Zhou, J. H. Chen, Z. Li, and M. Alden, “A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number,” Proc. Combust. Inst. 36(2), 2045–2053 (2017).
[Crossref]

Zhou, H.

C. Qi, S. Zheng, and H. Zhou, “Experimental investigation on gas-phase temperature of axisymmetric ethylene flames by large lateral shearing interferometry,” Int. J. Therm. Sci. 115(3), 104–111 (2017).
[Crossref]

Zhu, Y.

Z. Pan, K. Chen, J. Pan, P. Zhang, Y. Zhu, and J. Qi, “An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps,” Exp. Therm. Fluid Sci. 88, 354–360 (2017).
[Crossref]

Appl. Opt. (4)

Appl. Therm. Eng. (1)

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder Interferometry,” Appl. Therm. Eng. 28(14-15), 1806–1812 (2008).
[Crossref]

Combust. Flame (3)

J. Wan, A. Fan, Y. Liu, H. Yao, W. Liu, X. Gou, and D. Zhao, “Experimental investigation and numerical analysis on flame stabilization of CH4/air mixture in a mesoscale channel with wall cavities,” Combust. Flame 162(4), 1035–1045 (2015).
[Crossref]

D. Valiev, V. Akkerman, M. Kuznetsov, L. Eriksson, C. Law, and V. Bychkov, “Influence of gas compression on flame acceleration in the early stage of burning in tubes,” Combust. Flame 160(1), 97–111 (2013).
[Crossref]

Z. Chen, “On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure,” Combust. Flame 162(6), 2442–2453 (2015).
[Crossref]

Energies (1)

X. Chen, Y. Zhang, and Y. Zhang, “Effect of CH4–Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors,” Energies 5(10), 4132–4146 (2012).
[Crossref]

Exp. Therm. Fluid Sci. (1)

Z. Pan, K. Chen, J. Pan, P. Zhang, Y. Zhu, and J. Qi, “An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps,” Exp. Therm. Fluid Sci. 88, 354–360 (2017).
[Crossref]

Int. J. Therm. Sci. (1)

C. Qi, S. Zheng, and H. Zhou, “Experimental investigation on gas-phase temperature of axisymmetric ethylene flames by large lateral shearing interferometry,” Int. J. Therm. Sci. 115(3), 104–111 (2017).
[Crossref]

Opt. Commun. (1)

Z. N. Ashrafi, M. Ashjaee, and M. H. Askari, “Two-dimensional temperature field measurement of a premixed methane/air flame using Mach–Zehnder interferometry,” Opt. Commun. 341, 55–63 (2015).
[Crossref]

Opt. Eng. (1)

V. Kumar and C. Shakher, “Measurement of temperature and temperature profile of candle flame using holo-shear lens and Fourier fringe analysis technique,” Opt. Eng. 54(8), 084105 (2015).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (5)

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49(7), 859–865 (2011).
[Crossref]

H. Lycksam, M. Sjödahl, P. Gren, M. Öhman, and R. Gebart, “High-speed interferometric measurement and visualization of the conversion of a black liquor droplet during laser heating,” Opt. Lasers Eng. 50(11), 1654–1661 (2012).
[Crossref]

T. E. Carlsson, R. Mattsson, P. Gren, M. Elfsberg, and J. Tegner, “Combination of schlieren and pulsed TV holography in the study of a high-speed flame jet,” Opt. Lasers Eng. 44(6), 535–554 (2006).
[Crossref]

S. Agarwal, V. Kumar, and C. Shakher, “Temperature measurement of wick stabilized micro diffusion flame under the influence of magnetic field using digital holographic interferometry,” Opt. Lasers Eng. 102, 161–169 (2018).
[Crossref]

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50(10), 1436–1444 (2012).
[Crossref]

Opt. Lett. (1)

Proc. Combust. Inst. (3)

M. Wu, M. P. Burke, S. F. Son, and R. A. Yetter, “Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes,” Proc. Combust. Inst. 31(2), 2429–2436 (2007).
[Crossref]

M. Wu and C. Wang, “Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures,” Proc. Combust. Inst. 33(2), 2287–2293 (2011).
[Crossref]

H. Wang, E. R. Hawkes, B. Zhou, J. H. Chen, Z. Li, and M. Alden, “A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number,” Proc. Combust. Inst. 36(2), 2045–2053 (2017).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       The whole combustion process of premixed ethylene/oxygen flames in a narrow channel

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup for measuring the combustion process in a narrow channel based on DHI. C: fiber coupler; FC1 and FC2: fiber connectors; A: aperture; L1, L2, L3 and L4: lenses; BS: beam splitter; P: polarizer.
Fig. 2
Fig. 2 (a-h) Phase images of the compression wave. (i) Density variation Δρ from 0 μs to 140 μs along the red line in (a). (The whole combustion process can be seen in Visualization 1.)
Fig. 3
Fig. 3 (a-f) Phase distribution of the finger flame. (g) Density variation Δρ from 210 μs to 360 μs along with the red line in (a).
Fig. 4
Fig. 4 (a-g) Phase images of tulip flame.
Fig. 5
Fig. 5 (a-f) Phase images of the shock wave coupling and separating. (g) Density variation Δρ along the horizontal direction in (c) and (d).

Tables (1)

Tables Icon

Table 1 Gladstone-Dale constant of the involved gas mixtures

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρ=m/V=PM/RT,M= i=1 k Y i M i ,
C 2 H 4 +3O 2 2CO 2 +2H 2 O.
K=(n1)/ρ,K= i=1 k Y i K i ,
Δn= λ 2πL Δϕ(x,y),
Δρ= λ 2πLK Δϕ(x,y).