Abstract

A method for testing the transmitted wavefront of large aperture and long-focal-length lens with a multizone computer-generated hologram (CGH) is proposed. The multizone CGH has 5 zones: one main zone for the null testing of long-focal-length lens and four auxiliary zones for the pre-alignment of measured lens. Both 1st order wavefront and 0th order wavefront of CGH are measured, and 0th order wavefront is used to calibrate the substrate error. To verify this test approach, a 450mm × 450mm multizone CGH is designed and fabricated for testing the spatial filter lens. Experiments and error analysis are carried out. The results show that the desired precision can be reached with use of CGH.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Combined computer-generated hologram for testing steep aspheric surfaces

A.G. Poleshchuk, R. K. Nasyrov, and J.- M. Asfour
Opt. Express 17(7) 5420-5425 (2009)

Large-aperture laser differential confocal ultra-long focal length measurement and its system

Weiqian Zhao, Zhigang Li, Lirong Qiu, Huan Ren, and Rongjun Shao
Opt. Express 23(13) 17379-17393 (2015)

Using Computer Generated Holograms to Test Aspheric Wavefronts

J. C. Wyant and V. P. Bennett
Appl. Opt. 11(12) 2833-2839 (1972)

References

  • View by:
  • |
  • |
  • |

  1. T. G. Parham, T. J. McCarville, and M. A. Johnson, “Focal length measurements for the National Ignition Facility large lenses,” in Optical Fabrication and Testing (OFT, 2002), paper OWD8.
  2. C. Jin, S. Liu, Y. Zhou, X. Xu, C. Wei, and J. Shao, “Study on measurement of medium and low spatial wavefront errors of long focal length lens,” Chin. Opt. Lett. 12(s2), S21203 (2014).
    [Crossref]
  3. A. J. Macgovern and J. C. Wyant, “Computer generated holograms for testing optical elements,” Appl. Opt. 10(3), 619–624 (1971).
    [Crossref] [PubMed]
  4. B. DeBoo and J. Sasian, “Precise focal-length measurement technique with a reflective Fresnel-zone hologram,” Appl. Opt. 42(19), 3903–3909 (2003).
    [Crossref] [PubMed]
  5. X. Wei, Y. He, K. Xu, B. Gao, and Q. L. Chai, “Computer-generated holograms for precision optical testing,” Proc. SPIE 9684, 96842C (2016).
  6. N. Lindlein, “Analysis of the disturbing diffraction orders of computer-generated holograms used for testing optical aspherics,” Appl. Opt. 40(16), 2698–2708 (2001).
    [Crossref] [PubMed]
  7. Y. He, X. Hou, F. Wu, X. Ma, and R. Liang, “Analysis of spurious diffraction orders of computer-generated hologram in symmetric aspheric metrology,” Opt. Express 25(17), 20556–20572 (2017).
    [Crossref] [PubMed]
  8. J. Peng, J. Ren, X. Zhang, and Z. Chen, “Analytical investigation of the parasitic diffraction orders of tilt carrier frequency computer-generated holograms,” Appl. Opt. 54(13), 4033–4041 (2015).
    [Crossref]
  9. P. Zhou and J. H. Burge, “Optimal design of computer-generated holograms to minimize sensitivity to fabrication errors,” Opt. Express 15(23), 15410–15417 (2007).
    [Crossref] [PubMed]
  10. C. Zhao and J. H. Burge, “Optical testing with computer generated holograms: comprehensive error analysis,” Proc. SPIE 8838, 88380H (2013).
    [Crossref]

2017 (1)

2016 (1)

X. Wei, Y. He, K. Xu, B. Gao, and Q. L. Chai, “Computer-generated holograms for precision optical testing,” Proc. SPIE 9684, 96842C (2016).

2015 (1)

2014 (1)

C. Jin, S. Liu, Y. Zhou, X. Xu, C. Wei, and J. Shao, “Study on measurement of medium and low spatial wavefront errors of long focal length lens,” Chin. Opt. Lett. 12(s2), S21203 (2014).
[Crossref]

2013 (1)

C. Zhao and J. H. Burge, “Optical testing with computer generated holograms: comprehensive error analysis,” Proc. SPIE 8838, 88380H (2013).
[Crossref]

2007 (1)

2003 (1)

2001 (1)

1971 (1)

Burge, J. H.

C. Zhao and J. H. Burge, “Optical testing with computer generated holograms: comprehensive error analysis,” Proc. SPIE 8838, 88380H (2013).
[Crossref]

P. Zhou and J. H. Burge, “Optimal design of computer-generated holograms to minimize sensitivity to fabrication errors,” Opt. Express 15(23), 15410–15417 (2007).
[Crossref] [PubMed]

Chai, Q. L.

X. Wei, Y. He, K. Xu, B. Gao, and Q. L. Chai, “Computer-generated holograms for precision optical testing,” Proc. SPIE 9684, 96842C (2016).

Chen, Z.

DeBoo, B.

Gao, B.

X. Wei, Y. He, K. Xu, B. Gao, and Q. L. Chai, “Computer-generated holograms for precision optical testing,” Proc. SPIE 9684, 96842C (2016).

He, Y.

Y. He, X. Hou, F. Wu, X. Ma, and R. Liang, “Analysis of spurious diffraction orders of computer-generated hologram in symmetric aspheric metrology,” Opt. Express 25(17), 20556–20572 (2017).
[Crossref] [PubMed]

X. Wei, Y. He, K. Xu, B. Gao, and Q. L. Chai, “Computer-generated holograms for precision optical testing,” Proc. SPIE 9684, 96842C (2016).

Hou, X.

Jin, C.

C. Jin, S. Liu, Y. Zhou, X. Xu, C. Wei, and J. Shao, “Study on measurement of medium and low spatial wavefront errors of long focal length lens,” Chin. Opt. Lett. 12(s2), S21203 (2014).
[Crossref]

Liang, R.

Lindlein, N.

Liu, S.

C. Jin, S. Liu, Y. Zhou, X. Xu, C. Wei, and J. Shao, “Study on measurement of medium and low spatial wavefront errors of long focal length lens,” Chin. Opt. Lett. 12(s2), S21203 (2014).
[Crossref]

Ma, X.

Macgovern, A. J.

Peng, J.

Ren, J.

Sasian, J.

Shao, J.

C. Jin, S. Liu, Y. Zhou, X. Xu, C. Wei, and J. Shao, “Study on measurement of medium and low spatial wavefront errors of long focal length lens,” Chin. Opt. Lett. 12(s2), S21203 (2014).
[Crossref]

Wei, C.

C. Jin, S. Liu, Y. Zhou, X. Xu, C. Wei, and J. Shao, “Study on measurement of medium and low spatial wavefront errors of long focal length lens,” Chin. Opt. Lett. 12(s2), S21203 (2014).
[Crossref]

Wei, X.

X. Wei, Y. He, K. Xu, B. Gao, and Q. L. Chai, “Computer-generated holograms for precision optical testing,” Proc. SPIE 9684, 96842C (2016).

Wu, F.

Wyant, J. C.

Xu, K.

X. Wei, Y. He, K. Xu, B. Gao, and Q. L. Chai, “Computer-generated holograms for precision optical testing,” Proc. SPIE 9684, 96842C (2016).

Xu, X.

C. Jin, S. Liu, Y. Zhou, X. Xu, C. Wei, and J. Shao, “Study on measurement of medium and low spatial wavefront errors of long focal length lens,” Chin. Opt. Lett. 12(s2), S21203 (2014).
[Crossref]

Zhang, X.

Zhao, C.

C. Zhao and J. H. Burge, “Optical testing with computer generated holograms: comprehensive error analysis,” Proc. SPIE 8838, 88380H (2013).
[Crossref]

Zhou, P.

Zhou, Y.

C. Jin, S. Liu, Y. Zhou, X. Xu, C. Wei, and J. Shao, “Study on measurement of medium and low spatial wavefront errors of long focal length lens,” Chin. Opt. Lett. 12(s2), S21203 (2014).
[Crossref]

Appl. Opt. (4)

Chin. Opt. Lett. (1)

C. Jin, S. Liu, Y. Zhou, X. Xu, C. Wei, and J. Shao, “Study on measurement of medium and low spatial wavefront errors of long focal length lens,” Chin. Opt. Lett. 12(s2), S21203 (2014).
[Crossref]

Opt. Express (2)

Proc. SPIE (2)

C. Zhao and J. H. Burge, “Optical testing with computer generated holograms: comprehensive error analysis,” Proc. SPIE 8838, 88380H (2013).
[Crossref]

X. Wei, Y. He, K. Xu, B. Gao, and Q. L. Chai, “Computer-generated holograms for precision optical testing,” Proc. SPIE 9684, 96842C (2016).

Other (1)

T. G. Parham, T. J. McCarville, and M. A. Johnson, “Focal length measurements for the National Ignition Facility large lenses,” in Optical Fabrication and Testing (OFT, 2002), paper OWD8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Two methods for testing the transmitted wavefront of long-focal-length lens.
Fig. 2
Fig. 2 Schematic drawing of the CGH test configuration for long-focal-length lens.
Fig. 3
Fig. 3 Geometrical model for the optical path of the CGH test.
Fig. 4
Fig. 4 Design of the testing CGH and beam projection CGH.
Fig. 5
Fig. 5 The fringe patterns of multizone CGH.
Fig. 6
Fig. 6 The experimental setup for testing the long focus lens with CGH. (a)Whole testing setup; (b) CGH on fused silica substrate; (c) Long-focal-length lens under test.
Fig. 7
Fig. 7 0th order measurement. (a) Interferogram; (b) CGH substrate figure map (with “spurious fringe spot” data): PV = 0.1125λ and RMS = 0.0178λ; (c) CGH substrate figure map (without “spurious fringe spot” data): PV = 0.1086λ and RMS = 0.0178λ.
Fig. 8
Fig. 8 1st order measurement. (a) Interferogram; (b) Wavefront map: (with “ghost fringe spot” data): PV = 0.2590λ and RMS = 0.0304λ; (c) Wavefront map: (without “ghost fringe spot” data): PV = 0.2568λand RMS = 0.0302λ.
Fig. 9
Fig. 9 Data mapping between 0th order and 1st order. (a) Mapping function; (b) CGH substrate figure map after data mapping: PV = 0.1046λ and RMS = 0.0175λ; (c) Wavefront map with CGH substrate calibrated: PV = 0.2284λ and RMS = 0.0276λ.
Fig. 10
Fig. 10 1st order measurement with a tilt. (a) Interferogram; (b) Wavefront map with “spurious fringe spot” data: PV = 0.2510λ and RMS = 0.0310λ; (c) Wavefront map without “spurious fringe spot” data: PV = 0.2510λ and RMS = 0.0310λ; (d) Wavefront map with CGH substrate calibrated: PV = 0.2190λ and RMS = 0.0276λ.
Fig. 11
Fig. 11 Simulated ghost fringes with different tilt. (a) No tilt; (b) 1.8′; (c) 2.28′; (d) 2.43′.
Fig. 12
Fig. 12 Aberration introduced by tilt. (a) Simulated aberration: PV = 0.0254λ and RMS = 0.0027λ; (b) Fitting coma of the difference: PV = 0.0342λ and RMS = 0.0030λ; (c) Wavefront map with introduced aberration backed out: PV = 0.2333λ and RMS = 0.0278λ.

Tables (2)

Tables Icon

Table 1 Specifications for spatial filter lens.

Tables Icon

Table 2 Wavefront errors analysis for the CGH test

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

sin I 1 = r 1 / R 1 sin I 1 =(1/n)sin I 1 U 1 = U 1 + I 1 I 1 L 1 = R 1 + R 1 sin I 1 /sin U 1
sin I 2 =( L 2 R 2 )sin U 2 / R 2 sin I 2 =nsin I 2 U 2 = U 2 + I 2 I 2 L 2 = R 2 + R 2 sin I 2 /sin U 2
r CGH =( L 2 d 2 )tan U 2
2π λ *opl( O 1 A+AB+BE)+ϕ( r CGH )= 2π λ *opl( O 1 O 2 + O 2 E 0 )+ϕ(0)
ϕ( r CGH )= 2π λ *opl( O 1 O 2 + O 2 E 0 O 1 AABBE)
ϕ( r CGH )= ϕ r CGH r ^ CGH
S( r CGH )= 2π | ϕ( r CGH ) |