Abstract

The complete characterization of an ultrashort laser beam ultimately requires the determination of its spatio-temporal electric field E(x, y, t), or its spatio-spectral counterpart (x, y, ω). We describe a new measurement technique called INSIGHT, which determines (x, y, ω), up to an unknown spatially-homogeneous spectral phase. Combining this information with a temporal measurement at a single point of the beam then enables the determination of the spatio-temporal field E(x, y, t). This technique is based on the combination of spatially-resolved Fourier-transform spectroscopy with an alternate-projection phase-retrieval algorithm. It can be applied to any reproducible laser source with a repetition rate higher than about 0.1 Hz, relies on a very simple device, does not require any reference beam, and circumvents the difficulty associated with the manipulation of large beam diameters by working in the vicinity of the beam focus. We demonstrate INSIGHT on a 100 TW-25 fs laser, and use the measurement results to introduce new representations for the analysis of spatio-temporal/spectral couplings of ultrashort lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Duration of ultrashort pulses in the presence of spatio-temporal coupling

C. Bourassin-Bouchet, M. Stephens, S. de Rossi, F. Delmotte, and P. Chavel
Opt. Express 19(18) 17357-17371 (2011)

Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings

A. Sainte-Marie, O. Gobert, and F. Quéré
Optica 4(10) 1298-1304 (2017)

Tailoring the spatio-temporal distribution of diffractive focused ultrashort pulses through pulse shaping

Benjamín Alonso, Jorge Pérez-Vizcaíno, Gladys Mínguez-Vega, and Íñigo J. Sola
Opt. Express 26(8) 10762-10772 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Rullière, ed., Femtosecond Laser Pulses, Advanced Texts in Physics (Springer, 2005).
    [Crossref]
  2. I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1, 308–437 (2009).
    [Crossref]
  3. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
    [Crossref]
  4. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993).
    [Crossref]
  5. T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B: Lasers Opt. 99, 7–12 (2010).
    [Crossref]
  6. M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20, 688–697 (2012).
    [Crossref] [PubMed]
  7. S. Aktürk, X. Gu, P. Gabolde, and R. Trebino, “First-order spatiotemporal distortions of gaussian pulses and beams,” Springer Ser. Opt. Sci. 132, 233–239 (2007).
    [Crossref]
  8. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 9 (2010).
    [Crossref]
  9. G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
    [Crossref]
  10. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
    [Crossref]
  11. A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
    [Crossref]
  12. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
    [Crossref]
  13. H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108, 113904 (2012).
    [Crossref] [PubMed]
  14. G. Pariente and F. Quéré, “Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses,” Opt. Lett. 40, 2037–2040 (2015).
    [Crossref] [PubMed]
  15. A. Sainte-Marie, O. Gobert, and F. Quéré, “Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings,” Optica 4, 1298–1304 (2017).
    [Crossref]
  16. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005).
    [Crossref] [PubMed]
  17. H. E. Kondakci and A. F. Abouraddy, “Diffraction-free space-time light sheets,” Nat. Photonics 11, 733–740 (2017).
    [Crossref]
  18. D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
    [Crossref]
  19. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14, 11892–11900 (2006).
    [Crossref] [PubMed]
  20. P. Gabolde and R. Trebino, “Single-shot measurement of the full spatio-temporal field of ultrashort pulses with multi-spectral digital holography,” Opt. Express 14, 11460–11467 (2006).
    [Crossref] [PubMed]
  21. F. Bragheri, D. Faccio, F. Bonaretti, A. Lotti, M. Clerici, O. Jedrkiewicz, C. Liberale, S. Henin, L. Tartara, V. Degiorgio, and P. Di Trapani, “Complete retrieval of the field of ultrashort optical pulses using the angle-frequency spectrum,” Opt. Lett. 33, 2952–2954 (2008).
    [Crossref] [PubMed]
  22. B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by fourier-transform of interference spectra of high-complex-beams,” JOSA B 27, 933–940 (2010).
    [Crossref]
  23. S. L. Cousin, J. M. Bueno, N. Forget, D. R. Austin, and J. Biegert, “Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann–Shack wavefront sensor,” Opt. Lett. 37, 3291–3293 (2012).
    [Crossref] [PubMed]
  24. M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39, 5142–5145 (2014).
    [Crossref] [PubMed]
  25. M. Rhodes, Z. Guang, J. Pease, and R. Trebino, “Visualizing spatiotemporal pulse propagation: first-order spatiotemporal couplings in laser pulses,” Appl. Opt. 56, 3024–3034 (2017).
    [Crossref] [PubMed]
  26. M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics (Cambridge University, 1999).
    [Crossref]
  27. I. V. Il’ina, T. Y. Cherezova, and A. V. Kudryashov, “Gerchberg—Saxton algorithm: experimental realisation and modification for the problem of formation of multimode laser beams,” Quantum Electron. 39, 521–527 (2009).
    [Crossref]
  28. L. Bruel, “Numerical phase retrieval from beam intensity measurements in three planes,” Laser-Induced Damage Opt. Mater. 4932, 590–598 (2003).
  29. R. J. Bell and R. N. Bracewell, Introductory Fourier Transform Spectroscopy, vol. 41 (Academic Press, 1973).
  30. N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
    [Crossref]
  31. A. Khintchine, “Korrelationtheorie der stationaren stochastischen Prozesse,” Math. Annalen 109, 604–615 (1934).
    [Crossref]
  32. Note that for experiments using tight focusing (typically focal spot size ≲ 20μm), the focus is usually too small to be directly resolved by a camera. In such cases, it needs to be re-imaged and magnified with a microscope objective: the interferometer is then inserted between this imaging optic and the camera. This was the configuration used for measurements presented here.
  33. S. Ranc, G. Chériaux, S. Ferré, J.-P. Rousseau, and J.-P. Chambaret, “Importance of spatial quality of intense femtosecond pulses,” Appl. Phys. B 70, S181–S187 (2000).
    [Crossref]
  34. P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997).
    [Crossref]
  35. A. Jeandet, A. Borot, K. Nakamura, S. Jolly, W. Leemans, and F. Quéré, “Spatio-temporal characterization of a petawatt femtosecond laser,” In preparation (2018).
  36. Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14, 119–121 (1989).
    [Crossref] [PubMed]
  37. M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort optical vortex pulses,” J. Mod. Opt. 64, S1–S6 (2017).
    [Crossref]
  38. A. Denoeud, L. Chopineau, A. Leblanc, and F. Quéré, “Interaction of Ultraintense Laser Vortices with Plasma Mirrors,” Phys. Rev. Lett. 118, 033902 (2017).
    [Crossref] [PubMed]
  39. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3, 161–204 (2011).
    [Crossref]
  40. M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
    [Crossref]
  41. B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112, 105–114 (2013).
    [Crossref]
  42. T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. letters 36, 1680–1682 (2011).
    [Crossref]

2018 (1)

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

2017 (5)

A. Sainte-Marie, O. Gobert, and F. Quéré, “Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings,” Optica 4, 1298–1304 (2017).
[Crossref]

H. E. Kondakci and A. F. Abouraddy, “Diffraction-free space-time light sheets,” Nat. Photonics 11, 733–740 (2017).
[Crossref]

M. Rhodes, Z. Guang, J. Pease, and R. Trebino, “Visualizing spatiotemporal pulse propagation: first-order spatiotemporal couplings in laser pulses,” Appl. Opt. 56, 3024–3034 (2017).
[Crossref] [PubMed]

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort optical vortex pulses,” J. Mod. Opt. 64, S1–S6 (2017).
[Crossref]

A. Denoeud, L. Chopineau, A. Leblanc, and F. Quéré, “Interaction of Ultraintense Laser Vortices with Plasma Mirrors,” Phys. Rev. Lett. 118, 033902 (2017).
[Crossref] [PubMed]

2016 (1)

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (2)

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112, 105–114 (2013).
[Crossref]

2012 (3)

2011 (2)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3, 161–204 (2011).
[Crossref]

T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. letters 36, 1680–1682 (2011).
[Crossref]

2010 (3)

B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by fourier-transform of interference spectra of high-complex-beams,” JOSA B 27, 933–940 (2010).
[Crossref]

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B: Lasers Opt. 99, 7–12 (2010).
[Crossref]

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 9 (2010).
[Crossref]

2009 (4)

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
[Crossref]

I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1, 308–437 (2009).
[Crossref]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

I. V. Il’ina, T. Y. Cherezova, and A. V. Kudryashov, “Gerchberg—Saxton algorithm: experimental realisation and modification for the problem of formation of multimode laser beams,” Quantum Electron. 39, 521–527 (2009).
[Crossref]

2008 (1)

2007 (1)

S. Aktürk, X. Gu, P. Gabolde, and R. Trebino, “First-order spatiotemporal distortions of gaussian pulses and beams,” Springer Ser. Opt. Sci. 132, 233–239 (2007).
[Crossref]

2006 (3)

2005 (1)

2003 (1)

L. Bruel, “Numerical phase retrieval from beam intensity measurements in three planes,” Laser-Induced Damage Opt. Mater. 4932, 590–598 (2003).

2000 (1)

S. Ranc, G. Chériaux, S. Ferré, J.-P. Rousseau, and J.-P. Chambaret, “Importance of spatial quality of intense femtosecond pulses,” Appl. Phys. B 70, S181–S187 (2000).
[Crossref]

1998 (1)

1997 (1)

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997).
[Crossref]

1993 (1)

1989 (1)

1934 (1)

A. Khintchine, “Korrelationtheorie der stationaren stochastischen Prozesse,” Math. Annalen 109, 604–615 (1934).
[Crossref]

1930 (1)

N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
[Crossref]

Abouraddy, A. F.

H. E. Kondakci and A. F. Abouraddy, “Diffraction-free space-time light sheets,” Nat. Photonics 11, 733–740 (2017).
[Crossref]

Akturk, S.

Aktürk, S.

S. Aktürk, X. Gu, P. Gabolde, and R. Trebino, “First-order spatiotemporal distortions of gaussian pulses and beams,” Springer Ser. Opt. Sci. 132, 233–239 (2007).
[Crossref]

Alonso, B.

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112, 105–114 (2013).
[Crossref]

B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by fourier-transform of interference spectra of high-complex-beams,” JOSA B 27, 933–940 (2010).
[Crossref]

Arnold, C.

Arnold, C. L.

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort optical vortex pulses,” J. Mod. Opt. 64, S1–S6 (2017).
[Crossref]

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39, 5142–5145 (2014).
[Crossref] [PubMed]

Arrell, C. A.

T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. letters 36, 1680–1682 (2011).
[Crossref]

Austin, D. R.

Bahk, S.-W.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Begishev, I. A.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Bell, R. J.

R. J. Bell and R. N. Bracewell, Introductory Fourier Transform Spectroscopy, vol. 41 (Academic Press, 1973).

Bhatia, A. B.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics (Cambridge University, 1999).
[Crossref]

Biegert, J.

Bonaretti, F.

Boni, R.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Bor, Z.

Borghesi, M.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

Born, M.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics (Cambridge University, 1999).
[Crossref]

Borot, A.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

A. Jeandet, A. Borot, K. Nakamura, S. Jolly, W. Leemans, and F. Quéré, “Spatio-temporal characterization of a petawatt femtosecond laser,” In preparation (2018).

Bowlan, P.

Bracewell, R. N.

R. J. Bell and R. N. Bracewell, Introductory Fourier Transform Spectroscopy, vol. 41 (Academic Press, 1973).

Bragheri, F.

Bruel, L.

L. Bruel, “Numerical phase retrieval from beam intensity measurements in three planes,” Laser-Induced Damage Opt. Mater. 4932, 590–598 (2003).

Bucht, S.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Bueno, J. M.

Chambaret, J.-P.

S. Ranc, G. Chériaux, S. Ferré, J.-P. Rousseau, and J.-P. Chambaret, “Importance of spatial quality of intense femtosecond pulses,” Appl. Phys. B 70, S181–S187 (2000).
[Crossref]

Cherezova, T. Y.

I. V. Il’ina, T. Y. Cherezova, and A. V. Kudryashov, “Gerchberg—Saxton algorithm: experimental realisation and modification for the problem of formation of multimode laser beams,” Quantum Electron. 39, 521–527 (2009).
[Crossref]

Chériaux, G.

S. Ranc, G. Chériaux, S. Ferré, J.-P. Rousseau, and J.-P. Chambaret, “Importance of spatial quality of intense femtosecond pulses,” Appl. Phys. B 70, S181–S187 (2000).
[Crossref]

Chopineau, L.

A. Denoeud, L. Chopineau, A. Leblanc, and F. Quéré, “Interaction of Ultraintense Laser Vortices with Plasma Mirrors,” Phys. Rev. Lett. 118, 033902 (2017).
[Crossref] [PubMed]

Clemmow, P. C.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics (Cambridge University, 1999).
[Crossref]

Clerici, M.

Coudreau, S.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B: Lasers Opt. 99, 7–12 (2010).
[Crossref]

Cousin, S. L.

Crespo, H.

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112, 105–114 (2013).
[Crossref]

M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20, 688–697 (2012).
[Crossref] [PubMed]

Crozatier, V.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B: Lasers Opt. 99, 7–12 (2010).
[Crossref]

Daido, H.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Davies, A. S.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Degiorgio, V.

Denoeud, A.

A. Denoeud, L. Chopineau, A. Leblanc, and F. Quéré, “Interaction of Ultraintense Laser Vortices with Plasma Mirrors,” Phys. Rev. Lett. 118, 033902 (2017).
[Crossref] [PubMed]

Di Trapani, P.

Dorrer, C.

I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1, 308–437 (2009).
[Crossref]

Durst, M.

Esarey, E.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
[Crossref]

Faccio, D.

Ferré, S.

S. Ranc, G. Chériaux, S. Ferré, J.-P. Rousseau, and J.-P. Chambaret, “Importance of spatial quality of intense femtosecond pulses,” Appl. Phys. B 70, S181–S187 (2000).
[Crossref]

Fordell, T.

Forget, N.

S. L. Cousin, J. M. Bueno, N. Forget, D. R. Austin, and J. Biegert, “Three-dimensional spatiotemporal pulse characterization with an acousto-optic pulse shaper and a Hartmann–Shack wavefront sensor,” Opt. Lett. 37, 3291–3293 (2012).
[Crossref] [PubMed]

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B: Lasers Opt. 99, 7–12 (2010).
[Crossref]

Frank, F.

T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. letters 36, 1680–1682 (2011).
[Crossref]

Froula, D. H.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Fukumi, A.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Gabolde, P.

Gabor, D.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics (Cambridge University, 1999).
[Crossref]

Gallet, V.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

Gobert, O.

A. Sainte-Marie, O. Gobert, and F. Quéré, “Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings,” Optica 4, 1298–1304 (2017).
[Crossref]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B: Lasers Opt. 99, 7–12 (2010).
[Crossref]

Grabielle, S.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B: Lasers Opt. 99, 7–12 (2010).
[Crossref]

Gu, X.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 9 (2010).
[Crossref]

S. Aktürk, X. Gu, P. Gabolde, and R. Trebino, “First-order spatiotemporal distortions of gaussian pulses and beams,” Springer Ser. Opt. Sci. 132, 233–239 (2007).
[Crossref]

Guang, Z.

Guo, C.

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort optical vortex pulses,” J. Mod. Opt. 64, S1–S6 (2017).
[Crossref]

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39, 5142–5145 (2014).
[Crossref] [PubMed]

Haberberger, D.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Harth, A.

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort optical vortex pulses,” J. Mod. Opt. 64, S1–S6 (2017).
[Crossref]

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39, 5142–5145 (2014).
[Crossref] [PubMed]

Hayashi, Y.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Henin, S.

Hernández-Toro, J.

B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by fourier-transform of interference spectra of high-complex-beams,” JOSA B 27, 933–940 (2010).
[Crossref]

Herzog, R.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B: Lasers Opt. 99, 7–12 (2010).
[Crossref]

Iaconis, C.

Il’ina, I. V.

I. V. Il’ina, T. Y. Cherezova, and A. V. Kudryashov, “Gerchberg—Saxton algorithm: experimental realisation and modification for the problem of formation of multimode laser beams,” Quantum Electron. 39, 521–527 (2009).
[Crossref]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Jeandet, A.

A. Jeandet, A. Borot, K. Nakamura, S. Jolly, W. Leemans, and F. Quéré, “Spatio-temporal characterization of a petawatt femtosecond laser,” In preparation (2018).

Jedrkiewicz, O.

Jolly, S.

A. Jeandet, A. Borot, K. Nakamura, S. Jolly, W. Leemans, and F. Quéré, “Spatio-temporal characterization of a petawatt femtosecond laser,” In preparation (2018).

Kado, M.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Kane, D. J.

Kaplan, D.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B: Lasers Opt. 99, 7–12 (2010).
[Crossref]

Katz, J.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Kessler, T. J.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Khintchine, A.

A. Khintchine, “Korrelationtheorie der stationaren stochastischen Prozesse,” Math. Annalen 109, 604–615 (1934).
[Crossref]

Kondakci, H. E.

H. E. Kondakci and A. F. Abouraddy, “Diffraction-free space-time light sheets,” Nat. Photonics 11, 733–740 (2017).
[Crossref]

Kotur, M.

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort optical vortex pulses,” J. Mod. Opt. 64, S1–S6 (2017).
[Crossref]

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39, 5142–5145 (2014).
[Crossref] [PubMed]

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Kudryashov, A. V.

I. V. Il’ina, T. Y. Cherezova, and A. V. Kudryashov, “Gerchberg—Saxton algorithm: experimental realisation and modification for the problem of formation of multimode laser beams,” Quantum Electron. 39, 521–527 (2009).
[Crossref]

L’Huillier, A.

Leblanc, A.

A. Denoeud, L. Chopineau, A. Leblanc, and F. Quéré, “Interaction of Ultraintense Laser Vortices with Plasma Mirrors,” Phys. Rev. Lett. 118, 033902 (2017).
[Crossref] [PubMed]

Leemans, W.

A. Jeandet, A. Borot, K. Nakamura, S. Jolly, W. Leemans, and F. Quéré, “Spatio-temporal characterization of a petawatt femtosecond laser,” In preparation (2018).

Leemans, W. P.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
[Crossref]

Li, Z.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Liberale, C.

Lotti, A.

Macchi, A.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

Marangos, J. P.

T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. letters 36, 1680–1682 (2011).
[Crossref]

McGresham, K.

Méndez, C.

B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by fourier-transform of interference spectra of high-complex-beams,” JOSA B 27, 933–940 (2010).
[Crossref]

Miranda, M.

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort optical vortex pulses,” J. Mod. Opt. 64, S1–S6 (2017).
[Crossref]

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39, 5142–5145 (2014).
[Crossref] [PubMed]

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112, 105–114 (2013).
[Crossref]

M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20, 688–697 (2012).
[Crossref] [PubMed]

Mori, M.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Nakamura, K.

A. Jeandet, A. Borot, K. Nakamura, S. Jolly, W. Leemans, and F. Quéré, “Spatio-temporal characterization of a petawatt femtosecond laser,” In preparation (2018).

Nishiuchi, M.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Ogura, K.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Okell, W. A.

T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. letters 36, 1680–1682 (2011).
[Crossref]

Oksenhendler, T.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B: Lasers Opt. 99, 7–12 (2010).
[Crossref]

Orimo, S.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3, 161–204 (2011).
[Crossref]

Palastro, J. P.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Pariente, G.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

G. Pariente and F. Quéré, “Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses,” Opt. Lett. 40, 2037–2040 (2015).
[Crossref] [PubMed]

Passoni, M.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

Pease, J.

Pervak, V.

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112, 105–114 (2013).
[Crossref]

Pirozhkov, A.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Quéré, F.

A. Denoeud, L. Chopineau, A. Leblanc, and F. Quéré, “Interaction of Ultraintense Laser Vortices with Plasma Mirrors,” Phys. Rev. Lett. 118, 033902 (2017).
[Crossref] [PubMed]

A. Sainte-Marie, O. Gobert, and F. Quéré, “Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings,” Optica 4, 1298–1304 (2017).
[Crossref]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

G. Pariente and F. Quéré, “Spatio-temporal light springs: extended encoding of orbital angular momentum in ultrashort pulses,” Opt. Lett. 40, 2037–2040 (2015).
[Crossref] [PubMed]

H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108, 113904 (2012).
[Crossref] [PubMed]

A. Jeandet, A. Borot, K. Nakamura, S. Jolly, W. Leemans, and F. Quéré, “Spatio-temporal characterization of a petawatt femtosecond laser,” In preparation (2018).

Ranc, S.

S. Ranc, G. Chériaux, S. Ferré, J.-P. Rousseau, and J.-P. Chambaret, “Importance of spatial quality of intense femtosecond pulses,” Appl. Phys. B 70, S181–S187 (2000).
[Crossref]

Rauschenberger, J.

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112, 105–114 (2013).
[Crossref]

Rhodes, M.

Roso, L.

B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by fourier-transform of interference spectra of high-complex-beams,” JOSA B 27, 933–940 (2010).
[Crossref]

Rousseau, J.-P.

S. Ranc, G. Chériaux, S. Ferré, J.-P. Rousseau, and J.-P. Chambaret, “Importance of spatial quality of intense femtosecond pulses,” Appl. Phys. B 70, S181–S187 (2000).
[Crossref]

Rudawski, P.

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort optical vortex pulses,” J. Mod. Opt. 64, S1–S6 (2017).
[Crossref]

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39, 5142–5145 (2014).
[Crossref] [PubMed]

Sagisaka, A.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Sainte-Marie, A.

San Román, J.

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112, 105–114 (2013).
[Crossref]

B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by fourier-transform of interference spectra of high-complex-beams,” JOSA B 27, 933–940 (2010).
[Crossref]

Schroeder, C. B.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
[Crossref]

Shaw, J. L.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Shreenath, A.

Silva, F.

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112, 105–114 (2013).
[Crossref]

Sola, Í. J.

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112, 105–114 (2013).
[Crossref]

B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by fourier-transform of interference spectra of high-complex-beams,” JOSA B 27, 933–940 (2010).
[Crossref]

Stokes, A. R.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics (Cambridge University, 1999).
[Crossref]

Tartara, L.

Taylor, A. M.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics (Cambridge University, 1999).
[Crossref]

Tisch, J. W.

T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. letters 36, 1680–1682 (2011).
[Crossref]

Tournois, P.

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997).
[Crossref]

Trebino, R.

Turnbull, D.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

van Howe, J.

Varela, Ó.

B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by fourier-transform of interference spectra of high-complex-beams,” JOSA B 27, 933–940 (2010).
[Crossref]

Vincenti, H.

H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108, 113904 (2012).
[Crossref] [PubMed]

Walmsley, I. A.

I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1, 308–437 (2009).
[Crossref]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
[Crossref]

Wayman, P. A.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics (Cambridge University, 1999).
[Crossref]

Wiener, N.

N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
[Crossref]

Wilcock, W. L.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics (Cambridge University, 1999).
[Crossref]

Witting, T.

T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. letters 36, 1680–1682 (2011).
[Crossref]

Wolf, E.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics (Cambridge University, 1999).
[Crossref]

Xu, C.

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3, 161–204 (2011).
[Crossref]

Zaïr, A.

B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by fourier-transform of interference spectra of high-complex-beams,” JOSA B 27, 933–940 (2010).
[Crossref]

Zhu, G.

Zipfel, W.

Acta Math. (1)

N. Wiener, “Generalized harmonic analysis,” Acta Math. 55, 117–258 (1930).
[Crossref]

Adv. Opt. Photonics (2)

I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1, 308–437 (2009).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3, 161–204 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

S. Ranc, G. Chériaux, S. Ferré, J.-P. Rousseau, and J.-P. Chambaret, “Importance of spatial quality of intense femtosecond pulses,” Appl. Phys. B 70, S181–S187 (2000).
[Crossref]

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112, 105–114 (2013).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B: Lasers Opt. 99, 7–12 (2010).
[Crossref]

J. Mod. Opt. (1)

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort optical vortex pulses,” J. Mod. Opt. 64, S1–S6 (2017).
[Crossref]

J. Opt. (1)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12, 9 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

JOSA B (1)

B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by fourier-transform of interference spectra of high-complex-beams,” JOSA B 27, 933–940 (2010).
[Crossref]

Laser Phys. (1)

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096 (2006).
[Crossref]

Laser-Induced Damage Opt. Mater. (1)

L. Bruel, “Numerical phase retrieval from beam intensity measurements in three planes,” Laser-Induced Damage Opt. Mater. 4932, 590–598 (2003).

Math. Annalen (1)

A. Khintchine, “Korrelationtheorie der stationaren stochastischen Prozesse,” Math. Annalen 109, 604–615 (1934).
[Crossref]

Nat. Photonics (3)

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547–553 (2016).
[Crossref]

H. E. Kondakci and A. F. Abouraddy, “Diffraction-free space-time light sheets,” Nat. Photonics 11, 733–740 (2017).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12, 262–265 (2018).
[Crossref]

Opt. Commun. (1)

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Opt. letters (1)

T. Witting, F. Frank, C. A. Arrell, W. A. Okell, J. P. Marangos, and J. W. Tisch, “Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry,” Opt. letters 36, 1680–1682 (2011).
[Crossref]

Optica (1)

Phys. Rev. Lett. (2)

A. Denoeud, L. Chopineau, A. Leblanc, and F. Quéré, “Interaction of Ultraintense Laser Vortices with Plasma Mirrors,” Phys. Rev. Lett. 118, 033902 (2017).
[Crossref] [PubMed]

H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108, 113904 (2012).
[Crossref] [PubMed]

Quantum Electron. (1)

I. V. Il’ina, T. Y. Cherezova, and A. V. Kudryashov, “Gerchberg—Saxton algorithm: experimental realisation and modification for the problem of formation of multimode laser beams,” Quantum Electron. 39, 521–527 (2009).
[Crossref]

Rev. Mod. Phys. (3)

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).
[Crossref]

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Springer Ser. Opt. Sci. (1)

S. Aktürk, X. Gu, P. Gabolde, and R. Trebino, “First-order spatiotemporal distortions of gaussian pulses and beams,” Springer Ser. Opt. Sci. 132, 233–239 (2007).
[Crossref]

Other (5)

C. Rullière, ed., Femtosecond Laser Pulses, Advanced Texts in Physics (Springer, 2005).
[Crossref]

A. Jeandet, A. Borot, K. Nakamura, S. Jolly, W. Leemans, and F. Quéré, “Spatio-temporal characterization of a petawatt femtosecond laser,” In preparation (2018).

Note that for experiments using tight focusing (typically focal spot size ≲ 20μm), the focus is usually too small to be directly resolved by a camera. In such cases, it needs to be re-imaged and magnified with a microscope objective: the interferometer is then inserted between this imaging optic and the camera. This was the configuration used for measurements presented here.

R. J. Bell and R. N. Bracewell, Introductory Fourier Transform Spectroscopy, vol. 41 (Academic Press, 1973).

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics (Cambridge University, 1999).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       This movie shows the propagation of the spatio-temporal E-field of the UHI100 laser over a distance of 400 µm before and after best focus. These profiles have been deduced from the complete spatio-spectral E-field at best focus obtained with INSIGHT,
» Visualization 2       This movie shows different perspectives of Fig. 6 of the main text (spatio-temporal E-field of a femtosecond Laguerre-Gaussian beam).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Principle and implementation of INSIGHT. (a) The laser beam to be characterized is focused onto a 2D sensor placed at the output of a simple Michelson or Mach-Zehnder interferometer. A piezoelectric stage in one arm (stage 1 in (a)) is used to scan the delay with sub-optical-period accuracy, and thus measure the spatially-resolved linear autocorrelation of the beam at best focus (longitudinal position z0), shown on (b). The Fourier transform of this signal with respect to delay (c) is then calculated, in order to filter out (white dashed box) the spatially-resolved spectrum A(z0)(x, y, ω). This 3D dataset provides the amplitude profiles at each frequency, shown in (d). This process is repeated at two other longitudinal positions near focus z0 ± δz by shifting the interferometer (stage 2 in (a)), or equivalently the focusing or imaging optics, in the direction of the incoming beam, thus providing the spectrally-resolved spatial amplitudes A(z0±δz)(x, y, ω) at z0 ± δz. For illustration, panel (e) displays A(z0+δz)(x, y, ω) only. A GS-like phase retrieval algorithm is then applied on each group of amplitudes in order to extract the spatial phase at each frequency, examples of which are shown in (f). INSIGHT provides the spatio-spectral field up to an unknown spatially-homogeneous spectral phase, since the measurement is blind to the evolution of phase with frequency. This unknown can be lifted by an independent measurement of the spectral phase at one position in the beam. Once this is done, a Fourier transformation with respect to ω is performed to obtain the field E(x, y, t) in space-time, the real part of which is shown on (g).
Fig. 2
Fig. 2 Frequency-resolved spatial properties of the beam at best focus position z0. Four frequencies ωi are selected in the spatially-integrated spectrum (a), and the corresponding spatial intensities A ( z 0 ) 2 ( x , y , ω i ) (c–f) and phases ϕ(z0)(x, y, ωi) profiles (g–j) are shown. Panel (b) displays the frequency-integrated intensity profile (i.e. the focal spot), and the white lines in panels (c–j) its 1/e contour as a spatial reference.
Fig. 3
Fig. 3 Spatially-resolved spectral and temporal properties of the beam at focus. The frequency-integrated intensity profile (i.e. the focal spot) is shown in (a). The local spectral intensities A2(xi, yi, ω) and phases ϕ(xi, yi, ω) are shown in (b), for three positions (xi, yi) across focus. The corresponding local temporal profiles are displayed in (c).
Fig. 4
Fig. 4 Frequency-resolved spatial properties of the collimated laser beam. Four frequencies ωi are selected in the spatially-integrated spectrum (a) and the corresponding spatial intensities A ( ) 2 ( x , y , ω i ) (c–f) and phases ϕ(∞)(x, y, ωi) (g–j) are shown. The vertical white dashed lines in panels (e–f) highlight the clipping of the beam at high frequencies. In (b) we show the calculated near-field spatial intensity at ω2 assuming a flat spatial phase at focus, to emphasize the importance of taking into account the actual spatial phase retrieved at focus.
Fig. 5
Fig. 5 Decomposition of the near-field spectrally-resolved spatial phase ϕ(∞)(x, y, ω) onto the basis of Zernike polynomials. The five first polynomial coefficients (horizontal and vertical tilts, defocus, 45° and 0° astigmatisms) are showed, apart from the spectrally-resolved piston, which corresponds to the spatially-averaged spectral phase.
Fig. 6
Fig. 6 Horizontal tilt as a function of frequency for UHI100, before and after a small rotation of one of the compressor gratings around its vertical axis. The rotation angle of 16 × 10−3 degrees is expected to lead to a change in angular dispersion of 3.3 × 10−5deg/nm. Subtracting the two curves leads to a measured value of 3.4 × 10−5deg/nm, very close to the expected one.
Fig. 7
Fig. 7 Measured spatio-temporal E-field of the UHI100 laser when a = 1 helical phase plate is introduced into the beam. See Visualization 2 for multiple perspectives. The carrier frequency has been numerically reduced by 50 % for the sake of visibility. This is why two intertwined helices are observed on the wavefront, although = 1.
Fig. 8
Fig. 8 Effect of the step size precision on the retrieved spectrum in Fourier-transform spectroscopy. We show here the results of simulations for different amounts of noise on the step size of the interferometric scan. The laser is centered at 800 nm (optical period 2.7 fs). On the left column is the step size variation along the scan (RMS deviation of 0.04 fs, 0.2 fs and 0.4 fs from top to bottom), and on the right the original spectrum in red, and the spectra deduced from the autocorrelations in blue.
Fig. 9
Fig. 9 Effect of the beam pointing jitter on the quality of the spectrum retrieved by spatially-resolved Fourier spectroscopy. The data shown here are taken on the UHI100 laser system and the results presented in the paper are extracted from these. Panel (a) presents a raw spatially-resolved interferometric scan (for readability purpose, only a cut at (x, y = 0, τ) is shown). The significant beam pointing jitter leads to a noisy and distorted autocorrelation function (see panel (b), which shows the signal at (x = 0, y = 0) and a function of τ). As a consequence, the corresponding retrieved spectrum (panel (c)) is affected by noise. Panel (d) presents the spatially-resolved interferometric scan after numerical correction of the beam position fluctuations, obtained from (a). The interferometric scan is then much cleaner, symmetric and contrasted (e) and the retrieved spectrum now presents a good signal-to-noise ratio (f).
Fig. 10
Fig. 10 Beam pointing numerical stabilization using a Mach-Zehnder interferometer (panel (a)). The two replicas spatially overlap on the camera with an angle. As a result, the intensity profile exhibits parallel spatial fringes (b). If the spatial period of the fringes is smaller than the shortest spatial pattern within the beam profile, the 2D-spatial Fourier transform (c) has three well separated peaks, the central one corresponding to the incoherent sum of the replicas’ intensity profile. After filtering this central peak and Fourier-transforming back to the real space, the intensity profile is now free from spatial fringes (d), and its drift due to beam pointing jitter can be accurately calculated (e). This measured drift is then used to numerically correct the spatial position of the total interferometric signal (f), before performing the numerical processing described in the main text.
Fig. 11
Fig. 11 Color maps of frequency-resolved wavefronts of the collimated UHI100 laser beam at four different frequencies, measured with INSIGHT before (upper line) and after (middle line) a rotation of a compressor grating by 16 × 10−3 degrees. The lower line shows the difference between the two cases for each frequency, and clearly reveals the additional frequency-dependent wavefront tilt induced on the beam by the grating rotation.

Metrics