Abstract

Through the manipulation of co-polarized reflection and cross-polarized reflection from a periodic array of metal-dielectric-metal resonators, a plethora of unprecedented metamaterial devices have been successfully demonstrated, such as perfect absorber and polarization converter. Recently, some broadband absorbers based on anisotropic resonators have been reported, which are actually poor absorbers when the cross-polarized reflection is considered. Here, we demonstrate that an ultra-wideband and high-efficiency reflective cross-polarization convertor can be achieved by breaking the symmetry of the resonator unit of a perfect absorber. Simulation results show that the polarization conversion ratio of the proposed metasurface is above 90% in the frequency range from 6.67 to 17.1 GHz and the relative bandwidth reaches 87.7%. The experimental results are in good agreement with the simulation results. The method paves a new way for the design of broadband polarization convertor, which can also be extended to the terahertz band.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface

Jin Xu, Rongqiang Li, Jin Qin, Shenyun Wang, and Tiancheng Han
Opt. Express 26(16) 20913-20919 (2018)

Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies

Yannan Jiang, Lei Wang, Jiao Wang, Charles Nwakanma Akwuruoha, and Weiping Cao
Opt. Express 25(22) 27616-27623 (2017)

Visible light nearly perfect absorber: an optimum unit cell arrangement for near absolute polarization insensitivity

Amir Ghobadi, Hodjat Hajian, Murat Gokbayrak, Sina Abedini Dereshgi, Ahmet Toprak, Bayram Butun, and Ekmel Ozbay
Opt. Express 25(22) 27624-27634 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [Crossref]
  3. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
    [Crossref] [PubMed]
  4. Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
    [Crossref]
  5. A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
    [Crossref] [PubMed]
  6. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  7. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  8. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  9. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
    [Crossref]
  10. C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
    [Crossref] [PubMed]
  11. Y. Liu, W. Guo, and T. Han, “Ultra-broadband absorption with gradient pyramidal metamaterials,” Prog. Electromagn. Res. C 78, 217–224 (2017).
    [Crossref]
  12. F. Yue, C. Zhang, X. Zang, D. Wen, B. D. Gerardor, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7(1), 17129 (2018).
    [Crossref]
  13. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
    [Crossref] [PubMed]
  14. B. Wang, S. Liu, B. Bian, Z. Mao, X. Liu, B. Man, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
    [Crossref]
  15. D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys. A 122(4), 1–7 (2016).
    [Crossref]
  16. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
    [Crossref] [PubMed]
  17. H. Jaradat and A. Akyurtlu, “Infrared (IR) absorber based on multiresonant structure,” IEEE Antennas Wirel. Propag. Lett. 11(4), 1222–1225 (2012).
    [Crossref]
  18. H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
    [Crossref]
  19. S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra-broadband microwave absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
    [Crossref]
  20. X. Wang, B. Zhang, W. Wang, J. Wang, and J. Duan, “Design and characterization of an ultrabroadband metamaterial microwave absorber,” IEEE Photonics J. 9(3), 1– 13 (2017).
  21. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  22. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  23. X. Zhu, W. Hong, K. Wu, H. Tang, Z. Hao, J. Chen, and G. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12, 968–971 (2013).
    [Crossref]
  24. H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
    [Crossref] [PubMed]
  25. H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
    [Crossref]
  26. L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
    [Crossref]
  27. J. Zhao and Y. Cheng, “A high-effciency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 1–7 (2016).
    [Crossref]
  28. S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
    [Crossref]
  29. Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
    [Crossref]
  30. Y. Li, Q. Cao, and Y. Wang, “A wideband multifunctional multilayer switchable linear polarization metasurface,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1314–1318 (2018).
    [Crossref]

2018 (2)

F. Yue, C. Zhang, X. Zang, D. Wen, B. D. Gerardor, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Y. Li, Q. Cao, and Y. Wang, “A wideband multifunctional multilayer switchable linear polarization metasurface,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1314–1318 (2018).
[Crossref]

2017 (3)

Y. Liu, W. Guo, and T. Han, “Ultra-broadband absorption with gradient pyramidal metamaterials,” Prog. Electromagn. Res. C 78, 217–224 (2017).
[Crossref]

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra-broadband microwave absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

X. Wang, B. Zhang, W. Wang, J. Wang, and J. Duan, “Design and characterization of an ultrabroadband metamaterial microwave absorber,” IEEE Photonics J. 9(3), 1– 13 (2017).

2016 (7)

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys. A 122(4), 1–7 (2016).
[Crossref]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

J. Zhao and Y. Cheng, “A high-effciency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 1–7 (2016).
[Crossref]

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

2015 (3)

L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

2014 (4)

B. Wang, S. Liu, B. Bian, Z. Mao, X. Liu, B. Man, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
[Crossref] [PubMed]

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

2013 (4)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

X. Zhu, W. Hong, K. Wu, H. Tang, Z. Hao, J. Chen, and G. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12, 968–971 (2013).
[Crossref]

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
[Crossref]

2012 (4)

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

H. Jaradat and A. Akyurtlu, “Infrared (IR) absorber based on multiresonant structure,” IEEE Antennas Wirel. Propag. Lett. 11(4), 1222–1225 (2012).
[Crossref]

2011 (1)

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Akyurtlu, A.

H. Jaradat and A. Akyurtlu, “Infrared (IR) absorber based on multiresonant structure,” IEEE Antennas Wirel. Propag. Lett. 11(4), 1222–1225 (2012).
[Crossref]

Azad, A. K.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Bian, B.

B. Wang, S. Liu, B. Bian, Z. Mao, X. Liu, B. Man, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Bouchon, P.

Cao, Q.

Y. Li, Q. Cao, and Y. Wang, “A wideband multifunctional multilayer switchable linear polarization metasurface,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1314–1318 (2018).
[Crossref]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chan, K.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Cheah, K. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Chen, H.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Chen, H. T.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, J.

X. Zhu, W. Hong, K. Wu, H. Tang, Z. Hao, J. Chen, and G. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12, 968–971 (2013).
[Crossref]

Chen, L.

B. Wang, S. Liu, B. Bian, Z. Mao, X. Liu, B. Man, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Chen, M.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Chen, S.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Chen, X.

F. Yue, C. Zhang, X. Zang, D. Wen, B. D. Gerardor, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7(1), 17129 (2018).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Cheng, Y.

J. Zhao and Y. Cheng, “A high-effciency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 1–7 (2016).
[Crossref]

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cui, T. J.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Dalvit, D. A. R.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Deng, L.

L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Duan, J.

X. Wang, B. Zhang, W. Wang, J. Wang, and J. Duan, “Design and characterization of an ultrabroadband metamaterial microwave absorber,” IEEE Photonics J. 9(3), 1– 13 (2017).

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Feng, M.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Gerardor, B. D.

F. Yue, C. Zhang, X. Zang, D. Wen, B. D. Gerardor, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Gong, R.

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
[Crossref]

Gong, S.

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Gu, W.

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra-broadband microwave absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

Guan, J.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Guo, W.

Y. Liu, W. Guo, and T. Han, “Ultra-broadband absorption with gradient pyramidal metamaterials,” Prog. Electromagn. Res. C 78, 217–224 (2017).
[Crossref]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

Haïdar, R.

Han, T.

Y. Liu, W. Guo, and T. Han, “Ultra-broadband absorption with gradient pyramidal metamaterials,” Prog. Electromagn. Res. C 78, 217–224 (2017).
[Crossref]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Hao, Z.

X. Zhu, W. Hong, K. Wu, H. Tang, Z. Hao, J. Chen, and G. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12, 968–971 (2013).
[Crossref]

He, Q.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hong, J.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

Hong, W.

X. Zhu, W. Hong, K. Wu, H. Tang, Z. Hao, J. Chen, and G. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12, 968–971 (2013).
[Crossref]

Jaradat, H.

H. Jaradat and A. Akyurtlu, “Infrared (IR) absorber based on multiresonant structure,” IEEE Antennas Wirel. Propag. Lett. 11(4), 1222–1225 (2012).
[Crossref]

Jia, Y.

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Koechlin, C.

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Kort-Kamp, W. J. M.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Kumar, A.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Lai, S.

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra-broadband microwave absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Li, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Li, J.

Li, K. F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Li, W.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Li, Y.

Y. Li, Q. Cao, and Y. Wang, “A wideband multifunctional multilayer switchable linear polarization metasurface,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1314–1318 (2018).
[Crossref]

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Liu, S.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

B. Wang, S. Liu, B. Bian, Z. Mao, X. Liu, B. Man, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Liu, X.

B. Wang, S. Liu, B. Bian, Z. Mao, X. Liu, B. Man, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Liu, Y.

Y. Liu, W. Guo, and T. Han, “Ultra-broadband absorption with gradient pyramidal metamaterials,” Prog. Electromagn. Res. C 78, 217–224 (2017).
[Crossref]

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

Long, C.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Lu, H.

L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Luk, T. S.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Luo, C.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

Ma, H.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ma, Y.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Man, B.

B. Wang, S. Liu, B. Bian, Z. Mao, X. Liu, B. Man, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Mao, Z.

B. Wang, S. Liu, B. Bian, Z. Mao, X. Liu, B. Man, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nie, Y.

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pang, Y.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Pardo, F.

Pelouard, J. L.

Pun, E. Y. B.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Qu, S.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Shi, H.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sood, D.

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys. A 122(4), 1–7 (2016).
[Crossref]

Sui, S.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Sykora, M.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Tang, H.

X. Zhu, W. Hong, K. Wu, H. Tang, Z. Hao, J. Chen, and G. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12, 968–971 (2013).
[Crossref]

Taylor, A. J.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Tripathi, C. C.

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys. A 122(4), 1–7 (2016).
[Crossref]

Wang, B.

B. Wang, S. Liu, B. Bian, Z. Mao, X. Liu, B. Man, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

Wang, J.

X. Wang, B. Zhang, W. Wang, J. Wang, and J. Duan, “Design and characterization of an ultrabroadband metamaterial microwave absorber,” IEEE Photonics J. 9(3), 1– 13 (2017).

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
[Crossref] [PubMed]

Wang, W.

X. Wang, B. Zhang, W. Wang, J. Wang, and J. Duan, “Design and characterization of an ultrabroadband metamaterial microwave absorber,” IEEE Photonics J. 9(3), 1– 13 (2017).

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Wang, X.

X. Wang, B. Zhang, W. Wang, J. Wang, and J. Duan, “Design and characterization of an ultrabroadband metamaterial microwave absorber,” IEEE Photonics J. 9(3), 1– 13 (2017).

Wang, Y.

Y. Li, Q. Cao, and Y. Wang, “A wideband multifunctional multilayer switchable linear polarization metasurface,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1314–1318 (2018).
[Crossref]

Weisse-Bernstein, N. R.

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

Wen, D.

F. Yue, C. Zhang, X. Zang, D. Wen, B. D. Gerardor, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7(1), 17129 (2018).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Wong, P. W. H.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Wu, K.

X. Zhu, W. Hong, K. Wu, H. Tang, Z. Hao, J. Chen, and G. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12, 968–971 (2013).
[Crossref]

Wu, W.

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra-broadband microwave absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

Wu, Y.

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra-broadband microwave absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

Xia, S.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Xie, J.

L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Xiong, H.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Xu, Z.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
[Crossref] [PubMed]

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Yan, M.

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

Yang, G.

X. Zhu, W. Hong, K. Wu, H. Tang, Z. Hao, J. Chen, and G. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12, 968–971 (2013).
[Crossref]

Yin, S.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Yue, F.

F. Yue, C. Zhang, X. Zang, D. Wen, B. D. Gerardor, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7(1), 17129 (2018).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Zang, X.

F. Yue, C. Zhang, X. Zang, D. Wen, B. D. Gerardor, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, A.

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

H. Shi, J. Li, A. Zhang, J. Wang, and Z. Xu, “Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity,” Opt. Express 22(17), 20973–20981 (2014).
[Crossref] [PubMed]

Zhang, B.

X. Wang, B. Zhang, W. Wang, J. Wang, and J. Duan, “Design and characterization of an ultrabroadband metamaterial microwave absorber,” IEEE Photonics J. 9(3), 1– 13 (2017).

Zhang, C.

F. Yue, C. Zhang, X. Zang, D. Wen, B. D. Gerardor, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Zhang, L.

L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Zhang, S.

F. Yue, C. Zhang, X. Zang, D. Wen, B. D. Gerardor, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7(1), 17129 (2018).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Zhang, W.

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

Zhao, J.

J. Zhao and Y. Cheng, “A high-effciency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 1–7 (2016).
[Crossref]

Zheng, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Zhong, L.

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

Zhou, L.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhou, P.

L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

Zhu, J.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, X.

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra-broadband microwave absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

X. Zhu, W. Hong, K. Wu, H. Tang, Z. Hao, J. Chen, and G. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12, 968–971 (2013).
[Crossref]

Appl. Phys. A (1)

D. Sood and C. C. Tripathi, “Broadband ultrathin low-profile metamaterial microwave absorber,” Appl. Phys. A 122(4), 1–7 (2016).
[Crossref]

Appl. Phys. B (1)

J. Zhao and Y. Cheng, “A high-effciency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B 122(10), 1–7 (2016).
[Crossref]

Appl. Phys. Lett. (6)

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultrawideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Y. Jia, Y. Liu, W. Zhang, and S. Gong, “Ultra-wideband and high-efficiency polarization rotator based on metasurface,” Appl. Phys. Lett. 109(5), 051901 (2016).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (4)

H. Jaradat and A. Akyurtlu, “Infrared (IR) absorber based on multiresonant structure,” IEEE Antennas Wirel. Propag. Lett. 11(4), 1222–1225 (2012).
[Crossref]

Y. Li, Q. Cao, and Y. Wang, “A wideband multifunctional multilayer switchable linear polarization metasurface,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1314–1318 (2018).
[Crossref]

L. Zhang, P. Zhou, H. Lu, H. Chen, J. Xie, and L. Deng, “Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances,” IEEE Antennas Wirel. Propag. Lett. 14, 1157–1160 (2015).
[Crossref]

X. Zhu, W. Hong, K. Wu, H. Tang, Z. Hao, J. Chen, and G. Yang, “A novel reflective surface with polarization rotation characteristic,” IEEE Antennas Wirel. Propag. Lett. 12, 968–971 (2013).
[Crossref]

IEEE Photonics J. (2)

S. Lai, Y. Wu, X. Zhu, W. Gu, and W. Wu, “An optically transparent ultra-broadband microwave absorber,” IEEE Photonics J. 9(6), 1–10 (2017).
[Crossref]

X. Wang, B. Zhang, W. Wang, J. Wang, and J. Duan, “Design and characterization of an ultrabroadband metamaterial microwave absorber,” IEEE Photonics J. 9(3), 1– 13 (2017).

J. Appl. Phys. (3)

B. Wang, S. Liu, B. Bian, Z. Mao, X. Liu, B. Man, and L. Chen, “A novel ultrathin and broadband microwave metamaterial absorber,” J. Appl. Phys. 116(9), 094504 (2014).
[Crossref]

H. Chen, J. Wang, H. Ma, S. Qu, Z. Xu, A. Zhang, M. Yan, and Y. Li, “Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances,” J. Appl. Phys. 115(15), 154504 (2014).
[Crossref]

H. Xiong, J. Hong, C. Luo, and L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

Light Sci. Appl. (1)

F. Yue, C. Zhang, X. Zang, D. Wen, B. D. Gerardor, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7(1), 17129 (2018).
[Crossref]

Nano Lett. (1)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Laser Technol. (1)

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol. 48(6), 415–421 (2013).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Prog. Electromagn. Res. C (1)

Y. Liu, W. Guo, and T. Han, “Ultra-broadband absorption with gradient pyramidal metamaterials,” Prog. Electromagn. Res. C 78, 217–224 (2017).
[Crossref]

Sci. Rep. (2)

A. K. Azad, W. J. M. Kort-Kamp, M. Sykora, N. R. Weisse-Bernstein, T. S. Luk, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Metasurface broadband solar absorber,” Sci. Rep. 6(1), 20347 (2016).
[Crossref] [PubMed]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simulation results of the MIM structures consisting of symmetric and asymmetric resonators. (a) The resonant unit is a square patch. (b) The resonant unit is a square patch that is cut off two corners on a diagonal line. (c) The resonant unit is a square ring. (d) The resonant unit is a square ring that is cut off two corners on a diagonal line. It is noted that the upper and lower metals are copper with electric conductivity σ = 5.8 × 107 S/m. The spaced dielectric is FR-4 with relative permittivity of 4.3 and loss tangent of 0.025. The unit is mm.
Fig. 2
Fig. 2 The scheme, evolution, and simulation from an absorber to a polarization converter. (a) A unit cell of the proposed absorber. (b) Simulation results of the absorber in (a). (c) A unit cell of the proposed polarization converter. (d) Simulation results of the polarization converter in (c).
Fig. 3
Fig. 3 Simulated PCR when the resonant unit consists of a single inner split ring, single outer split ring, and double split rings.
Fig. 4
Fig. 4 (a) The working principle of the polarization converter. (b) The reflected amplitudes and phase difference.
Fig. 5
Fig. 5 Distributions of the surface current on the metallic parts of the metasurface unit cell and metallic ground sheet at four resonant frequencies: (a) 7.09 GHz, (b) 10.34 GHz, (c) 14.60 GHz, and (d) 16.73 GHz.
Fig. 6
Fig. 6 (a) Photograph of the fabricated sample. (b) Schematic demonstration of the measurement setup. (c) The simulated and measured results of the cross-polarized (rxy) and co-polarized (ryy) amplitude reflection spectra. (d) The simulated and measured results of the PCR spectra.

Tables (1)

Tables Icon

Table 1 Comparison with other wideband polarization converters

Metrics