Abstract

Orbital angular momentum (OAM) is an intrinsic property that all electromagnetic waves can carry. Interesting properties of OAM beams have enabled many novel applications. But broadband OAM generator has rarely been investigated, especially in the millimeter wave frequency band. In this work, a broadband OAM generator applying a metallic reflective metasurface operating from 59 to 70 GHz is designed, simulated, fabricated and measured. Both simulation and experiment results demonstrate that broadband millimeter wave OAM beams with good quality can be reliably launched by the designed metasurface. The proposed broadband OAM generator alleviates malfunctions caused by dispersion and provides new possibilities of multiplexing for millimeter wave communication applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM)

Shan Jiang, Chang Chen, Hualiang Zhang, and Weidong Chen
Opt. Express 26(5) 6466-6477 (2018)

Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase

Bijun Xu, Chao Wu, Zeyong Wei, Yuancheng Fan, and Hongqiang Li
Opt. Mater. Express 6(12) 3940-3945 (2016)

Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces

Shixing Yu, Long Li, and Na Kou
Opt. Mater. Express 7(9) 3312-3321 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  2. Y. Yao, X. Liang, W. Zhu, J. Geng, and R. Jin, “Phase mode analysis of radio beams carrying orbital angular momentum,” IEEE Antennas Wirel. Propag. Lett. 16, 1127–1130 (2017).
    [Crossref]
  3. B. Liu, Y. Cui, and R. Li, “A broadband dual-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
    [Crossref]
  4. H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
    [Crossref]
  5. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
    [Crossref]
  6. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
    [Crossref]
  7. E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
    [Crossref]
  8. L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
    [Crossref] [PubMed]
  9. K. Liu, H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, “Generation of OAM beams using phased array in the microwave band,” IEEE Trans. Antenn. Propag. 64(9), 3850–3857 (2016).
    [Crossref]
  10. T. Yuan, Y. Cheng, H. Wang, and Y. Qin, “Generation of OAM radio beams with modified uniform circular array antenna,” Electron. Lett. 52(11), 896–898 (2016).
    [Crossref]
  11. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
    [Crossref] [PubMed]
  12. K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
    [Crossref]
  13. Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
    [Crossref] [PubMed]
  14. M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
    [Crossref] [PubMed]
  15. K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
    [Crossref]
  16. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12(15), 3548–3553 (2004).
    [Crossref] [PubMed]
  17. J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  18. S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
    [Crossref]
  19. S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
    [Crossref]
  20. Z. Guo and G. Yang, “Radial uniform circular antenna array for dual-mode OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 404–407 (2017).
    [Crossref]
  21. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  22. S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10, 1499–1502 (2011).
    [Crossref]
  23. H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
    [Crossref] [PubMed]
  24. K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
    [Crossref]
  25. Y. Chen, S. Zheng, Y. Li, X. Hui, X. Jin, H. Chi, and X. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
    [Crossref]
  26. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
    [Crossref]
  27. G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
    [Crossref] [PubMed]
  28. C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
    [Crossref] [PubMed]
  29. M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
    [Crossref] [PubMed]
  30. N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
    [Crossref]
  31. H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 17882 (2017).
    [Crossref] [PubMed]
  32. A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
    [Crossref]
  33. W. Zheng, S. Zheng, X. Hui, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
    [Crossref]
  34. Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
    [Crossref]
  35. X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas,” Sci. Rep. 5(1), 10148 (2015).
    [Crossref] [PubMed]
  36. N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
    [Crossref] [PubMed]
  37. N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
    [Crossref] [PubMed]
  38. F. Mao, M. Huang, T. Li, J. Zhang, and C. Yang, “Broadband generation of orbital angular momentum carrying beams in RF regimes,” Prog. Electromagnetics Res. 160, 19–27 (2017).
    [Crossref]
  39. S. Jiang, C. Chen, H. Zhang, and W. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
    [Crossref] [PubMed]
  40. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  41. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
    [Crossref] [PubMed]
  42. R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
    [Crossref]
  43. M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108(22), 221903 (2016).
    [Crossref]
  44. W. Wang, Y. Li, Z. Guo, R. Li, J. Zhang, A. Zhang, and S. Qu, “Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation,” J. Opt. 17(4), 045102 (2015).
    [Crossref]
  45. M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5(1), 11732 (2015).
    [Crossref] [PubMed]
  46. CST Microwave Studio, www cst.com, 2017.
  47. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  48. Z. Ba and X. Wang, “Metasurface for generating high-order millimeter wave orbital angular momentum beams,” 2018 International Applied Computational Electromagnetics Society (ACES) Symposium, Beijing, China, 2018.

2018 (2)

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

S. Jiang, C. Chen, H. Zhang, and W. Chen, “Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM),” Opt. Express 26(5), 6466–6477 (2018).
[Crossref] [PubMed]

2017 (8)

W. Zheng, S. Zheng, X. Hui, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

F. Mao, M. Huang, T. Li, J. Zhang, and C. Yang, “Broadband generation of orbital angular momentum carrying beams in RF regimes,” Prog. Electromagnetics Res. 160, 19–27 (2017).
[Crossref]

N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
[Crossref]

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 17882 (2017).
[Crossref] [PubMed]

Z. Guo and G. Yang, “Radial uniform circular antenna array for dual-mode OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 404–407 (2017).
[Crossref]

Y. Yao, X. Liang, W. Zhu, J. Geng, and R. Jin, “Phase mode analysis of radio beams carrying orbital angular momentum,” IEEE Antennas Wirel. Propag. Lett. 16, 1127–1130 (2017).
[Crossref]

B. Liu, Y. Cui, and R. Li, “A broadband dual-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
[Crossref]

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

2016 (8)

K. Liu, H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, “Generation of OAM beams using phased array in the microwave band,” IEEE Trans. Antenn. Propag. 64(9), 3850–3857 (2016).
[Crossref]

T. Yuan, Y. Cheng, H. Wang, and Y. Qin, “Generation of OAM radio beams with modified uniform circular array antenna,” Electron. Lett. 52(11), 896–898 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Y. Chen, S. Zheng, Y. Li, X. Hui, X. Jin, H. Chi, and X. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108(22), 221903 (2016).
[Crossref]

2015 (8)

W. Wang, Y. Li, Z. Guo, R. Li, J. Zhang, A. Zhang, and S. Qu, “Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation,” J. Opt. 17(4), 045102 (2015).
[Crossref]

M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5(1), 11732 (2015).
[Crossref] [PubMed]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas,” Sci. Rep. 5(1), 10148 (2015).
[Crossref] [PubMed]

N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
[Crossref] [PubMed]

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

2014 (6)

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

2013 (3)

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref] [PubMed]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

2012 (3)

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

2011 (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10, 1499–1502 (2011).
[Crossref]

2010 (1)

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

2009 (1)

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

2007 (1)

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

2004 (1)

2002 (1)

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Abdelrahman, A. H.

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
[Crossref]

Ahmed, N.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Aieta, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alaee, R.

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108(22), 221903 (2016).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Arlt, J.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

Bao, C.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

Barnett, S. M.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Belov, P.

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108(22), 221903 (2016).
[Crossref]

Blanchard, R.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Bosiljevac, M.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10, 1499–1502 (2011).
[Crossref]

Boyd, R. W.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Brasselet, E.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Brousseau, C.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Cao, X.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Cao, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

Capasso, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Casaletti, M.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10, 1499–1502 (2011).
[Crossref]

Chávez-Cerda, S.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

Cheah, K. W.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Chen, C.

Chen, C. F.

C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Chen, S.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Chen, W.

Chen, X.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Chen, Y.

W. Zheng, S. Zheng, X. Hui, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Y. Chen, S. Zheng, Y. Li, X. Hui, X. Jin, H. Chi, and X. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas,” Sci. Rep. 5(1), 10148 (2015).
[Crossref] [PubMed]

Cheng, L.

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

Cheng, Y.

K. Liu, H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, “Generation of OAM beams using phased array in the microwave band,” IEEE Trans. Antenn. Propag. 64(9), 3850–3857 (2016).
[Crossref]

T. Yuan, Y. Cheng, H. Wang, and Y. Qin, “Generation of OAM radio beams with modified uniform circular array antenna,” Electron. Lett. 52(11), 896–898 (2016).
[Crossref]

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

Chi, H.

W. Zheng, S. Zheng, X. Hui, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Y. Chen, S. Zheng, Y. Li, X. Hui, X. Jin, H. Chi, and X. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas,” Sci. Rep. 5(1), 10148 (2015).
[Crossref] [PubMed]

Chiu, D. T.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Cui, T. J.

M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5(1), 11732 (2015).
[Crossref] [PubMed]

Cui, Y.

B. Liu, Y. Cui, and R. Li, “A broadband dual-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
[Crossref]

Cvijetic, N.

N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
[Crossref] [PubMed]

Danner, A.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

De Leon, I.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Dholakia, K.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

Ding, X.

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

Dolinar, S.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Edgar, J. S.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Elsherbeni, A. Z.

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
[Crossref]

Emile, O.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Fazal, I. M.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Fraine, A.

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref] [PubMed]

Gaburro, Z.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, J.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Gao, P.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Garcés-Chávez, V.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

Genevet, P.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Geng, J.

Y. Yao, X. Liang, W. Zhu, J. Geng, and R. Jin, “Phase mode analysis of radio beams carrying orbital angular momentum,” IEEE Antennas Wirel. Propag. Lett. 16, 1127–1130 (2017).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Gu, M.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Guo, J.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 17882 (2017).
[Crossref] [PubMed]

Guo, Z.

Z. Guo and G. Yang, “Radial uniform circular antenna array for dual-mode OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 404–407 (2017).
[Crossref]

W. Wang, Y. Li, Z. Guo, R. Li, J. Zhang, A. Zhang, and S. Qu, “Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation,” J. Opt. 17(4), 045102 (2015).
[Crossref]

Hao, Z. C.

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

He, J.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 17882 (2017).
[Crossref] [PubMed]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Hong, M.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Hong, W.

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

Hu, C.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Hu, Y.

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas,” Sci. Rep. 5(1), 10148 (2015).
[Crossref] [PubMed]

Huang, C.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Huang, C. B.

C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Huang, H.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, K.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Huang, M.

F. Mao, M. Huang, T. Li, J. Zhang, and C. Yang, “Broadband generation of orbital angular momentum carrying beams in RF regimes,” Prog. Electromagnetics Res. 160, 19–27 (2017).
[Crossref]

Hui, X.

W. Zheng, S. Zheng, X. Hui, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Y. Chen, S. Zheng, Y. Li, X. Hui, X. Jin, H. Chi, and X. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas,” Sci. Rep. 5(1), 10148 (2015).
[Crossref] [PubMed]

Hussain, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Ip, E.

N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
[Crossref] [PubMed]

Jeffries, G. D.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Jiang, S.

Jiang, Z. H.

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

Jin, R.

Y. Yao, X. Liang, W. Zhu, J. Geng, and R. Jin, “Phase mode analysis of radio beams carrying orbital angular momentum,” IEEE Antennas Wirel. Propag. Lett. 16, 1127–1130 (2017).
[Crossref]

Jin, X.

W. Zheng, S. Zheng, X. Hui, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Y. Chen, S. Zheng, Y. Li, X. Hui, X. Jin, H. Chi, and X. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas,” Sci. Rep. 5(1), 10148 (2015).
[Crossref] [PubMed]

Juodkazis, S.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

Kan, Q.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 17882 (2017).
[Crossref] [PubMed]

Kang, L.

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

Kang, M.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Kapitanova, P.

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108(22), 221903 (2016).
[Crossref]

Karimi, E.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Kats, M. A.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kivshar, Y. S.

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108(22), 221903 (2016).
[Crossref]

Kou, N.

N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
[Crossref]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Ku, C. T.

C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Lavery, M. P. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Li, G.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Li, J.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Li, L.

N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

Li, M.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Li, R.

B. Liu, Y. Cui, and R. Li, “A broadband dual-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
[Crossref]

W. Wang, Y. Li, Z. Guo, R. Li, J. Zhang, A. Zhang, and S. Qu, “Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation,” J. Opt. 17(4), 045102 (2015).
[Crossref]

Li, S.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Li, T.

F. Mao, M. Huang, T. Li, J. Zhang, and C. Yang, “Broadband generation of orbital angular momentum carrying beams in RF regimes,” Prog. Electromagnetics Res. 160, 19–27 (2017).
[Crossref]

Li, X.

K. Liu, H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, “Generation of OAM beams using phased array in the microwave band,” IEEE Trans. Antenn. Propag. 64(9), 3850–3857 (2016).
[Crossref]

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Li, Y.

Y. Chen, S. Zheng, Y. Li, X. Hui, X. Jin, H. Chi, and X. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

W. Wang, Y. Li, Z. Guo, R. Li, J. Zhang, A. Zhang, and S. Qu, “Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation,” J. Opt. 17(4), 045102 (2015).
[Crossref]

Liang, X.

Y. Yao, X. Liang, W. Zhu, J. Geng, and R. Jin, “Phase mode analysis of radio beams carrying orbital angular momentum,” IEEE Antennas Wirel. Propag. Lett. 16, 1127–1130 (2017).
[Crossref]

Lin, H. N.

C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Lin, J.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Ling, X.

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Liu, B.

B. Liu, Y. Cui, and R. Li, “A broadband dual-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
[Crossref]

Liu, H.

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

K. Liu, H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, “Generation of OAM beams using phased array in the microwave band,” IEEE Trans. Antenn. Propag. 64(9), 3850–3857 (2016).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Liu, K.

K. Liu, H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, “Generation of OAM beams using phased array in the microwave band,” IEEE Trans. Antenn. Propag. 64(9), 3850–3857 (2016).
[Crossref]

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

Luo, X.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Ma, X.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Maci, S.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10, 1499–1502 (2011).
[Crossref]

Mahdjoubi, K.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Malinauskas, M.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

Mao, F.

F. Mao, M. Huang, T. Li, J. Zhang, and C. Yang, “Broadband generation of orbital angular momentum carrying beams in RF regimes,” Prog. Electromagnetics Res. 160, 19–27 (2017).
[Crossref]

Marrucci, L.

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

McGloin, D.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Mehmood, M. Q.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Mei, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Ménard, A.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Milione, G.

N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
[Crossref] [PubMed]

Minaeva, O.

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref] [PubMed]

Minatti, G.

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10, 1499–1502 (2011).
[Crossref]

Miyaji, G.

Miyanaga, N.

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Molisch, A. F.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

Nagali, E.

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Nakatsuka, M.

Niemiec, R.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Odit, M.

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108(22), 221903 (2016).
[Crossref]

Padgett, M. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Piccirillo, B.

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Pu, M.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Pun, E. Y.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Qassim, H.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Qi, M. Q.

M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5(1), 11732 (2015).
[Crossref] [PubMed]

Qin, F.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Qin, Y.

K. Liu, H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, “Generation of OAM beams using phased array in the microwave band,” IEEE Trans. Antenn. Propag. 64(9), 3850–3857 (2016).
[Crossref]

T. Yuan, Y. Cheng, H. Wang, and Y. Qin, “Generation of OAM radio beams with modified uniform circular array antenna,” Electron. Lett. 52(11), 896–898 (2016).
[Crossref]

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

Qiu, C. W.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Qu, S.

W. Wang, Y. Li, Z. Guo, R. Li, J. Zhang, A. Zhang, and S. Qu, “Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation,” J. Opt. 17(4), 045102 (2015).
[Crossref]

Ren, H.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Ren, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Rockstuhl, C.

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108(22), 221903 (2016).
[Crossref]

Santamato, E.

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

Schulz, S. A.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Scully, M. O.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

Sergienko, A. V.

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref] [PubMed]

Shi, G.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Shi, Y.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Siew, S. Y.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Simon, D. S.

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref] [PubMed]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Speirits, F. C.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Sueda, K.

Sun, Y.

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Tai, Y. H.

C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Tang, W. X.

M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5(1), 11732 (2015).
[Crossref] [PubMed]

Teng, J.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tur, M.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Upham, J.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Uribe-Patarroyo, N.

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Volke-Sepulveda, K.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

Wang, C.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Wang, H.

K. Liu, H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, “Generation of OAM beams using phased array in the microwave band,” IEEE Trans. Antenn. Propag. 64(9), 3850–3857 (2016).
[Crossref]

T. Yuan, Y. Cheng, H. Wang, and Y. Qin, “Generation of OAM radio beams with modified uniform circular array antenna,” Electron. Lett. 52(11), 896–898 (2016).
[Crossref]

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

Wang, J.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, S.

K. Liu, H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, “Generation of OAM beams using phased array in the microwave band,” IEEE Trans. Antenn. Propag. 64(9), 3850–3857 (2016).
[Crossref]

Wang, T.

N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
[Crossref] [PubMed]

Wang, W.

W. Wang, Y. Li, Z. Guo, R. Li, J. Zhang, A. Zhang, and S. Qu, “Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation,” J. Opt. 17(4), 045102 (2015).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Wang, X.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 17882 (2017).
[Crossref] [PubMed]

Wang, Y.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Wei, P. K.

C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Werner, D. H.

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

Willner, A. E.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wu, Q.

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

Xie, G.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

Xu, H.

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Xu, S.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Yan, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, C.

F. Mao, M. Huang, T. Li, J. Zhang, and C. Yang, “Broadband generation of orbital angular momentum carrying beams in RF regimes,” Prog. Electromagnetics Res. 160, 19–27 (2017).
[Crossref]

Yang, F.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
[Crossref]

Yang, G.

Z. Guo and G. Yang, “Radial uniform circular antenna array for dual-mode OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 404–407 (2017).
[Crossref]

Yang, H.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Yang, J.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yang, Z.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

Yao, Y.

Y. Yao, X. Liang, W. Zhu, J. Geng, and R. Jin, “Phase mode analysis of radio beams carrying orbital angular momentum,” IEEE Antennas Wirel. Propag. Lett. 16, 1127–1130 (2017).
[Crossref]

Ye, J.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 17882 (2017).
[Crossref] [PubMed]

Yu, N.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, S.

N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Yuan, F.

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Yuan, T.

T. Yuan, Y. Cheng, H. Wang, and Y. Qin, “Generation of OAM radio beams with modified uniform circular array antenna,” Electron. Lett. 52(11), 896–898 (2016).
[Crossref]

Yue, Y.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhang, A.

W. Wang, Y. Li, Z. Guo, R. Li, J. Zhang, A. Zhang, and S. Qu, “Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation,” J. Opt. 17(4), 045102 (2015).
[Crossref]

Zhang, H.

Zhang, J.

F. Mao, M. Huang, T. Li, J. Zhang, and C. Yang, “Broadband generation of orbital angular momentum carrying beams in RF regimes,” Prog. Electromagnetics Res. 160, 19–27 (2017).
[Crossref]

W. Wang, Y. Li, Z. Guo, R. Li, J. Zhang, A. Zhang, and S. Qu, “Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation,” J. Opt. 17(4), 045102 (2015).
[Crossref]

Zhang, K.

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

Zhang, L.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

Zhang, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

Zhang, T.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Zhang, X.

W. Zheng, S. Zheng, X. Hui, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Y. Chen, S. Zheng, Y. Li, X. Hui, X. Jin, H. Chi, and X. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas,” Sci. Rep. 5(1), 10148 (2015).
[Crossref] [PubMed]

Zhang, Y.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 17882 (2017).
[Crossref] [PubMed]

Zhao, H.

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 17882 (2017).
[Crossref] [PubMed]

Zhao, Y.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

Zhao, Z.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

Zheng, S.

W. Zheng, S. Zheng, X. Hui, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Y. Chen, S. Zheng, Y. Li, X. Hui, X. Jin, H. Chi, and X. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas,” Sci. Rep. 5(1), 10148 (2015).
[Crossref] [PubMed]

Zheng, W.

W. Zheng, S. Zheng, X. Hui, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Zheng, Y.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Zhou, X.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Zhu, C.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Zhu, W.

Y. Yao, X. Liang, W. Zhu, J. Geng, and R. Jin, “Phase mode analysis of radio beams carrying orbital angular momentum,” IEEE Antennas Wirel. Propag. Lett. 16, 1127–1130 (2017).
[Crossref]

Žukauskas, A.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

Adv. Mater. (1)

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Appl. Phys. Express (1)

N. Kou, S. Yu, and L. Li, “Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain,” Appl. Phys. Express 10(1), 016701 (2017).
[Crossref]

Appl. Phys. Lett. (6)

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012).
[Crossref]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94(23), 231124 (2009).
[Crossref]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett. 97(21), 211108 (2010).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

M. Odit, P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, “Experimental realisation of all-dielectric bianisotropic metasurfaces,” Appl. Phys. Lett. 108(22), 221903 (2016).
[Crossref]

Electron. Lett. (1)

T. Yuan, Y. Cheng, H. Wang, and Y. Qin, “Generation of OAM radio beams with modified uniform circular array antenna,” Electron. Lett. 52(11), 896–898 (2016).
[Crossref]

IEEE Antennas Propag. Mag. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (8)

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Ménard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Z. Guo and G. Yang, “Radial uniform circular antenna array for dual-mode OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 404–407 (2017).
[Crossref]

Y. Yao, X. Liang, W. Zhu, J. Geng, and R. Jin, “Phase mode analysis of radio beams carrying orbital angular momentum,” IEEE Antennas Wirel. Propag. Lett. 16, 1127–1130 (2017).
[Crossref]

B. Liu, Y. Cui, and R. Li, “A broadband dual-polarized dual-OAM-mode antenna array for OAM communication,” IEEE Antennas Wirel. Propag. Lett. 16, 744–747 (2017).
[Crossref]

W. Zheng, S. Zheng, X. Hui, Y. Chen, X. Jin, H. Chi, and X. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: addressing waves on impenetrable metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 10, 1499–1502 (2011).
[Crossref]

Y. Chen, S. Zheng, Y. Li, X. Hui, X. Jin, H. Chi, and X. Zhang, “A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam,” IEEE Antennas Wirel. Propag. Lett. 15, 1156–1158 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

K. Liu, H. Liu, Y. Qin, Y. Cheng, S. Wang, X. Li, and H. Wang, “Generation of OAM beams using phased array in the microwave band,” IEEE Trans. Antenn. Propag. 64(9), 3850–3857 (2016).
[Crossref]

A. H. Abdelrahman, A. Z. Elsherbeni, and F. Yang, “Transmission phase limit of multilayer frequency-selective surfaces for transmitarray designs,” IEEE Trans. Antenn. Propag. 62(2), 690–697 (2014).
[Crossref]

J. Opt. (1)

W. Wang, Y. Li, Z. Guo, R. Li, J. Zhang, A. Zhang, and S. Qu, “Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation,” J. Opt. 17(4), 045102 (2015).
[Crossref]

J. Opt. B Quantum Semiclassical Opt. (1)

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B Quantum Semiclassical Opt. 4(2), S82–S89 (2002).
[Crossref]

Light Sci. Appl. (1)

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Nano Lett. (3)

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13(9), 4148–4151 (2013).
[Crossref] [PubMed]

C. F. Chen, C. T. Ku, Y. H. Tai, P. K. Wei, H. N. Lin, and C. B. Huang, “Creating optical near-field orbital angular momentum in a gold metasurface,” Nano Lett. 15(4), 2746–2750 (2015).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5(1), 4876 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

New J. Phys. (1)

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

Opt. Express (2)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Appl. (1)

Z. H. Jiang, L. Kang, W. Hong, and D. H. Werner, “Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness,” Phys. Rev. Appl. 9(6), 064009 (2018).
[Crossref]

Phys. Rev. Lett. (2)

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
[Crossref] [PubMed]

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

F. Mao, M. Huang, T. Li, J. Zhang, and C. Yang, “Broadband generation of orbital angular momentum carrying beams in RF regimes,” Prog. Electromagnetics Res. 160, 19–27 (2017).
[Crossref]

Sci. Adv. (1)

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Sci. Rep. (6)

M. Q. Qi, W. X. Tang, and T. J. Cui, “A broadband Bessel beam launcher using metamaterial lens,” Sci. Rep. 5(1), 11732 (2015).
[Crossref] [PubMed]

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

X. Hui, S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, “Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas,” Sci. Rep. 5(1), 10148 (2015).
[Crossref] [PubMed]

N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
[Crossref] [PubMed]

H. Zhao, X. Wang, J. He, J. Guo, J. Ye, Q. Kan, and Y. Zhang, “High-efficiency terahertz devices based on cross-polarization converter,” Sci. Rep. 7(1), 17882 (2017).
[Crossref] [PubMed]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Science (2)

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (2)

CST Microwave Studio, www cst.com, 2017.

Z. Ba and X. Wang, “Metasurface for generating high-order millimeter wave orbital angular momentum beams,” 2018 International Applied Computational Electromagnetics Society (ACES) Symposium, Beijing, China, 2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of the proposed metallic metasurface. (b) Schematic of the polarization conversion from an x-polarized incident field to a y-polarized reflected field using two decomposed components, where component 1 is assumed to maintain its direction while the direction of component 2 is reversed because of the 180° phase difference. (c) Amplitude and (d) phase of the reflected two components. Parameters used to obtain (c) and (d) are a = 0.8 mm, b = 1.6 mm, d = 3 mm, g = 0.38 mm.
Fig. 2
Fig. 2 (a) Ideal phase profile of an OAM beam with m = −1. (b) Schematic of the designed OAM generating metasurface with different dipole configurations in eight different regions. Gray rectangles represent metal dipoles. (c) Discrete phase profile of an OAM beam with m = −1 used in this work.
Fig. 3
Fig. 3 Simulation results of (a) normalized amplitude and (b) phase of the cross-polarized reflected waves applying optimized unit elements in the eight regions.
Fig. 4
Fig. 4 Simulation results of phase, normalized amplitude and mode spectra of the cross-polarized electric fields of the generated m = −1 OAM beam at different frequencies: (a), (b) and (c) 59 GHz; (d), (e) and (f) 63 GHz; (g), (h) and (i) 67 GHz; (j), (k) and (l) 70 GHz. The first column shows phase results (in degree), the second column shows amplitude results (in dB scale) and the third column shows mode spectra.
Fig. 5
Fig. 5 (a) Photo of fabricated metasurface plate using 0.63-mm-thick F4B PCB board. (b) Experimental measurement setup.
Fig. 6
Fig. 6 Measured phase distributions of the cross-polarized electric fields of the generated m = −1 OAM beam at different frequencies and different scanning planes. (a), (d) and (g) are obtained at 59 GHz. (b), (e) and (h) are obtained at 63 GHz. (c), (f) and (i) are obtained at 67 GHz. (a), (b) and (c) are obtained at the 50-cm-away scanning plane. (d), (e) and (f) are obtained at the 100-cm-away scanning plane. (g), (h) and (i) are obtained at the 150-cm-away scanning plane.
Fig. 7
Fig. 7 Measured amplitude distributions of the cross-polarized electric fields of the generated m = −1 OAM beam at different frequencies and different scanning planes. (a), (d) and (g) are obtained at 59 GHz. (b), (e) and (h) are obtained at 63 GHz. (c), (f) and (i) are obtained at 67 GHz. (a), (b) and (c) are obtained at the 50-cm-away scanning plane. (d), (e) and (f) are obtained at the 100-cm-away scanning plane. (g), (h) and (i) are obtained at the 150-cm-away scanning plane.
Fig. 8
Fig. 8 Calculated mode spectra of the generated m = −1 OAM beam at different frequencies and different scanning planes. (a), (d) and (g) are obtained at 59 GHz. (b), (e) and (h) are obtained at 63 GHz. (c), (f) and (i) are obtained at 67 GHz. (a), (b) and (c) are obtained at the 50-cm-away scanning plane. (d), (e) and (f) are obtained at the 100-cm-away scanning plane. (g), (h) and (i) are obtained at the 150-cm-away scanning plane.
Fig. 9
Fig. 9 Simulated and measured efficiency of the entire metasurface OAM generator.

Tables (3)

Tables Icon

Table 1 Optimized Parameters of Unit Cells in Different Regions

Tables Icon

Table 2 Mode Purity and Maximum Crosstalk of Measured Broadband OAM Beams

Tables Icon

Table 3 Comparison with Previous Works in terms of Pivotal Factors

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

φ m (x,y)=m tan 1 ( y x ).
φ m (x,y)= 2π N [ m tan 1 (y/x) 2π/N +1 ],
φ i+1 ( f j ) φ i ( f j ) π 4 ,1i7.
Mode purity= A 1 2 A i 2
Crosstalk=20 log 10 A 2nd A 1

Metrics