Abstract

We introduce the concept of adiabatic four-wave mixing (AFMW) frequency conversion in cubic nonlinear media through an analogy to dynamics in quantum two-level systems. Rapid adiabatic passage in four-wave mixing enables coherent near-100% photon number down-conversion or up-conversion over a bandwidth much larger than ordinary phase-matching bandwidths, overcoming the normal efficiency-bandwidth trade-off. We develop numerical methods to simulate AFWM pulse propagation in silicon photonics and fiber platforms as examples. First, we show that with a longitudinally varying silicon waveguide structure, a bandwidth of 70 nm centered at 1820 nm can be generated with 90% photon number conversion. Second, we predict the broadband generation of nanojoule energy, 4.2–5.2 μm mid-infrared light in a short, linearly tapered fluoride step-index fiber. We expect the AFWM concept to be broadly applicable to cubic nonlinear platforms, for applications as diverse as bright ultrafast light pulse generation, sensing, and conversion between telecommunications bands.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient, broadband, and robust frequency conversion by fully nonlinear adiabatic three-wave mixing

Gil Porat and Ady Arie
J. Opt. Soc. Am. B 30(5) 1342-1351 (2013)

Ultra-broadband one-to-two wavelength conversion using low-phase-mismatching four-wave mixing in silicon waveguides

Shiming Gao, En-Kuang Tien, Qi Song, Yuewang Huang, and Ozdal Boyraz
Opt. Express 18(11) 11898-11903 (2010)

Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers

Elham Nazemosadat, Hamed Pourbeyram, and Arash Mafi
J. Opt. Soc. Am. B 33(2) 144-150 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
    [Crossref] [PubMed]
  2. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  3. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [Crossref]
  4. J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable or/xor logic gates using sum-frequency generation,” IEEE Photonics Technol. Lett. 19, 541–543 (2007).
    [Crossref]
  5. D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
    [Crossref] [PubMed]
  6. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
    [Crossref] [PubMed]
  7. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
    [Crossref]
  8. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
    [Crossref] [PubMed]
  9. H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
    [Crossref]
  10. J. Moses, H. Suchowski, and F. X. Kärtner, “Fully efficient adiabatic frequency conversion of broadband ti: sapphire oscillator pulses,” Opt. Lett. 37, 1589–1591 (2012).
    [Crossref] [PubMed]
  11. H. Suchowski, P. R. Krogen, S.-W. Huang, F. X. Kärtner, and J. Moses, “Octave-spanning coherent mid-ir generation via adiabatic difference frequency conversion,” Opt. Express 21, 28892–28901 (2013).
    [Crossref]
  12. P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
    [Crossref]
  13. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings i: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
    [Crossref]
  14. C. Phillips and M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
    [Crossref] [PubMed]
  15. C. Phillips and M. Fejer, “Adiabatic optical parametric oscillators: steady-state and dynamical behavior,” Opt. Express 20, 2466–2482 (2012).
    [Crossref] [PubMed]
  16. C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “75 mw few-cycle mid-infrared pulses from a collinear apodized appln-based opcpa,” Opt. Express 20, 26888–26894 (2012).
    [Crossref] [PubMed]
  17. O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti, “Complete energy conversion by autoresonant three-wave mixing in nonuniform media,” Opt. Express 21, 1623–1632 (2013).
    [Crossref] [PubMed]
  18. A. Markov, A. Mazhorova, H. Breitenborn, A. Bruhacs, M. Clerici, D. Modotto, O. Jedrkiewicz, P. di Trapani, A. Major, F. Vidal, and R. Morandotti, “Broadband and efficient adiabatic three-wave-mixing in a temperature-controlled bulk crystal,” Opt. Express 26, 4448–4458 (2018).
    [Crossref] [PubMed]
  19. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [Crossref] [PubMed]
  20. Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” Opt. Express 22, 127–135 (2014).
    [Crossref] [PubMed]
  21. I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in sinx waveguides,” Opt. Lett. 37, 2997–2999 (2012).
    [Crossref] [PubMed]
  22. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [Crossref]
  23. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  24. K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 w spectrally flat all-fiber supercontinuum laser source with> 1 w power beyond 3.8 μm,” Opt. Lett. 42, 2334–2337 (2017).
    [Crossref] [PubMed]
  25. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
    [Crossref]
  26. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
    [Crossref]
  27. A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref] [PubMed]
  28. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica. 1, 10–14 (2014).
    [Crossref]
  29. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [Crossref]
  30. D. Faccio, A. Grün, P. K. Bates, O. Chalus, and J. Biegert, “Optical amplification in the near-infrared in gas-filled hollow-core fibers,” Opt. Lett. 34, 2918–2920 (2009).
    [Crossref] [PubMed]
  31. J. Fatome, S. Pitois, and G. Millot, “20-ghz-to-1-thz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
    [Crossref]
  32. C. McKinstrie, S. Radic, M. Raymer, and L. Schenato, “Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency,” Opt. Express 15, 2178–2189 (2007).
    [Crossref] [PubMed]
  33. S Cac, J. C. Boggio, A. Rieznik, H. Hernandez-Figueroa, H. Fragnito, and J. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16, 2816–2828 (2008).
    [Crossref]
  34. T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring,” J. Light. Technol. 23, 818–826 (2005).
    [Crossref]
  35. K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photonics Technol. Lett. 6, 1451–1453 (1994).
    [Crossref]
  36. C. McKinstrie, J. Harvey, S. Radic, and M. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131–9142 (2005).
    [Crossref] [PubMed]
  37. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2012).
  38. B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1996).
  39. T. Rickes, L. Yatsenko, S. Steuerwald, T. Halfmann, B. Shore, N. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift,” The J. Chem. Phys. 113, 534–546 (2000).
    [Crossref]
  40. H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed. (SpringerBerlin Heidelberg, 1975), pp. 13–81.
  41. R. W. Boyd, Nonlinear optics (Academic Press, 2003).
  42. A. Levanon, A. Dahan, A. Nagler, E. Lifshitz, E. Bahar, M. Mrejen, and H. Suchowski, “Pulse shaping of broadband adiabatic shg from a ti-sapphire oscillator,” Opt. Lett. 42, 2992–2995 (2017).
    [Crossref] [PubMed]
  43. J. B. Christensen, J. G. Koefoed, B. Bell, C. McKinstrie, and K. Rottwitt, “Shape-preserving and unidirectional frequency conversion by four-wave mixing,” Opt. Express 26, 17145–17157 (2018).
    [Crossref] [PubMed]
  44. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
    [Crossref] [PubMed]
  45. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
    [Crossref] [PubMed]
  46. Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100 fs solitons tunable from 2 to 4.3 μm in fluoride fiber,” Optica 3, 948–951 (2016).
    [Crossref]
  47. L. D. Landau, “Zur theorie der energieubertragung ii,” Phys. Sov. Union 2, 46–51 (1932).
  48. C. Zener, “Non-adiabatic crossing of energy levels,” Proc. Royal S. L. A 137, 696–702 (1932).
    [Crossref]
  49. A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kw peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38, 1615–1617 (2013).
    [Crossref] [PubMed]
  50. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
    [Crossref]
  51. M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-ir gas-filled hollow-core fibers,” Opt. Lett. 42, 2232–2235 (2017).
    [Crossref]
  52. T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire c-band based on nondegenerate fiber four-wave mixing,” IEEE Photonics Technol. Lett. 16, 551–553 (2004).
    [Crossref]
  53. H. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
    [Crossref] [PubMed]
  54. Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
    [Crossref]
  55. S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
    [Crossref] [PubMed]
  56. S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “All-optically tunable buffer for single photons,” Opt. Lett. 43, 2138–2141 (2018).
    [Crossref] [PubMed]
  57. C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
    [Crossref] [PubMed]

2018 (4)

2017 (4)

2016 (3)

Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100 fs solitons tunable from 2 to 4.3 μm in fluoride fiber,” Optica 3, 948–951 (2016).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

2015 (1)

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

2014 (3)

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica. 1, 10–14 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” Opt. Express 22, 127–135 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (5)

2011 (1)

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

2010 (5)

C. Phillips and M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
[Crossref] [PubMed]

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

H. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (4)

S Cac, J. C. Boggio, A. Rieznik, H. Hernandez-Figueroa, H. Fragnito, and J. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16, 2816–2828 (2008).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings i: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008).
[Crossref]

2007 (3)

2006 (3)

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

J. Fatome, S. Pitois, and G. Millot, “20-ghz-to-1-thz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[Crossref]

2005 (2)

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring,” J. Light. Technol. 23, 818–826 (2005).
[Crossref]

C. McKinstrie, J. Harvey, S. Radic, and M. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131–9142 (2005).
[Crossref] [PubMed]

2004 (2)

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref] [PubMed]

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire c-band based on nondegenerate fiber four-wave mixing,” IEEE Photonics Technol. Lett. 16, 551–553 (2004).
[Crossref]

2002 (1)

2000 (1)

T. Rickes, L. Yatsenko, S. Steuerwald, T. Halfmann, B. Shore, N. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift,” The J. Chem. Phys. 113, 534–546 (2000).
[Crossref]

1998 (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[Crossref]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

1994 (1)

K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photonics Technol. Lett. 6, 1451–1453 (1994).
[Crossref]

1932 (2)

L. D. Landau, “Zur theorie der energieubertragung ii,” Phys. Sov. Union 2, 46–51 (1932).

C. Zener, “Non-adiabatic crossing of energy levels,” Proc. Royal S. L. A 137, 696–702 (1932).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Afeyan, B.

Agha, I.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2012).

Alam, S. U.

Ališauskas, S.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[Crossref]

Altoè, P.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Andriukaitis, G.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Arcizet, O.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Arie, A.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[Crossref] [PubMed]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

Arpin, P.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Bache, M.

Bahar, E.

Balciunas, T.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Baltuška, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Bang, O.

M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-ir gas-filled hollow-core fibers,” Opt. Lett. 42, 2232–2235 (2017).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bates, P. K.

Becker, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Becker, M.

Beha, K.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica. 1, 10–14 (2014).
[Crossref]

Bell, B.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Bergmann, K.

T. Rickes, L. Yatsenko, S. Steuerwald, T. Halfmann, B. Shore, N. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift,” The J. Chem. Phys. 113, 534–546 (2000).
[Crossref]

Biegert, J.

Blows, J. L.

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring,” J. Light. Technol. 23, 818–826 (2005).
[Crossref]

Boggio, J. C.

Boyd, R. W.

R. W. Boyd, Nonlinear optics (Academic Press, 2003).

Breitenborn, H.

Brida, D.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Brown, S.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Bruhacs, A.

Bruner, B. D.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

Cac, S

Cardenas, J.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Caspani, L.

Cerullo, G.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Chalus, O.

Charan, K.

Charbonneau-Lefort, M.

Chau, A. H. L.

Chen, M.-C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Christensen, J. B.

Clemmen, S.

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “All-optically tunable buffer for single photons,” Opt. Lett. 43, 2138–2141 (2018).
[Crossref] [PubMed]

C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
[Crossref] [PubMed]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Clerici, M.

Coen, S.

Dahan, A.

Davanço, M.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in sinx waveguides,” Opt. Lett. 37, 2997–2999 (2012).
[Crossref] [PubMed]

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Del’Haye, P.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica. 1, 10–14 (2014).
[Crossref]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

di Trapani, P.

Diddams, S. A.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica. 1, 10–14 (2014).
[Crossref]

Ding, Y.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Eggleton, B. J.

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring,” J. Light. Technol. 23, 818–826 (2005).
[Crossref]

Faccio, D.

Fain, R.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Farsi, A.

C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
[Crossref] [PubMed]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “All-optically tunable buffer for single photons,” Opt. Lett. 43, 2138–2141 (2018).
[Crossref] [PubMed]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Fatome, J.

J. Fatome, S. Pitois, and G. Millot, “20-ghz-to-1-thz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[Crossref]

Fejer, M.

Fejer, M. M.

Flemens, N.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Foster, M. A.

Fragnito, H.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gaeta, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Gaeta, A. L.

C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
[Crossref] [PubMed]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “All-optically tunable buffer for single photons,” Opt. Lett. 43, 2138–2141 (2018).
[Crossref] [PubMed]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

Gallmann, L.

Ganany-Padowicz, A.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

Garavelli, M.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Goh, C. S.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire c-band based on nondegenerate fiber four-wave mixing,” IEEE Photonics Technol. Lett. 16, 551–553 (2004).
[Crossref]

Griffith, A. G.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Grün, A.

Habib, M. S.

Halfmann, T.

T. Rickes, L. Yatsenko, S. Steuerwald, T. Halfmann, B. Shore, N. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift,” The J. Chem. Phys. 113, 534–546 (2000).
[Crossref]

Hanke, T.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Hänsch, T.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Harvey, J.

Harvey, J. D.

Heese, C.

Heidt, A. M.

Hernandez-Figueroa, H.

Hernández-García, C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Herr, T.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Holzwarth, R.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Hong, K.-H.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Hou, J.

Huang, S.-W.

Huber, R.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Ibsen, M.

Inoue, K.

K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photonics Technol. Lett. 6, 1451–1453 (1994).
[Crossref]

Jaron-Becker, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Jedrkiewicz, O.

Joshi, C.

C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
[Crossref] [PubMed]

Juwiler, I.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

Kapteyn, H. C.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Kärtner, F. X.

Keller, U.

Kelly, B.

Kikuchi, K.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire c-band based on nondegenerate fiber four-wave mixing,” IEEE Photonics Technol. Lett. 16, 551–553 (2004).
[Crossref]

Kippenberg, T. J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Knight, J.

Knight, J. C.

Koefoed, J. G.

Kogelnik, H.

H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed. (SpringerBerlin Heidelberg, 1975), pp. 13–81.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Krauss, G.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Krogen, P.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Krogen, P. R.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Kukura, P.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Landau, L. D.

L. D. Landau, “Zur theorie der energieubertragung ii,” Phys. Sov. Union 2, 46–51 (1932).

Lau, R. K.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Lee, H.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica. 1, 10–14 (2014).
[Crossref]

Lee, Y. H. D.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Leitenstorfer, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Leonhardt, R.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Levanon, A.

Li, Q.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

Li, Z.

Liang, H.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Lifshitz, E.

Lipson, M.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Lou, J.

Major, A.

Manolatou, C.

Manzoni, C.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Markos, C.

Markov, A.

Mathies, R. A.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Mayer, B. W.

Mazhorova, A.

Mazur, E.

McGuinness, H.

H. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

McKerracher, R. W.

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring,” J. Light. Technol. 23, 818–826 (2005).
[Crossref]

McKinstrie, C.

Millot, G.

J. Fatome, S. Pitois, and G. Millot, “20-ghz-to-1-thz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[Crossref]

Modotto, D.

Mohanty, A.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Mok, J. T.

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring,” J. Light. Technol. 23, 818–826 (2005).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Morandotti, R.

Moses, J.

Mrejen, M.

Mücke, O. D.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Murnane, M. M.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Nagler, A.

Ng, T. T.

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring,” J. Light. Technol. 23, 818–826 (2005).
[Crossref]

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Okawachi, Y.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Orlandi, G.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Oron, D.

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[Crossref] [PubMed]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

Ou, H.

Papp, S. B.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica. 1, 10–14 (2014).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Peucheret, C.

Phare, C. T.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Phelan, R.

Phillips, C.

Phillips, C. R.

Picqué, N.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Pitois, S.

J. Fatome, S. Pitois, and G. Millot, “20-ghz-to-1-thz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[Crossref]

Plaja, L.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Poitras, C. B.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Polli, D.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Popmintchev, D.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Popmintchev, T.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Prabhudesai, V.

Pugzlys, A.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Quinlan, F.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica. 1, 10–14 (2014).
[Crossref]

Radic, S.

Ramelow, S.

C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
[Crossref] [PubMed]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “All-optically tunable buffer for single photons,” Opt. Lett. 43, 2138–2141 (2018).
[Crossref] [PubMed]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Raymer, M.

Richardson, D. J.

Rickes, T.

T. Rickes, L. Yatsenko, S. Steuerwald, T. Halfmann, B. Shore, N. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift,” The J. Chem. Phys. 113, 534–546 (2000).
[Crossref]

Rieznik, A.

Rothhardt, M.

Rottwitt, K.

Russell, P. S. J.

Sahu, J.

Salem, R.

Schenato, L.

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

Schrauth, S. E.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Sell, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Set, S. Y.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire c-band based on nondegenerate fiber four-wave mixing,” IEEE Photonics Technol. Lett. 16, 551–553 (2004).
[Crossref]

Shardlow, P. C.

Sharping, J. E.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

Shim, B.

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

Shore, B.

T. Rickes, L. Yatsenko, S. Steuerwald, T. Halfmann, B. Shore, N. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift,” The J. Chem. Phys. 113, 534–546 (2000).
[Crossref]

Shore, B. W.

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1996).

Silberberg, Y.

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[Crossref] [PubMed]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

Spillane, K. M.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Srinivasan, K.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in sinx waveguides,” Opt. Lett. 37, 2997–2999 (2012).
[Crossref] [PubMed]

Steuerwald, S.

T. Rickes, L. Yatsenko, S. Steuerwald, T. Halfmann, B. Shore, N. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift,” The J. Chem. Phys. 113, 534–546 (2000).
[Crossref]

Suchowski, H.

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

A. Levanon, A. Dahan, A. Nagler, E. Lifshitz, E. Bahar, M. Mrejen, and H. Suchowski, “Pulse shaping of broadband adiabatic shg from a ti-sapphire oscillator,” Opt. Lett. 42, 2992–2995 (2017).
[Crossref] [PubMed]

H. Suchowski, P. R. Krogen, S.-W. Huang, F. X. Kärtner, and J. Moses, “Octave-spanning coherent mid-ir generation via adiabatic difference frequency conversion,” Opt. Express 21, 28892–28901 (2013).
[Crossref]

J. Moses, H. Suchowski, and F. X. Kärtner, “Fully efficient adiabatic frequency conversion of broadband ti: sapphire oscillator pulses,” Opt. Lett. 37, 1589–1591 (2012).
[Crossref] [PubMed]

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[Crossref] [PubMed]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Sun, J.

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable or/xor logic gates using sum-frequency generation,” IEEE Photonics Technol. Lett. 19, 541–543 (2007).
[Crossref]

Sun, Q.

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable or/xor logic gates using sum-frequency generation,” IEEE Photonics Technol. Lett. 19, 541–543 (2007).
[Crossref]

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Tanemura, T.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire c-band based on nondegenerate fiber four-wave mixing,” IEEE Photonics Technol. Lett. 16, 551–553 (2004).
[Crossref]

Tang, Y.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Thurston, B.

Tomasello, G.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Tong, L.

Turner, A. C.

Vahala, K. J.

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica. 1, 10–14 (2014).
[Crossref]

Vidal, F.

Vitanov, N.

T. Rickes, L. Yatsenko, S. Steuerwald, T. Halfmann, B. Shore, N. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift,” The J. Chem. Phys. 113, 534–546 (2000).
[Crossref]

Wadsworth, W. J.

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

Wang, J.

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable or/xor logic gates using sum-frequency generation,” IEEE Photonics Technol. Lett. 19, 541–543 (2007).
[Crossref]

Wang, T.

Weingart, O.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Wise, F. W.

Wright, L. G.

Xu, C.

Xu, J.

Yaakobi, O.

Yang, L.

Yatsenko, L.

T. Rickes, L. Yatsenko, S. Steuerwald, T. Halfmann, B. Shore, N. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift,” The J. Chem. Phys. 113, 534–546 (2000).
[Crossref]

Yin, K.

Yu, M.

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Zener, C.

C. Zener, “Non-adiabatic crossing of energy levels,” Proc. Royal S. L. A 137, 696–702 (1932).
[Crossref]

Zhang, B.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Appl. Phys. B (1)

H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011).
[Crossref]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Fatome, S. Pitois, and G. Millot, “20-ghz-to-1-thz repetition rate pulse sources based on multiple four-wave mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (3)

K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photonics Technol. Lett. 6, 1451–1453 (1994).
[Crossref]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical switchable or/xor logic gates using sum-frequency generation,” IEEE Photonics Technol. Lett. 19, 541–543 (2007).
[Crossref]

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire c-band based on nondegenerate fiber four-wave mixing,” IEEE Photonics Technol. Lett. 16, 551–553 (2004).
[Crossref]

J. Light. Technol. (1)

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring,” J. Light. Technol. 23, 818–826 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[Crossref]

Nat. Commun. (3)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref]

A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, “Frequency multiplexing for quasi-deterministic heralded single-photon sources,” Nat. Commun. 9, 847 (2018).
[Crossref] [PubMed]

Nat. Photonics (5)

P. Krogen, H. Suchowski, H. Liang, N. Flemens, K.-H. Hong, F. X. Kärtner, and J. Moses, “Generation and multi-octave shaping of mid-infrared intense single-cycle pulses,” Nat. Photonics 11, 222–226 (2017).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high na chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[Crossref] [PubMed]

Nature. (1)

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature. 467, 440–443 (2010).
[Crossref] [PubMed]

Opt. Express (14)

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref] [PubMed]

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
[Crossref] [PubMed]

H. Suchowski, P. R. Krogen, S.-W. Huang, F. X. Kärtner, and J. Moses, “Octave-spanning coherent mid-ir generation via adiabatic difference frequency conversion,” Opt. Express 21, 28892–28901 (2013).
[Crossref]

C. Phillips and M. Fejer, “Adiabatic optical parametric oscillators: steady-state and dynamical behavior,” Opt. Express 20, 2466–2482 (2012).
[Crossref] [PubMed]

C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “75 mw few-cycle mid-infrared pulses from a collinear apodized appln-based opcpa,” Opt. Express 20, 26888–26894 (2012).
[Crossref] [PubMed]

O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti, “Complete energy conversion by autoresonant three-wave mixing in nonuniform media,” Opt. Express 21, 1623–1632 (2013).
[Crossref] [PubMed]

A. Markov, A. Mazhorova, H. Breitenborn, A. Bruhacs, M. Clerici, D. Modotto, O. Jedrkiewicz, P. di Trapani, A. Major, F. Vidal, and R. Morandotti, “Broadband and efficient adiabatic three-wave-mixing in a temperature-controlled bulk crystal,” Opt. Express 26, 4448–4458 (2018).
[Crossref] [PubMed]

Y. Ding, J. Xu, H. Ou, and C. Peucheret, “Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide,” Opt. Express 22, 127–135 (2014).
[Crossref] [PubMed]

C. McKinstrie, J. Harvey, S. Radic, and M. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13, 9131–9142 (2005).
[Crossref] [PubMed]

C. McKinstrie, S. Radic, M. Raymer, and L. Schenato, “Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency,” Opt. Express 15, 2178–2189 (2007).
[Crossref] [PubMed]

S Cac, J. C. Boggio, A. Rieznik, H. Hernandez-Figueroa, H. Fragnito, and J. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16, 2816–2828 (2008).
[Crossref]

J. B. Christensen, J. G. Koefoed, B. Bell, C. McKinstrie, and K. Rottwitt, “Shape-preserving and unidirectional frequency conversion by four-wave mixing,” Opt. Express 26, 17145–17157 (2018).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref] [PubMed]

Opt. Lett. (9)

M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-ir gas-filled hollow-core fibers,” Opt. Lett. 42, 2232–2235 (2017).
[Crossref]

A. Levanon, A. Dahan, A. Nagler, E. Lifshitz, E. Bahar, M. Mrejen, and H. Suchowski, “Pulse shaping of broadband adiabatic shg from a ti-sapphire oscillator,” Opt. Lett. 42, 2992–2995 (2017).
[Crossref] [PubMed]

A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kw peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38, 1615–1617 (2013).
[Crossref] [PubMed]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “All-optically tunable buffer for single photons,” Opt. Lett. 43, 2138–2141 (2018).
[Crossref] [PubMed]

D. Faccio, A. Grün, P. K. Bates, O. Chalus, and J. Biegert, “Optical amplification in the near-infrared in gas-filled hollow-core fibers,” Opt. Lett. 34, 2918–2920 (2009).
[Crossref] [PubMed]

I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in sinx waveguides,” Opt. Lett. 37, 2997–2999 (2012).
[Crossref] [PubMed]

K. Yin, B. Zhang, L. Yang, and J. Hou, “15.2 w spectrally flat all-fiber supercontinuum laser source with> 1 w power beyond 3.8 μm,” Opt. Lett. 42, 2334–2337 (2017).
[Crossref] [PubMed]

C. Phillips and M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
[Crossref] [PubMed]

J. Moses, H. Suchowski, and F. X. Kärtner, “Fully efficient adiabatic frequency conversion of broadband ti: sapphire oscillator pulses,” Opt. Lett. 37, 1589–1591 (2012).
[Crossref] [PubMed]

Optica (1)

Optica. (1)

S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica. 1, 10–14 (2014).
[Crossref]

Phys. Rev. A (1)

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008).
[Crossref]

Phys. Rev. Lett. (3)

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, “Ramsey interference with single photons,” Phys. Rev. Lett. 117, 223601 (2016).
[Crossref] [PubMed]

H. McGuinness, M. Raymer, C. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).
[Crossref] [PubMed]

Phys. Sov. Union (1)

L. D. Landau, “Zur theorie der energieubertragung ii,” Phys. Sov. Union 2, 46–51 (1932).

Proc. Royal S. L. A (1)

C. Zener, “Non-adiabatic crossing of energy levels,” Proc. Royal S. L. A 137, 696–702 (1932).
[Crossref]

Science. (1)

T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the kev x-ray regime from mid-infrared femtosecond lasers,” Science. 336, 1287–1291 (2012).
[Crossref] [PubMed]

The J. Chem. Phys. (1)

T. Rickes, L. Yatsenko, S. Steuerwald, T. Halfmann, B. Shore, N. Vitanov, and K. Bergmann, “Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced stark shift,” The J. Chem. Phys. 113, 534–546 (2000).
[Crossref]

Other (4)

H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed. (SpringerBerlin Heidelberg, 1975), pp. 13–81.

R. W. Boyd, Nonlinear optics (Academic Press, 2003).

G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2012).

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Energy diagrams of two schemes of four-wave mixing, and the analogy between two-level atoms and FWM. (a) Annihilation of Signal and Pump A photons allows creation of Idler and Pump B photons. This scheme is known as four-wave mixing Bragg scattering. (b) Annihilation of a Signal photon allows creation of Pump A, Pump B, and Idler photons. In both cases, when pump intensities are much larger than those of the signal and idler, signal and idler photons are exchanged through coupled equations of motion possessing SU(2) symmetry, analogously to population transfer in coupled two-level quantum systems. (c),(d) Analogy between Stark-chirped two-level atomic systems with field-free energies E1, E2 and four-wave mixing. ħΩP is the coupling pump’s photon energy in two-level atomic systems. β′i s (i = A,B,Sig,Idl) are wave-vectors of the four waves in FWM. Energy detuning Δ0 corresponds to phase mismatch Δk, while Stark-induced energy shift ΔS corresponds to Kerr-induced nonlinear phase modulation 0 χ ( 3 ) γ int 2 ( ω B P B ω A P A ). The effective energy detuning Δeff is analogous to effective phase mismatch Δkeff.
Fig. 2
Fig. 2 Adiabatic frequency conversion in silicon photonics. (Left) The scheme allows an efficient broadband conversion of signal to idler waves (or vice-versa) by adiabatically changing the wave-vector mismatch through a chirped modulation of the width along the propagation direction. (Right) Momentum matching diagram (see Fig. 1(d)) illustrating the use of a variable effective momentum, Kg(z), to longitudinally sweep the wave-vector mismatch. We have shown a near 100% conversion efficiency of an incoming signal spanning from 1.65–1.72 μm to an idler spanning from 1.78–1.86 μm.
Fig. 3
Fig. 3 Simulation results for an adiabatically modulated Si waveguide and for the standard periodic QPM approach. (a) Pseudocolor plot of idler intensity (arb. units) versus wavelength for the standard case of a periodic width modulation (i.e., constant-valued Kg) chosen to phase match only the central carrier wavelength. Efficiency is highly non-uniform and displays conversion-back-conversion cycles. (b) Pseudocolor plot of idler intensity (arb. units) versus wavelength for the adiabatic case, which shows nearly full and highly uniform conversion for all wavelengths included in the simulation. As expected, the locations where each wavelength has its rapid conversion jump are separated longitudinally. (c) The sum of effective phase mismatch and added momenta, Δkmod(z), a multi-valued function corresponding to the wide range of signal (and corresponding idler) wavelengths. The overall shift is due to the longitudinal variation of Kg(z), the effective momentum of the modulated waveguide, while the smaller oscillations are due to the modulation of the propagation constants due to the changing waveguide dispersion.
Fig. 4
Fig. 4 (a) Integrated idler and signal powers during propagation in periodic and aperiodic (adiabatic) waveguides, illustrating signal-to-idler energy transfer. For the adiabatic evolution there is convergence of energy transfer from signal (blue) to idler (orange), while the conventional QPM case (gray, purple) shows unwanted back-conversion with efficiency that is non-uniform and highly sensitive to the initial conditions. (b) Efficiency vs. propagation length for various idler wavelengths in the adiabatic waveguide (corresponding to cross-sections of Fig. 3(a)). Illustrating evolution of an adiabatic nature, convergence is apparent for each wavelength, with rapid conversion taking place at a different location corresponding to the zero-crossing of the QPM wave-vector mismatch.
Fig. 5
Fig. 5 The relative positions of the ZDW and optical wavelengths determine the likelihood of a broad phase-matching bandwidth for AFWM in SIF. Top row: Propagation constants of the four mixing waves where ωA + ωSig = ωB + ωIdl and 2ωA = ωB, for three cases. The y-axis lies at the ZDW. Achieving Δkeff = 0 requires βM1 = βM2, where βM1 = (βA + βSig)/2 and βM2 = (βB + βIdl)/2. Bottom row: wavevector mismatch versus fiber core radius and idler wavelength for laser parameters corresponding to each case. (a),(d) Case for a standard silica SIF where all four waves are on one side of the ZDW. No phase matching is possible. (b),(e) Case where one frequency is on the opposite side of the ZDW from the other three. Narrowband phase matching under limited conditions is possible. The black curve represents contour zero (Δkeff = 0). (c),(f) Case where there are two waves on each side of the ZDW. Phase matching is probable in this case, and gives rise to conditions where an octave-spanning idler wave covering 3.5–7 μm can be phase matched in an AFWM process in a tapered fiber.
Fig. 6
Fig. 6 Mid-IR generation via AFWM in InF3 SIF with core radius tapered from 4.5 to 3.55 μm over a 5-cm length. (a) Mid-IR beam spectral density evolution along the propagation axis, given a Gaussian input signal spectrum. AFWM can be observed for 4.2–5.2 μm. (b) Evolution of PCR for selected wavelengths. (c) PCR at the fiber exit vs. idler wavelength. Due to parasitic FWM amplification of the input signal, PCR determined by solution of the GNLSE is higher than that predicted by the cw simulation and includes values greater than 1. (d) Comparison between the spectral phases of the output mid-IR and input signal waves indicates the coherence of the generated wave. The idler’s phase consists of a conversion phase due to the wavelength-dependent conversion position (which is largely an effective third-order dispersion) plus the initial linear chirp (parabolic phase) of the signal pulse.

Tables (1)

Tables Icon

Table 1 Analogy of FWM to a coupled 2-level atom

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

i d A A d z = ω A 0 χ ( 3 ) ( μ A , A 2 | A A | 2 + μ A , B | A B | 2 ) A A , i d A B d z = ω B 0 χ ( 3 ) ( μ A , B | A A | 2 + μ B , B 2 | A B | 2 ) A B ,
i d A Sig d z = ω Sig 0 χ ( 3 ) [ ( μ Sig , A | A A | 2 + μ Sig , B | A B | 2 ) A Sig + γ int A A A B A Idl e i Δ k z ] , i d A Idl d z = ω Idl 0 χ ( 3 ) [ ( μ Idl , A | A A | 2 + μ Idl , B | A B | 2 ) A Idl + γ int A A A B A Sig e i Δ k z ] .
i d C Sig ( z ) d z = Δ k eff 2 C Sig ( z ) + κ 2 C Idl ( z ) ,
i d C Idl ( z ) d z = κ 2 C Sig ( z ) Δ k eff 2 C Idl ( z ) ,
| κ ˙ Δ k eff κ Δ k ˙ eff | ( κ 2 + Δ k eff 2 ) 3 2 ,
d A ( z , ω ) d z = i ω P ¯ NL ( x , y , ω ) ( E 0 t e i β ( z , ω ) z ) d x d y ,
d A ( z , ω ) d z = i ω χ ( 3 ) e i β ( z , ω ) z k x , y P ¯ NL , k . ( E 0 t , k ( x , y , z , ω ) ) d x d y .
d A Sig ( z , ω ) d z = i ω 0 χ ( 3 ) e i β Sig ( ω ) z × [ γ int A B ( ω ) e i β B ( ω ) z * A Idl ( ω ) e i β Idl ( ω ) z * A A ( ω ) e i β A ( ω ) z + μ Sig , Sig 2 A Sig ( ω ) e i β Sig ( ω ) z * A Sig ( ω ) e i β Sig ( ω ) z * A Sig ( ω ) e i β Sig ( ω ) z + μ Sig , Idl A Idl ( ω ) e i β Idl ( ω ) z * A Idl ( ω ) e i β Idl ( ω ) z * A Sig ( ω ) e i β Sig ( ω ) z + μ Sig , A A A ( ω ) e i β A ( ω ) z * A A ( ω ) e i β A ( ω ) z * A Sig ( ω ) e i β Sig ( ω ) z + μ Sig , B A B ( ω ) e i β B ( ω ) z * A B ( ω ) e i β B ( ω ) z * A Sig ( ω ) e i β Sig ( ω ) z ] .
i d B Sig ( z , t ) d z = + 1 [ β Sig ( z , ω ) B Sig ( z , ω ) ] Dispersion + ε 0 χ ( 3 ) 1 [ ω [ γ int B B ( z , t ) B Idl ( z , t ) B A ( z , t ) ] ] FWM + ε 0 χ ( 3 ) 1 [ ω [ ν A , B , Idl μ Sig , ν | B ν ( z , t ) | 2 B Sig ( z , t ) ] ] XPM + ε 0 χ ( 3 ) 1 [ ω [ μ Sig , Sig 2 | B Sig ( z , t ) | 2 B Sig ( z , t ) ] ] SPM ,
i d B ( z , t ) d z = 1 ( β ( z , ω ) B ( z , ω ) ) + ε 0 χ ( 3 ) . 1 ( ω γ int { ( 1 f R ) | B ( z , t ) | 2 B ( z , t ) + f R B ( z , t ) 0 h R ( t ) | B ( z , t t ) | 2 d t } ) ,
PCR = idler final spectral density signal input spectral density × ω Sig ω Idl ,

Metrics