Abstract

An inherent compromise must be made between transverse resolution and depth of focus (DOF) in spectral domain optical coherence tomography (SD-OCT). Thus far, OCT has not been capable of providing a sufficient DOF to stably acquire cellular-resolution images. We previously reported a novel technique named multiple aperture synthesis (MAS) to extend the DOF in high-resolution OCT [Optica 4, 701 (2017)]. In this technique, the illumination beam is scanned across the objective lens pupil plane by being steered at the pinhole using a custom-made microcylindrical lens. Images captured via multiple distinctive apertures were digitally refocused, which is similar to synthetic aperture radar. In this study, we applied this technique for the first time to image both a homemade microparticle sample and biological tissue. The results demonstrated the feasibility and efficacy of high-resolution biological tissue imaging with a dramatic DOF extension.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis

En Bo, Yuemei Luo, Si Chen, Xinyu Liu, Nanshuo Wang, Xin Ge, Xianghong Wang, Shufen Chen, Shi Chen, Jinhan Li, and Linbo Liu
Optica 4(7) 701-706 (2017)

Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth

Jianhua Mo, Mattijs de Groot, and Johannes F. de Boer
Opt. Express 23(4) 4935-4945 (2015)

Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography

Jianhua Mo, Mattijs de Groot, and Johannes F. de Boer
Opt. Express 21(8) 10048-10061 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [PubMed]
  2. K. K. Chu, C. Unglert, T. N. Ford, D. Cui, R. W. Carruth, K. Singh, L. Liu, S. E. Birket, G. M. Solomon, S. M. Rowe, and G. J. Tearney, “In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography,” Biomed. Opt. Express 7(7), 2494–2505 (2016).
    [PubMed]
  3. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
    [PubMed]
  4. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [PubMed]
  5. K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
    [PubMed]
  6. L. Liu, F. Diaz, L. Wang, B. Loiseaux, J.-P. Huignard, C. J. Sheppard, and N. Chen, “Superresolution along extended depth of focus with binary-phase filters for the Gaussian beam,” J. Opt. Soc. Am. A 25(8), 2095–2101 (2008).
    [PubMed]
  7. J. Xing, J. Kim, and H. Yoo, “Design and fabrication of an optical probe with a phase filter for extended depth of focus,” Opt. Express 24(2), 1037–1044 (2016).
    [PubMed]
  8. J. Kim, J. Xing, H. S. Nam, J. W. Song, J. W. Kim, and H. Yoo, “Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter,” Opt. Lett. 42(3), 379–382 (2017).
    [PubMed]
  9. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
    [PubMed]
  10. L. Liu, C. Liu, W. C. Howe, C. J. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32(16), 2375–2377 (2007).
    [PubMed]
  11. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [PubMed]
  12. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
    [PubMed]
  13. K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, “Extended depth of focus adaptive optics spectral domain optical coherence tomography,” Biomed. Opt. Express 3(10), 2353–2370 (2012).
    [PubMed]
  14. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Real-time interferometric synthetic aperture microscopy,” Opt. Express 16(4), 2555–2569 (2008).
    [PubMed]
  15. J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express 21(8), 10048–10061 (2013).
    [PubMed]
  16. E. Bo and L. Liu, “Spectral domain optical coherence tomography with extended depth-of-focus by aperture synthesis,” in SPIE/COS Photonics Asia, (International Society for Optics and Photonics, 2016), 1002451–1002451–1002457.
  17. A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
    [PubMed]
  18. M. Gu, X. Gan, and C. Sheppard, “Three-dimensional coherent transfer functions in fiber-optical confocal scanning microscopes,” JOSA A 8, 1019–1025 (1991).
  19. E. Bo, Y. Luo, S. Chen, X. Liu, N. Wang, X. Ge, X. Wang, S. Chen, S. Chen, and J. Li, “Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis,” Optica 4, 701–706 (2017).
  20. B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
    [PubMed]
  21. C. Chen, K. H. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, and V. X. Yang, “Multi-beam optical coherence tomography for microvascular imaging of human skin in vivo,” in Proc. of SPIE Vol, 2017), 1007017.
  22. Y. Xu, X. K. B. Chng, S. G. Adie, S. A. Boppart, and P. S. Carney, “Multifocal interferometric synthetic aperture microscopy,” Opt. Express 22(13), 16606–16618 (2014).
    [PubMed]
  23. W. Bao, Z. Ding, J. Qiu, Y. Shen, P. Li, and Z. Chen, “Quasi-needle-like focus synthesized by optical coherence tomography,” Opt. Lett. 42(7), 1385–1388 (2017).
    [PubMed]
  24. E. Bo, S. Chen, D. Cui, S. Chen, X. Yu, Y. Luo, and L. Liu, “Single-camera full-range high-resolution spectral domain optical coherence tomography,” Appl. Opt. 56(3), 470–475 (2017).
    [PubMed]
  25. E. Bo, X. Liu, S. Chen, X. Yu, X. Wang, and L. Liu, “Spectral-domain optical coherence tomography with dual-balanced detection for auto-correlation artifacts reduction,” Opt. Express 23(21), 28050–28058 (2015).
    [PubMed]
  26. S. Gabarda and G. Cristóbal, “Blind image quality assessment through anisotropy,” J. Opt. Soc. Am. A 24(12), B42–B51 (2007).
    [PubMed]
  27. A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
    [PubMed]
  28. A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
    [PubMed]
  29. D. Cui, X. Liu, J. Zhang, X. Yu, S. Ding, Y. Luo, J. Gu, P. Shum, and L. Liu, “Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo,” Opt. Lett. 39(23), 6727–6730 (2014).
    [PubMed]

2017 (4)

2016 (2)

2015 (2)

2014 (3)

2013 (2)

J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express 21(8), 10048–10061 (2013).
[PubMed]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[PubMed]

2012 (1)

2011 (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[PubMed]

2010 (2)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[PubMed]

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[PubMed]

2008 (3)

2007 (2)

2006 (1)

2004 (1)

2002 (1)

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

M. Gu, X. Gan, and C. Sheppard, “Three-dimensional coherent transfer functions in fiber-optical confocal scanning microscopes,” JOSA A 8, 1019–1025 (1991).

Adie, S. G.

Y. Xu, X. K. B. Chng, S. G. Adie, S. A. Boppart, and P. S. Carney, “Multifocal interferometric synthetic aperture microscopy,” Opt. Express 22(13), 16606–16618 (2014).
[PubMed]

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[PubMed]

Ahmad, A.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[PubMed]

Artal, P.

Bachmann, A. H.

Bao, W.

Betzig, E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[PubMed]

Birket, S. E.

Bo, E.

Boppart, S. A.

Bouma, B. E.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[PubMed]

Carney, P. S.

Carruth, R. W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Chen, C.

C. Chen, K. H. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, and V. X. Yang, “Multi-beam optical coherence tomography for microvascular imaging of human skin in vivo,” in Proc. of SPIE Vol, 2017), 1007017.

Chen, N.

Chen, S.

Chen, Z.

Cheng, K. H.

C. Chen, K. H. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, and V. X. Yang, “Multi-beam optical coherence tomography for microvascular imaging of human skin in vivo,” in Proc. of SPIE Vol, 2017), 1007017.

Chng, X. K. B.

Chu, K. K.

Cristóbal, G.

Cui, D.

de Boer, J. F.

de Groot, M.

Deorajh, R.

C. Chen, K. H. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, and V. X. Yang, “Multi-beam optical coherence tomography for microvascular imaging of human skin in vivo,” in Proc. of SPIE Vol, 2017), 1007017.

Diaz, F.

Ding, S.

Ding, Z.

Drexler, W.

Fercher, A. F.

Fernández, E. J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Ford, T. N.

Fujimoto, J.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Gabarda, S.

Gan, X.

M. Gu, X. Gan, and C. Sheppard, “Three-dimensional coherent transfer functions in fiber-optical confocal scanning microscopes,” JOSA A 8, 1019–1025 (1991).

Gao, W.

C. Chen, K. H. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, and V. X. Yang, “Multi-beam optical coherence tomography for microvascular imaging of human skin in vivo,” in Proc. of SPIE Vol, 2017), 1007017.

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[PubMed]

Ge, X.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Gu, J.

Gu, M.

M. Gu, X. Gan, and C. Sheppard, “Three-dimensional coherent transfer functions in fiber-optical confocal scanning microscopes,” JOSA A 8, 1019–1025 (1991).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Hermann, B.

Howe, W. C.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Huignard, J.-P.

Hwu, W.-M. W.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[PubMed]

Jakubovic, R.

C. Chen, K. H. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, and V. X. Yang, “Multi-beam optical coherence tomography for microvascular imaging of human skin in vivo,” in Proc. of SPIE Vol, 2017), 1007017.

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[PubMed]

Jivraj, J.

C. Chen, K. H. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, and V. X. Yang, “Multi-beam optical coherence tomography for microvascular imaging of human skin in vivo,” in Proc. of SPIE Vol, 2017), 1007017.

Kamali, T.

Kim, H.-S.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[PubMed]

Kim, J.

Kim, J. W.

Kumar, A.

Kurokawa, K.

Lasser, T.

Lee, K. K.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[PubMed]

Lee, K.-S.

Leitgeb, R. A.

Leung, M. K.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[PubMed]

Li, J.

Li, P.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Liu, C.

Liu, L.

E. Bo, S. Chen, D. Cui, S. Chen, X. Yu, Y. Luo, and L. Liu, “Single-camera full-range high-resolution spectral domain optical coherence tomography,” Appl. Opt. 56(3), 470–475 (2017).
[PubMed]

K. K. Chu, C. Unglert, T. N. Ford, D. Cui, R. W. Carruth, K. Singh, L. Liu, S. E. Birket, G. M. Solomon, S. M. Rowe, and G. J. Tearney, “In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography,” Biomed. Opt. Express 7(7), 2494–2505 (2016).
[PubMed]

E. Bo, X. Liu, S. Chen, X. Yu, X. Wang, and L. Liu, “Spectral-domain optical coherence tomography with dual-balanced detection for auto-correlation artifacts reduction,” Opt. Express 23(21), 28050–28058 (2015).
[PubMed]

D. Cui, X. Liu, J. Zhang, X. Yu, S. Ding, Y. Luo, J. Gu, P. Shum, and L. Liu, “Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo,” Opt. Lett. 39(23), 6727–6730 (2014).
[PubMed]

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[PubMed]

L. Liu, F. Diaz, L. Wang, B. Loiseaux, J.-P. Huignard, C. J. Sheppard, and N. Chen, “Superresolution along extended depth of focus with binary-phase filters for the Gaussian beam,” J. Opt. Soc. Am. A 25(8), 2095–2101 (2008).
[PubMed]

L. Liu, C. Liu, W. C. Howe, C. J. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32(16), 2375–2377 (2007).
[PubMed]

Liu, X.

Loiseaux, B.

Luo, Y.

Makita, S.

Mariampillai, A.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[PubMed]

Marks, D. L.

Milkie, D. E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[PubMed]

Mo, J.

Munce, N. R.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[PubMed]

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[PubMed]

Nam, H. S.

Nelson, J. S.

Platzer, R.

Prieto, P. M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Qiu, J.

Ralston, T. S.

Ramjist, J.

C. Chen, K. H. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, and V. X. Yang, “Multi-beam optical coherence tomography for microvascular imaging of human skin in vivo,” in Proc. of SPIE Vol, 2017), 1007017.

Ren, H.

Rolland, J. P.

Rowe, S. M.

Sasaki, K.

Sattmann, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Shemonski, N. D.

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[PubMed]

Shen, Y.

Sheppard, C.

M. Gu, X. Gan, and C. Sheppard, “Three-dimensional coherent transfer functions in fiber-optical confocal scanning microscopes,” JOSA A 8, 1019–1025 (1991).

Sheppard, C. J.

Shum, P.

Singh, K.

Solomon, G. M.

Song, J. W.

Standish, B. A.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[PubMed]

Steinmann, L.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Tearney, G. J.

K. K. Chu, C. Unglert, T. N. Ford, D. Cui, R. W. Carruth, K. Singh, L. Liu, S. E. Birket, G. M. Solomon, S. M. Rowe, and G. J. Tearney, “In vivo imaging of airway cilia and mucus clearance with micro-optical coherence tomography,” Biomed. Opt. Express 7(7), 2494–2505 (2016).
[PubMed]

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[PubMed]

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[PubMed]

Unglert, C.

Unterhuber, A.

Villiger, M.

Vitkin, I. A.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[PubMed]

Wang, L.

Wang, N.

Wang, X.

Xing, J.

Xu, Y.

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[PubMed]

Yang, V. X.

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[PubMed]

C. Chen, K. H. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, and V. X. Yang, “Multi-beam optical coherence tomography for microvascular imaging of human skin in vivo,” in Proc. of SPIE Vol, 2017), 1007017.

Yasuno, Y.

Yoo, H.

Yu, X.

Zhang, J.

Zhao, Y.

Appl. Opt. (1)

Biomed. Opt. Express (3)

J. Opt. Soc. Am. A (2)

JOSA A (1)

M. Gu, X. Gan, and C. Sheppard, “Three-dimensional coherent transfer functions in fiber-optical confocal scanning microscopes,” JOSA A 8, 1019–1025 (1991).

Nat. Med. (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[PubMed]

Nat. Methods (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[PubMed]

Nat. Photonics (1)

A. Ahmad, N. D. Shemonski, S. G. Adie, H.-S. Kim, W.-M. W. Hwu, P. S. Carney, and S. A. Boppart, “Real-time in vivo computed optical interferometric tomography,” Nat. Photonics 7(6), 444–448 (2013).
[PubMed]

Opt. Express (6)

Opt. Lett. (8)

J. Kim, J. Xing, H. S. Nam, J. W. Song, J. W. Kim, and H. Yoo, “Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter,” Opt. Lett. 42(3), 379–382 (2017).
[PubMed]

W. Bao, Z. Ding, J. Qiu, Y. Shen, P. Li, and Z. Chen, “Quasi-needle-like focus synthesized by optical coherence tomography,” Opt. Lett. 42(7), 1385–1388 (2017).
[PubMed]

D. Cui, X. Liu, J. Zhang, X. Yu, S. Ding, Y. Luo, J. Gu, P. Shum, and L. Liu, “Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo,” Opt. Lett. 39(23), 6727–6730 (2014).
[PubMed]

K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[PubMed]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
[PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[PubMed]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
[PubMed]

L. Liu, C. Liu, W. C. Howe, C. J. Sheppard, and N. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32(16), 2375–2377 (2007).
[PubMed]

Optica (1)

Phys. Med. Biol. (1)

B. A. Standish, K. K. Lee, A. Mariampillai, N. R. Munce, M. K. Leung, V. X. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55(3), 615–622 (2010).
[PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[PubMed]

Other (2)

C. Chen, K. H. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, and V. X. Yang, “Multi-beam optical coherence tomography for microvascular imaging of human skin in vivo,” in Proc. of SPIE Vol, 2017), 1007017.

E. Bo and L. Liu, “Spectral domain optical coherence tomography with extended depth-of-focus by aperture synthesis,” in SPIE/COS Photonics Asia, (International Society for Optics and Photonics, 2016), 1002451–1002451–1002457.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the multiple aperture synthesized SD-OCT system. SLD, super-luminescent diode; OC1-2, 90:10 fiber optic coupler; L1-L6, collimating and focusing lens; L7, camera lens; NDF, neutral density filter; RM, reference mirror; BS, beam splitter; GS, galvo scanner; G, transmission diffraction grating; IMAQ, image acquisition; C, computer; PC, polarization controller; SMF, single mode fiber; MCL, microcylindrical lens; PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Process of multiple aperture synthesis. (a) Five B-scans of the defocused microparticle sample captured from five distinctive apertures, which are generated by multiple transverse shifts of the microcylindrical lens. (b) Resultant B-scan after five original B-scans are corrected with optimal phase α n op . (c) Digitally refocused B-scan, which is corrected with both optimal phase α n op and β n op (z).

Fig. 3
Fig. 3

B-scans of microparticles to verify DOF extension performance. (a) Dispersion-compensated B-scan (intensity in linear grayscale) captured from one of five apertures. (b) Digitally refocused B-scan via MAS. (c) Transverse line profiles of the dispersion-compensated B-scan at variable depths. (d) Transverse line profiles of the digitally refocused B-scan at variable depths. Because the nominal diameter of the microparticle is 6 µm, transverse resolution ( = transverse FWHM – nominal diameter) of microparticles are measured and indicated by the black arrows, which indicates that the transverse resolution is well preserved over the whole depth range of 1077 µm.

Fig. 4
Fig. 4

B-scans of fresh grape samples to verify the DOF extension performance. (a) Dispersion-compensated B-scan (intensity in logarithmic grayscale) captured from one of five apertures. (b) Digitally refocused B-scan via MAS. (c-d) Two boxed areas 329 µm and 760 µm from the focus are indicated in orange and green colors and are magnified by a factor of two. The transverse profiles indicated by the dashed lines show that the defocused cell wall was well digitally refocused. (e) Image anisotropy ratio of the digitally refocused B-scan to the dispersion-compensated B-scan.

Fig. 5
Fig. 5

B-scans of rat adipocyte samples to verify DOF extension performance. (a) Dispersion-compensated B-scan (intensity in logarithmic grayscale) captured from one of five apertures. (b) Digitally refocused B-scan via MAS. (c-d) Two boxed areas 435 µm and 516 µm from the focus are indicated in green and orange colors and are magnified four times. The transverse profiles indicated by the dashed lines show that the defocused cell boundary was well digitally refocused. (e) Image anisotropy ratio of the digitally refocused B-scan to the dispersion-compensated B-scan.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I n (k)=exp(i α n ) I r (k) I s (k) [exp(i2k z n )exp(i β n )]+C.C.
I re = n=1 m [ I n (k)exp(i α n op )]exp[i β n op (z)]