Abstract

We experimentally demonstrate an all-fiber, ultraviolet-enhanced, supercontinuum generation in a specifically designed seven-core photonic crystal fiber pumped by a picosecond Yb-doped master oscillator power amplifier (MOPA). The MOPA source is seeded by a giant-chirped Yb-doped mode-locked fiber laser operating in the dissipative-soliton-resonance (DSR) region. The DSR is achieved by using a nonlinear optical loop mirror (NOLM) with a fundamental repetition rate of 4.5 MHz and a central wavelength of 1035 nm. An extremely wide optical spectrum spanning from 350 nm to 2400 nm is obtained with a total output power of 6.86 W.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultraviolet-enhanced supercontinuum generation in uniform photonic crystal fiber pumped by a giant-chirped fiber laser

Shoufei Gao, Yingying Wang, Ruoyu Sun, Huihui Li, Cuiping Tian, Dongchen Jin, and Pu Wang
Opt. Express 22(20) 24697-24705 (2014)

GHz high power Yb-doped picosecond fiber laser and supercontinuum generation

Jing Gao, Tingwu Ge, Wuyi Li, Hongshen Kuang, and Zhiyong Wang
Appl. Opt. 53(36) 8544-8548 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  2. R. R Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).
  3. H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography,” Biomed. Opt. Express 5(3), 932–943 (2014).
    [Crossref] [PubMed]
  4. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
    [Crossref] [PubMed]
  5. A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
    [Crossref]
  6. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008).
    [Crossref] [PubMed]
  7. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
    [Crossref] [PubMed]
  8. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
    [Crossref]
  9. C. Desem and P. L. Chu, “Effect of chirping on solution propagation in single-mode optical fibers,” Opt. Lett. 11(4), 248–250 (1986).
    [Crossref] [PubMed]
  10. D. Ghosh, S. Roy, M. Pal, P. Leproux, P. Viale, V. Tombelaine, and S. K. Bhadra, “Blue-Extended Sub-Nanosecond Supercontinuum Generation in Simply Designed Nonlinear Microstructured Optical Fibers,” J. Lightwave Technol. 29(2), 146–152 (2011).
    [Crossref]
  11. H. H. Chen, Z. L. Chen, X. F. Zhou, and J. Hou, “Ultraviolet-extended flat supercontinuum generation in cascaded photonic crystal fiber tapers,” Laser Phys. Lett. 10(8), 085401 (2013).
    [Crossref]
  12. C. Desem and P. L. Chu, “Effect of chirping on solution propagation in single-mode optical fibers,” Opt. Lett. 11(4), 248–250 (1986).
    [Crossref] [PubMed]
  13. Z. Zhu and T. Brown, “Effect of frequency chirping on supercontinuum generation in photonic crystal fibers,” Opt. Express 12(4), 689–694 (2004).
    [Crossref] [PubMed]
  14. S. Gao, Y. Wang, R. Sun, H. Li, C. Tian, D. Jin, and P. Wang, “Ultraviolet-enhanced supercontinuum generation in uniform photonic crystal fiber pumped by a giant-chirped fiber laser,” Opt. Express 22(20), 24697–24705 (2014).
    [Crossref] [PubMed]
  15. A. Fuerbach, C. Miese, W. Koehler, and M. Geissler, “Supercontinuum generation with a chirped-pulse oscillator,” Opt. Express 17(7), 5905–5911 (2009).
    [Crossref] [PubMed]
  16. X. Zou, J. F. Qiu, X. D. Wang, Z. Ye, C. Sun, T. W. Ge, and J. Wu, “An All-Fiber Supercontinuum Source With 30.6-W High-Power and Ultrawide Spectrum Ranging From 385 nm to Beyond 2400 nm,” IEEE Photonics J. 9(2), 1502107 (2017).
    [Crossref]
  17. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
    [Crossref]
  18. X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
    [Crossref]
  19. X. F. Zhou, Z. L. Chen, H. Zhou, and J. Hou, “Gaussian-Like Mode Field Generated in a Seven-Core Photonic Crystal Fiber for Low Loss Splicing by Air Hole Collapse Technique,” J. Lightwave Technol. 32, 3368–3371 (2014).
  20. Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zheng, and S. Ruan, “Dissipative soliton resonance in a wavelength tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photonics J. 7(3), 1502007 (2015).
    [Crossref]
  21. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  22. T. Du, Z. Luo, R. Yang, Y. Huang, Q. Ruan, Z. Cai, and H. Xu, “1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser,” Opt. Lett. 42(3), 462–465 (2017).
    [Crossref] [PubMed]
  23. W. Chang, A. Ankiewicz, and J. M. Sotocrespo, “Dissipative soliton resonances,” Phys. Lett. A 78(2), 70–72 (2015).
  24. L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, and W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
    [Crossref] [PubMed]
  25. X. L. Li, S. M. Zhang, H. X. Zhang, M. M. Han, F. Wen, and Z. J. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
    [Crossref]
  26. H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).
  27. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14(21), 9854–9863 (2006).
    [Crossref] [PubMed]

2017 (2)

X. Zou, J. F. Qiu, X. D. Wang, Z. Ye, C. Sun, T. W. Ge, and J. Wu, “An All-Fiber Supercontinuum Source With 30.6-W High-Power and Ultrawide Spectrum Ranging From 385 nm to Beyond 2400 nm,” IEEE Photonics J. 9(2), 1502107 (2017).
[Crossref]

T. Du, Z. Luo, R. Yang, Y. Huang, Q. Ruan, Z. Cai, and H. Xu, “1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser,” Opt. Lett. 42(3), 462–465 (2017).
[Crossref] [PubMed]

2015 (3)

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zheng, and S. Ruan, “Dissipative soliton resonance in a wavelength tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photonics J. 7(3), 1502007 (2015).
[Crossref]

W. Chang, A. Ankiewicz, and J. M. Sotocrespo, “Dissipative soliton resonances,” Phys. Lett. A 78(2), 70–72 (2015).

2014 (5)

2013 (2)

2012 (2)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

2011 (1)

2009 (1)

2008 (3)

2007 (1)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[Crossref]

2006 (2)

2004 (2)

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
[Crossref] [PubMed]

Z. Zhu and T. Brown, “Effect of frequency chirping on supercontinuum generation in photonic crystal fibers,” Opt. Express 12(4), 689–694 (2004).
[Crossref] [PubMed]

1986 (2)

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Ankiewicz, A.

W. Chang, A. Ankiewicz, and J. M. Sotocrespo, “Dissipative soliton resonances,” Phys. Lett. A 78(2), 70–72 (2015).

Aramaki, M.

Bale, B. G.

Bhadra, S. K.

Brown, T.

Cai, Z.

Chang, W.

W. Chang, A. Ankiewicz, and J. M. Sotocrespo, “Dissipative soliton resonances,” Phys. Lett. A 78(2), 70–72 (2015).

Chen, H. H.

H. H. Chen, Z. L. Chen, X. F. Zhou, and J. Hou, “Ultraviolet-extended flat supercontinuum generation in cascaded photonic crystal fiber tapers,” Laser Phys. Lett. 10(8), 085401 (2013).
[Crossref]

Chen, H. W.

H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Chen, S. P.

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Chen, Z. L.

H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

X. F. Zhou, Z. L. Chen, H. Zhou, and J. Hou, “Gaussian-Like Mode Field Generated in a Seven-Core Photonic Crystal Fiber for Low Loss Splicing by Air Hole Collapse Technique,” J. Lightwave Technol. 32, 3368–3371 (2014).

H. H. Chen, Z. L. Chen, X. F. Zhou, and J. Hou, “Ultraviolet-extended flat supercontinuum generation in cascaded photonic crystal fiber tapers,” Laser Phys. Lett. 10(8), 085401 (2013).
[Crossref]

Chong, A.

Chu, P. L.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Couderc, V.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Cumberland, B. A.

Desem, C.

Du, G.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zheng, and S. Ruan, “Dissipative soliton resonance in a wavelength tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photonics J. 7(3), 1502007 (2015).
[Crossref]

Du, T.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Fuerbach, A.

Gao, S.

Ge, T. W.

X. Zou, J. F. Qiu, X. D. Wang, Z. Ye, C. Sun, T. W. Ge, and J. Wu, “An All-Fiber Supercontinuum Source With 30.6-W High-Power and Ultrawide Spectrum Ranging From 385 nm to Beyond 2400 nm,” IEEE Photonics J. 9(2), 1502107 (2017).
[Crossref]

Geissler, M.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghosh, D.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[Crossref]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14(21), 9854–9863 (2006).
[Crossref] [PubMed]

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Guo, C.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zheng, and S. Ruan, “Dissipative soliton resonance in a wavelength tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photonics J. 7(3), 1502007 (2015).
[Crossref]

Han, M. M.

X. L. Li, S. M. Zhang, H. X. Zhang, M. M. Han, F. Wen, and Z. J. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Hou, J.

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

X. F. Zhou, Z. L. Chen, H. Zhou, and J. Hou, “Gaussian-Like Mode Field Generated in a Seven-Core Photonic Crystal Fiber for Low Loss Splicing by Air Hole Collapse Technique,” J. Lightwave Technol. 32, 3368–3371 (2014).

H. H. Chen, Z. L. Chen, X. F. Zhou, and J. Hou, “Ultraviolet-extended flat supercontinuum generation in cascaded photonic crystal fiber tapers,” Laser Phys. Lett. 10(8), 085401 (2013).
[Crossref]

Huang, Y.

Huss, G.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Ishida, S.

Jin, A. J.

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

Jin, D.

Kalkbrenner, T.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
[Crossref] [PubMed]

Kataura, H.

Kawagoe, H.

Knight, J. C.

Koehler, W.

Kutz, J. N.

Labruyère, A.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Leproux, P.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

D. Ghosh, S. Roy, M. Pal, P. Leproux, P. Viale, V. Tombelaine, and S. K. Bhadra, “Blue-Extended Sub-Nanosecond Supercontinuum Generation in Simply Designed Nonlinear Microstructured Optical Fibers,” J. Lightwave Technol. 29(2), 146–152 (2011).
[Crossref]

Li, H.

Li, J. Y.

H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Li, X. L.

X. L. Li, S. M. Zhang, H. X. Zhang, M. M. Han, F. Wen, and Z. J. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Liao, J. H.

Lindfors, K.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
[Crossref] [PubMed]

Liu, L.

Liu, T.

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Lu, Q. S.

H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Luo, A. P.

Luo, Z.

Luo, Z. C.

Miese, C.

Ning, Q. Y.

Nishizawa, N.

Omoda, E.

Pal, M.

Popov, S. V.

Qi, X.

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

Qiu, J. F.

X. Zou, J. F. Qiu, X. D. Wang, Z. Ye, C. Sun, T. W. Ge, and J. Wu, “An All-Fiber Supercontinuum Source With 30.6-W High-Power and Ultrawide Spectrum Ranging From 385 nm to Beyond 2400 nm,” IEEE Photonics J. 9(2), 1502107 (2017).
[Crossref]

Renninger, W. H.

Roy, S.

Ruan, Q.

Ruan, S.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zheng, and S. Ruan, “Dissipative soliton resonance in a wavelength tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photonics J. 7(3), 1502007 (2015).
[Crossref]

Rulkov, A. B.

Sakakibara, Y.

Sandoghdar, V.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
[Crossref] [PubMed]

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[Crossref]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14(21), 9854–9863 (2006).
[Crossref] [PubMed]

Song, Y.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zheng, and S. Ruan, “Dissipative soliton resonance in a wavelength tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photonics J. 7(3), 1502007 (2015).
[Crossref]

Sotocrespo, J. M.

W. Chang, A. Ankiewicz, and J. M. Sotocrespo, “Dissipative soliton resonances,” Phys. Lett. A 78(2), 70–72 (2015).

Stoller, P.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
[Crossref] [PubMed]

Stone, J. M.

Sun, C.

X. Zou, J. F. Qiu, X. D. Wang, Z. Ye, C. Sun, T. W. Ge, and J. Wu, “An All-Fiber Supercontinuum Source With 30.6-W High-Power and Ultrawide Spectrum Ranging From 385 nm to Beyond 2400 nm,” IEEE Photonics J. 9(2), 1502107 (2017).
[Crossref]

Sun, R.

Taylor, J. R.

Tian, C.

Tombelaine, V.

Tonello, A.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Travers, J. C.

Viale, P.

Wang, P.

Wang, X. D.

X. Zou, J. F. Qiu, X. D. Wang, Z. Ye, C. Sun, T. W. Ge, and J. Wu, “An All-Fiber Supercontinuum Source With 30.6-W High-Power and Ultrawide Spectrum Ranging From 385 nm to Beyond 2400 nm,” IEEE Photonics J. 9(2), 1502107 (2017).
[Crossref]

Wang, Y.

Wei, H. F.

H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Wen, F.

X. L. Li, S. M. Zhang, H. X. Zhang, M. M. Han, F. Wen, and Z. J. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Wise, F. W.

Wu, J.

X. Zou, J. F. Qiu, X. D. Wang, Z. Ye, C. Sun, T. W. Ge, and J. Wu, “An All-Fiber Supercontinuum Source With 30.6-W High-Power and Ultrawide Spectrum Ranging From 385 nm to Beyond 2400 nm,” IEEE Photonics J. 9(2), 1502107 (2017).
[Crossref]

Xu, H.

Xu, S. H.

Xu, W. C.

Xu, Y.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zheng, and S. Ruan, “Dissipative soliton resonance in a wavelength tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photonics J. 7(3), 1502007 (2015).
[Crossref]

Yan, P.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zheng, and S. Ruan, “Dissipative soliton resonance in a wavelength tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photonics J. 7(3), 1502007 (2015).
[Crossref]

Yan, P. G.

H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

Yang, R.

Yang, Z. J.

X. L. Li, S. M. Zhang, H. X. Zhang, M. M. Han, F. Wen, and Z. J. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Yang, Z. M.

Ye, Z.

X. Zou, J. F. Qiu, X. D. Wang, Z. Ye, C. Sun, T. W. Ge, and J. Wu, “An All-Fiber Supercontinuum Source With 30.6-W High-Power and Ultrawide Spectrum Ranging From 385 nm to Beyond 2400 nm,” IEEE Photonics J. 9(2), 1502107 (2017).
[Crossref]

Yu, W.

Zhang, H. X.

X. L. Li, S. M. Zhang, H. X. Zhang, M. M. Han, F. Wen, and Z. J. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Zhang, S. M.

X. L. Li, S. M. Zhang, H. X. Zhang, M. M. Han, F. Wen, and Z. J. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

Zheng, G.

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zheng, and S. Ruan, “Dissipative soliton resonance in a wavelength tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photonics J. 7(3), 1502007 (2015).
[Crossref]

Zhou, H.

Zhou, X. F.

X. F. Zhou, Z. L. Chen, H. Zhou, and J. Hou, “Gaussian-Like Mode Field Generated in a Seven-Core Photonic Crystal Fiber for Low Loss Splicing by Air Hole Collapse Technique,” J. Lightwave Technol. 32, 3368–3371 (2014).

H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

H. H. Chen, Z. L. Chen, X. F. Zhou, and J. Hou, “Ultraviolet-extended flat supercontinuum generation in cascaded photonic crystal fiber tapers,” Laser Phys. Lett. 10(8), 085401 (2013).
[Crossref]

Zhu, Z.

Zou, X.

X. Zou, J. F. Qiu, X. D. Wang, Z. Ye, C. Sun, T. W. Ge, and J. Wu, “An All-Fiber Supercontinuum Source With 30.6-W High-Power and Ultrawide Spectrum Ranging From 385 nm to Beyond 2400 nm,” IEEE Photonics J. 9(2), 1502107 (2017).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

H. W. Chen, H. F. Wei, T. Liu, X. F. Zhou, P. G. Yan, Z. L. Chen, S. P. Chen, J. Y. Li, J. Hou, and Q. S. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902008 (2014).

IEEE Photonics J. (2)

Y. Xu, Y. Song, G. Du, P. Yan, C. Guo, G. Zheng, and S. Ruan, “Dissipative soliton resonance in a wavelength tunable thulium-doped fiber laser with net-normal dispersion,” IEEE Photonics J. 7(3), 1502007 (2015).
[Crossref]

X. Zou, J. F. Qiu, X. D. Wang, Z. Ye, C. Sun, T. W. Ge, and J. Wu, “An All-Fiber Supercontinuum Source With 30.6-W High-Power and Ultrawide Spectrum Ranging From 385 nm to Beyond 2400 nm,” IEEE Photonics J. 9(2), 1502107 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. L. Li, S. M. Zhang, H. X. Zhang, M. M. Han, F. Wen, and Z. J. Yang, “Highly efficient rectangular pulse emission in a mode-locked fiber laser,” IEEE Photonics Technol. Lett. 26(20), 2082–2085 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

H. H. Chen, Z. L. Chen, X. F. Zhou, and J. Hou, “Ultraviolet-extended flat supercontinuum generation in cascaded photonic crystal fiber tapers,” Laser Phys. Lett. 10(8), 085401 (2013).
[Crossref]

Nat. Photonics (2)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Eng. (1)

X. Qi, S. P. Chen, A. J. Jin, T. Liu, and J. Hou, “Design and analysis of seven-core photonic crystal fiber for high-power visible supercontinuum generation,” Opt. Eng. 54(6), 066102 (2015).
[Crossref]

Opt. Express (7)

Z. Zhu and T. Brown, “Effect of frequency chirping on supercontinuum generation in photonic crystal fibers,” Opt. Express 12(4), 689–694 (2004).
[Crossref] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14(21), 9854–9863 (2006).
[Crossref] [PubMed]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008).
[Crossref] [PubMed]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16(19), 14435–14447 (2008).
[Crossref] [PubMed]

A. Fuerbach, C. Miese, W. Koehler, and M. Geissler, “Supercontinuum generation with a chirped-pulse oscillator,” Opt. Express 17(7), 5905–5911 (2009).
[Crossref] [PubMed]

L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, and W. C. Xu, “Wave-breaking-free pulse in an all-fiber normal-dispersion Yb-doped fiber laser under dissipative soliton resonance condition,” Opt. Express 21(22), 27087–27092 (2013).
[Crossref] [PubMed]

S. Gao, Y. Wang, R. Sun, H. Li, C. Tian, D. Jin, and P. Wang, “Ultraviolet-enhanced supercontinuum generation in uniform photonic crystal fiber pumped by a giant-chirped fiber laser,” Opt. Express 22(20), 24697–24705 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Opt. Lett. (3)

Phys. Lett. A (1)

W. Chang, A. Ankiewicz, and J. M. Sotocrespo, “Dissipative soliton resonances,” Phys. Lett. A 78(2), 70–72 (2015).

Phys. Rev. Lett. (1)

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93(3), 037401 (2004).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (1)

R. R Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Scheme of the all-fiber ultraviolet-enhanced supercontinuum source (ISO: Isolator, LD: laser diode, YDF: Yb-doped fiber, NOLM: nonlinear optical loop mirror, BPF: band-pass filter, PC: polarization controller).
Fig. 2
Fig. 2 (a) Calculated dispersion curve and the inset shows the SEM picture of the PCF. (b) Calculated group velocity curve.
Fig. 3
Fig. 3 Property of the DSR laser. (a) Pulse train at 4.5MHz repetition rate. (b) Average output power and pulse width variation with pump power. (c) Auto-correlation trace at the highest pump power. (d) Pulse peak power and 3-dB spectral width variation with pump power. (e) Optical spectra under different output power.
Fig. 4
Fig. 4 (a) Optical spectrum of the amplifier at various average output power (b) Average output power of the MOPA and the supercontinuum source variation with pump power
Fig. 5
Fig. 5 (a) Supercontinuum output spectra at different power levels. (b) Spectral power intensity of supercontinuum at the highest output power.
Fig. 6
Fig. 6 Beam profiles of the output taken with a camera at various wavelengths.
Fig. 7
Fig. 7 (a) Supercontinuum output spectra at different pulse duration. (b) The intensity of the supercontinuum with the pulse width at 353 ps.

Metrics