Abstract

A broadband tunable metamaterial graphene absorber is investigated in this paper. The unit cell of the proposed metamaterial graphene absorber is composed of four patch resonators. By tuning the chemical potential of graphene and the geometric size of each patch, the simulated total reflectivity is less than −10 dB from 22.02 to 36.61 THz and with the total thickness of 0.76 um (only 0.09λ at the lowest frequency). The analysis of the surface current, magnetic field and power flow distributions has been performed to better understand the absorption mechanism. Moreover, this proposed absorber achieves its bandwidth tunable characteristics through a voltage biasing of the graphene’s Fremi level. This proposed metamaterial graphene absorber (MGA) could be used as smart absorbers, photovoltaic devices and tunable sensors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband tunable graphene-based metamaterial absorber

Ying Zhang, Yan Shi, and Chang-Hong Liang
Opt. Mater. Express 6(9) 3036-3044 (2016)

Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency

Yin Zhang, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 22(19) 22743-22752 (2014)

An ultra-broadband multilayered graphene absorber

Muhammad Amin, Mohamed Farhat, and Hakan Bağcı
Opt. Express 21(24) 29938-29948 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  2. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  3. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref] [PubMed]
  4. J. Wu, “Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency,” J. Phys. D Appl. Phys. 49(21), 215108 (2016).
    [Crossref]
  5. H. Xiong, M. C. Tang, M. Li, D. Li, and Y. N. Jiang, “Equivalent circuit method analysis of graphene-metamaterial (GM) absorber,” Plasmonics, in press (2017).
  6. H. Xiong, Y.-N. Jiang, C. Yang, and X.-P. Zeng, “Frequency-tunable terahertz absorber with wire-based metamaterial and graphene,” J. Phys. D Appl. Phys. 51(1), 015102 (2018).
    [Crossref]
  7. W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express 20(6), 6616–6621 (2012).
    [Crossref] [PubMed]
  8. H. Xiong, J.-S. Hong, C.-M. Luo, and L.-L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
    [Crossref]
  9. A. Fardoost, F. G. Vanani, A. a. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).
  10. J. Chenjie, L. Diao, B. Yang, R. Zhaoyu, and B. Jintao, “Wideband tunable graphene-based passively Q-switched Tm:YAP laser,” Laser Phys. 25(4), 045802 (2015).
    [Crossref]
  11. W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
    [Crossref] [PubMed]
  12. Y. Zhang, Y. Li, Y. Cao, Y. Liu, and H. Zhang, “Graphene induced tunable and polarization-insensitive broadband metamaterial absorber,” Opt. Commun. 382, 281–287 (2017).
    [Crossref]
  13. Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-broadband terahertz absorbers based on 4×4 cascaded metal-dielectric pairs,” Plasmonics 9(4), 951–957 (2014).
    [Crossref]
  14. B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightwave Technol. 32(6), 1183–1189 (2014).
    [Crossref]
  15. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  16. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  17. Y. Huang, G. Wen, W. Zhu, J. Li, L.-M. Si, and M. Premaratne, “Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber,” Opt. Express 22(13), 16408–16417 (2014).
    [Crossref] [PubMed]
  18. W. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
    [Crossref]
  19. H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, “Broadband tunability of polarization-insensitive absorber based on frequency selective surface,” Sci. Rep. 6(1), 23081 (2016).
    [Crossref] [PubMed]
  20. A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
    [Crossref]
  21. F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 5101 (2013).
    [Crossref]
  22. A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
    [Crossref] [PubMed]
  23. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  24. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  25. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  26. R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
    [Crossref] [PubMed]
  27. S. He and T. Chen, “Broadband THz Absorbers With Graphene-Based Anisotropic Metamaterial Films,” IEEE Trans. THz Sci. Technol. 3(6), 757–763 (2013).
  28. Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 1127 (2011).
    [Crossref]
  29. B. Vasic and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 207403 (2013).
    [Crossref]

2018 (1)

H. Xiong, Y.-N. Jiang, C. Yang, and X.-P. Zeng, “Frequency-tunable terahertz absorber with wire-based metamaterial and graphene,” J. Phys. D Appl. Phys. 51(1), 015102 (2018).
[Crossref]

2017 (2)

A. Fardoost, F. G. Vanani, A. a. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Y. Zhang, Y. Li, Y. Cao, Y. Liu, and H. Zhang, “Graphene induced tunable and polarization-insensitive broadband metamaterial absorber,” Opt. Commun. 382, 281–287 (2017).
[Crossref]

2016 (3)

J. Wu, “Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency,” J. Phys. D Appl. Phys. 49(21), 215108 (2016).
[Crossref]

H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, “Broadband tunability of polarization-insensitive absorber based on frequency selective surface,” Sci. Rep. 6(1), 23081 (2016).
[Crossref] [PubMed]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

2015 (1)

J. Chenjie, L. Diao, B. Yang, R. Zhaoyu, and B. Jintao, “Wideband tunable graphene-based passively Q-switched Tm:YAP laser,” Laser Phys. 25(4), 045802 (2015).
[Crossref]

2014 (5)

2013 (7)

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

S. He and T. Chen, “Broadband THz Absorbers With Graphene-Based Anisotropic Metamaterial Films,” IEEE Trans. THz Sci. Technol. 3(6), 757–763 (2013).

B. Vasic and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 207403 (2013).
[Crossref]

W. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

H. Xiong, J.-S. Hong, C.-M. Luo, and L.-L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 5101 (2013).
[Crossref]

2012 (4)

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

W. Zhu, Y. Huang, I. D. Rukhlenko, G. Wen, and M. Premaratne, “Configurable metamaterial absorber with pseudo wideband spectrum,” Opt. Express 20(6), 6616–6621 (2012).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

2011 (1)

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 1127 (2011).
[Crossref]

2010 (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2009 (1)

A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Alaee, R.

Amirhosseini, A. a.

A. Fardoost, F. G. Vanani, A. a. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Andryieuski, A.

Bao, W.

H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, “Broadband tunability of polarization-insensitive absorber based on frequency selective surface,” Sci. Rep. 6(1), 23081 (2016).
[Crossref] [PubMed]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Cao, Y.

Y. Zhang, Y. Li, Y. Cao, Y. Liu, and H. Zhang, “Graphene induced tunable and polarization-insensitive broadband metamaterial absorber,” Opt. Commun. 382, 281–287 (2017).
[Crossref]

Capasso, F.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Chen, L.

Chen, T.

S. He and T. Chen, “Broadband THz Absorbers With Graphene-Based Anisotropic Metamaterial Films,” IEEE Trans. THz Sci. Technol. 3(6), 757–763 (2013).

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Cheng, W.

H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, “Broadband tunability of polarization-insensitive absorber based on frequency selective surface,” Sci. Rep. 6(1), 23081 (2016).
[Crossref] [PubMed]

Chenjie, J.

J. Chenjie, L. Diao, B. Yang, R. Zhaoyu, and B. Jintao, “Wideband tunable graphene-based passively Q-switched Tm:YAP laser,” Laser Phys. 25(4), 045802 (2015).
[Crossref]

Diao, L.

J. Chenjie, L. Diao, B. Yang, R. Zhaoyu, and B. Jintao, “Wideband tunable graphene-based passively Q-switched Tm:YAP laser,” Laser Phys. 25(4), 045802 (2015).
[Crossref]

Ding, W.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Fardoost, A.

A. Fardoost, F. G. Vanani, A. a. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Farhat, M.

Feng, R.

Feng, Y.

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gajic, R.

B. Vasic and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 207403 (2013).
[Crossref]

Geim, A. K.

A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, W.

Guo, Y.

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-broadband terahertz absorbers based on 4×4 cascaded metal-dielectric pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Han, T.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, S.

S. He and T. Chen, “Broadband THz Absorbers With Graphene-Based Anisotropic Metamaterial Films,” IEEE Trans. THz Sci. Technol. 3(6), 757–763 (2013).

Hong, J.-S.

H. Xiong, J.-S. Hong, C.-M. Luo, and L.-L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

Hu, F.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 5101 (2013).
[Crossref]

Huang, W.-Q.

Huang, Y.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, J.

H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, “Broadband tunability of polarization-insensitive absorber based on frequency selective surface,” Sci. Rep. 6(1), 23081 (2016).
[Crossref] [PubMed]

Jiang, T.

Jiang, Y. N.

H. Xiong, M. C. Tang, M. Li, D. Li, and Y. N. Jiang, “Equivalent circuit method analysis of graphene-metamaterial (GM) absorber,” Plasmonics, in press (2017).

Jiang, Y.-N.

H. Xiong, Y.-N. Jiang, C. Yang, and X.-P. Zeng, “Frequency-tunable terahertz absorber with wire-based metamaterial and graphene,” J. Phys. D Appl. Phys. 51(1), 015102 (2018).
[Crossref]

Jintao, B.

J. Chenjie, L. Diao, B. Yang, R. Zhaoyu, and B. Jintao, “Wideband tunable graphene-based passively Q-switched Tm:YAP laser,” Laser Phys. 25(4), 045802 (2015).
[Crossref]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Kong, P.

H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, “Broadband tunability of polarization-insensitive absorber based on frequency selective surface,” Sci. Rep. 6(1), 23081 (2016).
[Crossref] [PubMed]

Lavrinenko, A. V.

Lederer, F.

Li, D.

H. Xiong, M. C. Tang, M. Li, D. Li, and Y. N. Jiang, “Equivalent circuit method analysis of graphene-metamaterial (GM) absorber,” Plasmonics, in press (2017).

Li, J.

Li, M.

H. Xiong, M. C. Tang, M. Li, D. Li, and Y. N. Jiang, “Equivalent circuit method analysis of graphene-metamaterial (GM) absorber,” Plasmonics, in press (2017).

Li, X.-F.

Li, Y.

Y. Zhang, Y. Li, Y. Cao, Y. Liu, and H. Zhang, “Graphene induced tunable and polarization-insensitive broadband metamaterial absorber,” Opt. Commun. 382, 281–287 (2017).
[Crossref]

Li, Z.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 5101 (2013).
[Crossref]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Liu, L.

Liu, Y.

Y. Zhang, Y. Li, Y. Cao, Y. Liu, and H. Zhang, “Graphene induced tunable and polarization-insensitive broadband metamaterial absorber,” Opt. Commun. 382, 281–287 (2017).
[Crossref]

W. Guo, Y. Liu, and T. Han, “Ultra-broadband infrared metasurface absorber,” Opt. Express 24(18), 20586–20592 (2016).
[Crossref] [PubMed]

Luo, B.

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-broadband terahertz absorbers based on 4×4 cascaded metal-dielectric pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Luo, C.-M.

H. Xiong, J.-S. Hong, C.-M. Luo, and L.-L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

Luo, X.

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-broadband terahertz absorbers based on 4×4 cascaded metal-dielectric pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Miao, L.

H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, “Broadband tunability of polarization-insensitive absorber based on frequency selective surface,” Sci. Rep. 6(1), 23081 (2016).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nie, K.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 5101 (2013).
[Crossref]

Niu, J.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 5101 (2013).
[Crossref]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Padilla, W. J.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Pan, W.

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-broadband terahertz absorbers based on 4×4 cascaded metal-dielectric pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Pang, Y. Q.

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 1127 (2011).
[Crossref]

Peng, Z.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 5101 (2013).
[Crossref]

Perruisseau-Carrier, J.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Premaratne, M.

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Qian, Y.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 5101 (2013).
[Crossref]

Qiu, J.

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Rockstuhl, C.

Rukhlenko, I. D.

Safian, R.

A. Fardoost, F. G. Vanani, A. a. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Si, L.-M.

Sonkusale, S.

W. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tang, M. C.

H. Xiong, M. C. Tang, M. Li, D. Li, and Y. N. Jiang, “Equivalent circuit method analysis of graphene-metamaterial (GM) absorber,” Plasmonics, in press (2017).

Vanani, F. G.

A. Fardoost, F. G. Vanani, A. a. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

Vasic, B.

B. Vasic and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 207403 (2013).
[Crossref]

Wang, B.-X.

Wang, G.-Z.

Wang, H.

H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, “Broadband tunability of polarization-insensitive absorber based on frequency selective surface,” Sci. Rep. 6(1), 23081 (2016).
[Crossref] [PubMed]

Wang, J.

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 1127 (2011).
[Crossref]

Wang, L.-L.

Wen, G.

Wu, J.

J. Wu, “Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency,” J. Phys. D Appl. Phys. 49(21), 215108 (2016).
[Crossref]

Xiong, H.

H. Xiong, Y.-N. Jiang, C. Yang, and X.-P. Zeng, “Frequency-tunable terahertz absorber with wire-based metamaterial and graphene,” J. Phys. D Appl. Phys. 51(1), 015102 (2018).
[Crossref]

H. Xiong, J.-S. Hong, C.-M. Luo, and L.-L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

H. Xiong, M. C. Tang, M. Li, D. Li, and Y. N. Jiang, “Equivalent circuit method analysis of graphene-metamaterial (GM) absorber,” Plasmonics, in press (2017).

Xiong, X.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 5101 (2013).
[Crossref]

Xu, W.

W. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

Yan, L.

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-broadband terahertz absorbers based on 4×4 cascaded metal-dielectric pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Yang, B.

J. Chenjie, L. Diao, B. Yang, R. Zhaoyu, and B. Jintao, “Wideband tunable graphene-based passively Q-switched Tm:YAP laser,” Laser Phys. 25(4), 045802 (2015).
[Crossref]

Yang, C.

H. Xiong, Y.-N. Jiang, C. Yang, and X.-P. Zeng, “Frequency-tunable terahertz absorber with wire-based metamaterial and graphene,” J. Phys. D Appl. Phys. 51(1), 015102 (2018).
[Crossref]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Yu, X.

H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, “Broadband tunability of polarization-insensitive absorber based on frequency selective surface,” Sci. Rep. 6(1), 23081 (2016).
[Crossref] [PubMed]

Zeng, X.-P.

H. Xiong, Y.-N. Jiang, C. Yang, and X.-P. Zeng, “Frequency-tunable terahertz absorber with wire-based metamaterial and graphene,” J. Phys. D Appl. Phys. 51(1), 015102 (2018).
[Crossref]

Zhai, X.

Zhang, H.

Y. Zhang, Y. Li, Y. Cao, Y. Liu, and H. Zhang, “Graphene induced tunable and polarization-insensitive broadband metamaterial absorber,” Opt. Commun. 382, 281–287 (2017).
[Crossref]

Zhang, W.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 5101 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Li, Y. Cao, Y. Liu, and H. Zhang, “Graphene induced tunable and polarization-insensitive broadband metamaterial absorber,” Opt. Commun. 382, 281–287 (2017).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, J.

Zhaoyu, R.

J. Chenjie, L. Diao, B. Yang, R. Zhaoyu, and B. Jintao, “Wideband tunable graphene-based passively Q-switched Tm:YAP laser,” Laser Phys. 25(4), 045802 (2015).
[Crossref]

Zhong, L.-L.

H. Xiong, J.-S. Hong, C.-M. Luo, and L.-L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

Zhou, Y. J.

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 1127 (2011).
[Crossref]

Zhu, B.

Zhu, W.

Appl. Phys. Lett. (3)

W. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

B. Vasic and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 207403 (2013).
[Crossref]

IEEE Trans. NanoTechnol. (1)

A. Fardoost, F. G. Vanani, A. a. Amirhosseini, and R. Safian, “Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber,” IEEE Trans. NanoTechnol. 16(1), 68–74 (2017).

IEEE Trans. THz Sci. Technol. (1)

S. He and T. Chen, “Broadband THz Absorbers With Graphene-Based Anisotropic Metamaterial Films,” IEEE Trans. THz Sci. Technol. 3(6), 757–763 (2013).

J. Appl. Phys. (2)

Y. Q. Pang, Y. J. Zhou, and J. Wang, “Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers,” J. Appl. Phys. 110(2), 1127 (2011).
[Crossref]

H. Xiong, J.-S. Hong, C.-M. Luo, and L.-L. Zhong, “An ultrathin and broadband metamaterial absorber using multi-layer structures,” J. Appl. Phys. 114(6), 064109 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15(5), 5101 (2013).
[Crossref]

J. Phys. D Appl. Phys. (2)

H. Xiong, Y.-N. Jiang, C. Yang, and X.-P. Zeng, “Frequency-tunable terahertz absorber with wire-based metamaterial and graphene,” J. Phys. D Appl. Phys. 51(1), 015102 (2018).
[Crossref]

J. Wu, “Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency,” J. Phys. D Appl. Phys. 49(21), 215108 (2016).
[Crossref]

Laser Phys. (1)

J. Chenjie, L. Diao, B. Yang, R. Zhaoyu, and B. Jintao, “Wideband tunable graphene-based passively Q-switched Tm:YAP laser,” Laser Phys. 25(4), 045802 (2015).
[Crossref]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Commun. (1)

Y. Zhang, Y. Li, Y. Cao, Y. Liu, and H. Zhang, “Graphene induced tunable and polarization-insensitive broadband metamaterial absorber,” Opt. Commun. 382, 281–287 (2017).
[Crossref]

Opt. Express (7)

Phys. Rev. B (1)

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Phys. Rev. Lett. (1)

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Plasmonics (1)

Y. Guo, L. Yan, W. Pan, B. Luo, and X. Luo, “Ultra-broadband terahertz absorbers based on 4×4 cascaded metal-dielectric pairs,” Plasmonics 9(4), 951–957 (2014).
[Crossref]

Sci. Rep. (1)

H. Wang, P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, “Broadband tunability of polarization-insensitive absorber based on frequency selective surface,” Sci. Rep. 6(1), 23081 (2016).
[Crossref] [PubMed]

Science (2)

A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Other (1)

H. Xiong, M. C. Tang, M. Li, D. Li, and Y. N. Jiang, “Equivalent circuit method analysis of graphene-metamaterial (GM) absorber,” Plasmonics, in press (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram and geometric parameters of the proposed MGA unit cell (b) schematic of the single resonator structure and angles φ and θ for the cases of oblique incidence.
Fig. 2
Fig. 2 (a) Simulated reflection spectra as function of frequency. (b) Simulated results for the proposed absorber at different incident angles φ with θ = 0°. (c) Reflection map as a function of the frequency and incidence angle θ with azimuthal angle φ = 0°.
Fig. 3
Fig. 3 Distribution of induced surface currents on the front and the back metallic surfaces at the resonance frequencies of (a) 24.25 THz, (b)26.55 THz, (c) 28.85 THz and (d) 35.08 THz, respectively.
Fig. 4
Fig. 4 Distribution of the magnetic field at the resonance frequencies of (a) 24.25 THz, (b) 26.55 THz, (c) 28.85 THz and (d) 35.08 THz, respectively.
Fig. 5
Fig. 5 Calculated power flow distribution at the resonance frequencies of (a) (a) 24.25 THz, (b) 26.55 THz, (c) 28.85 THz and (d) 35.08 THz, respectively.
Fig. 6
Fig. 6 Reflection spectra with different Fermi level

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ= j ω+j/τ e 2 2 k B T π 2 ln[ 2cosh μ c 2 k B T ]+ e 2 4 [ G( ω 2 )+j 4ω π 0 ( G(ξ)G(ω/2) (ω) 2 4 (ξ) 2 dξ ]

Metrics