Abstract

We demonstrate for the first time functional arrayed waveguide gratings (AWGs) fabricated using the femtosecond laser direct-write technique. This fabrication technique is a mask-less alternative to lithography enabling design flexibility and rapid prototyping. It is ideal for customized small scale production for new applications. The devices were demonstrated in the visible region at 632.8 nm with a measured free spectral range (FSR) of 22.2 nm, and 1.35 nm resolution. To highlight the advantages of using a 3-dimensional fabrication technique, a 3-port photonic lantern was integrated with an AWG in a single monolithic chip. Integration of this type is not feasible with lithography-based AWG fabrication and can increase the functionality of AWGs for sensing applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Novel concept for visible and near infrared spectro-interferometry: laser-written layered arrayed waveguide gratings

G. Douglass, A. Arriola, I. Heras, G. Martin, E. Le Coarer, S. Gross, and M. J. Withford
Opt. Express 26(14) 18470-18479 (2018)

Ultrafast laser inscription of an integrated photonic lantern

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn
Opt. Express 19(6) 5698-5705 (2011)

Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy

Nick Cvetojevic, Nemanja Jovanovic, Jon Lawrence, Michael Withford, and Joss Bland-Hawthorn
Opt. Express 20(3) 2062-2072 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit, “New focussing and dispersive planar component based on an optical phased array,” Electron. Lett 24(7), 385–386 (1988).
    [Crossref]
  2. B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
    [Crossref]
  3. N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed–waveguide grating,” Opt. Lett. 36(23), 4629 (2011).
    [Crossref] [PubMed]
  4. Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43 (8B), 5795–5799 (2004).
    [Crossref]
  5. N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
    [Crossref]
  6. G. Douglass, F. Dreisow, S. Gross, S. Nolte, and M. J. Withford, “Towards femtosecond laser written arrayed waveguide gratings,” Opt. Express 23(16), 21392 (2015).
    [Crossref] [PubMed]
  7. K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4(6), 48–51 (2006).
  8. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30(19), 2545–2547 (2005).
    [Crossref] [PubMed]
  9. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
    [Crossref] [PubMed]
  10. N. Jovanovic, I. Spaleniak, S. Gross, M. Ireland, J. S. Lawrence, C. Miese, A. Fuerbach, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide,” Opt. Express 20(15),17029 (2012).
    [Crossref]
  11. J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
    [Crossref]
  12. N. Cvetojevic, N. Jovanovic, S. Gross, B. Norris, I. Spaleniak, C. Schwab, M. J. Withford, M. Ireland, P. Tuthill, O. Guyon, F. Martinache, and J. S. Lawrence, “Modal noise in an integrated photonic lantern fed diffraction-limited spectrograph,” Opt. Express 25(21), 25546–25565 (2017).
    [Crossref] [PubMed]
  13. M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
    [Crossref]
  14. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729 (1996).
    [Crossref] [PubMed]
  15. I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Light. Technol. 14(3), 423–428 (1996).
    [Crossref]
  16. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136 (2010).
    [Crossref] [PubMed]
  17. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90, 151120 (2007).
    [Crossref]
  18. N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20(3), 2062 (2012).
    [Crossref] [PubMed]
  19. X. Xia, J. Zou, T. Lang, and J. J. He, “Experimental demonstration of birefringence compensation using angled star couplers in silica-based arrayed waveguide grating,” IEEE Photonics J. 4(6), 2236–2242 (2012).
    [Crossref]
  20. T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4),363–384 (2015).
    [Crossref]
  21. G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
    [Crossref]
  22. J. Lawrence, J. Bland-Hawthorn, N. Cvetojevic, R. Haynes, and N. Jovanovic, “Miniature astronomical spectrographs using arrayed-waveguide gratings: capabilities and limitations,” Proc. SPIE 7739, 77394I (2010).
    [Crossref]
  23. S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22(1), 1036 (2014).
    [Crossref] [PubMed]

2017 (1)

2015 (2)

G. Douglass, F. Dreisow, S. Gross, S. Nolte, and M. J. Withford, “Towards femtosecond laser written arrayed waveguide gratings,” Opt. Express 23(16), 21392 (2015).
[Crossref] [PubMed]

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4),363–384 (2015).
[Crossref]

2014 (2)

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
[Crossref]

S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22(1), 1036 (2014).
[Crossref] [PubMed]

2012 (5)

N. Jovanovic, I. Spaleniak, S. Gross, M. Ireland, J. S. Lawrence, C. Miese, A. Fuerbach, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide,” Opt. Express 20(15),17029 (2012).
[Crossref]

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20(3), 2062 (2012).
[Crossref] [PubMed]

X. Xia, J. Zou, T. Lang, and J. J. He, “Experimental demonstration of birefringence compensation using angled star couplers in silica-based arrayed waveguide grating,” IEEE Photonics J. 4(6), 2236–2242 (2012).
[Crossref]

2011 (2)

2010 (3)

J. Lawrence, J. Bland-Hawthorn, N. Cvetojevic, R. Haynes, and N. Jovanovic, “Miniature astronomical spectrographs using arrayed-waveguide gratings: capabilities and limitations,” Proc. SPIE 7739, 77394I (2010).
[Crossref]

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136 (2010).
[Crossref] [PubMed]

2007 (1)

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

2006 (1)

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4(6), 48–51 (2006).

2005 (1)

2004 (1)

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43 (8B), 5795–5799 (2004).
[Crossref]

1996 (3)

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729 (1996).
[Crossref] [PubMed]

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Light. Technol. 14(3), 423–428 (1996).
[Crossref]

1988 (1)

M. K. Smit, “New focussing and dispersive planar component based on an optical phased array,” Electron. Lett 24(7), 385–386 (1988).
[Crossref]

Akca, B. I.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

Arai, A.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Baclig, A. C.

Betters, C.

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

Birks, T.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

Birks, T. A.

Bland-Hawthorn, J.

S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22(1), 1036 (2014).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20(3), 2062 (2012).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[Crossref] [PubMed]

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

J. Lawrence, J. Bland-Hawthorn, N. Cvetojevic, R. Haynes, and N. Jovanovic, “Miniature astronomical spectrographs using arrayed-waveguide gratings: capabilities and limitations,” Proc. SPIE 7739, 77394I (2010).
[Crossref]

S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30(19), 2545–2547 (2005).
[Crossref] [PubMed]

Bovatsek, J.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Bricchi, E.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Caccavale, F.

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Light. Technol. 14(3), 423–428 (1996).
[Crossref]

Campbell, S.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

Caspers, P. J.

Choo-Smith, L. P.

Corrielli, G.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
[Crossref]

Crespi, A.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
[Crossref]

Cvetojevic, N.

N. Cvetojevic, N. Jovanovic, S. Gross, B. Norris, I. Spaleniak, C. Schwab, M. J. Withford, M. Ireland, P. Tuthill, O. Guyon, F. Martinache, and J. S. Lawrence, “Modal noise in an integrated photonic lantern fed diffraction-limited spectrograph,” Opt. Express 25(21), 25546–25565 (2017).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20(3), 2062 (2012).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

J. Lawrence, J. Bland-Hawthorn, N. Cvetojevic, R. Haynes, and N. Jovanovic, “Miniature astronomical spectrographs using arrayed-waveguide gratings: capabilities and limitations,” Proc. SPIE 7739, 77394I (2010).
[Crossref]

Davis, K. M.

de Ridder, R. M.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed–waveguide grating,” Opt. Lett. 36(23), 4629 (2011).
[Crossref] [PubMed]

Douglass, G.

Dreisow, F.

Driessen, A.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed–waveguide grating,” Opt. Lett. 36(23), 4629 (2011).
[Crossref] [PubMed]

Ellis, S. C.

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

Englund, M.

Ercan, B.

Fontaine, N. K.

Fuerbach, A.

Geremia, R.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
[Crossref]

Gräfe, M.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4),363–384 (2015).
[Crossref]

Gross, S.

Guyon, O.

Haynes, R.

J. Lawrence, J. Bland-Hawthorn, N. Cvetojevic, R. Haynes, and N. Jovanovic, “Miniature astronomical spectrographs using arrayed-waveguide gratings: capabilities and limitations,” Proc. SPIE 7739, 77394I (2010).
[Crossref]

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

He, J. J.

X. Xia, J. Zou, T. Lang, and J. J. He, “Experimental demonstration of birefringence compensation using angled star couplers in silica-based arrayed waveguide grating,” IEEE Photonics J. 4(6), 2236–2242 (2012).
[Crossref]

Heilmann, R.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4),363–384 (2015).
[Crossref]

Hida, Y.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4(6), 48–51 (2006).

Hirao, K.

Inoue, Y.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4(6), 48–51 (2006).

Ireland, M.

Ismail, N.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed–waveguide grating,” Opt. Lett. 36(23), 4629 (2011).
[Crossref] [PubMed]

Jovanovic, N.

N. Cvetojevic, N. Jovanovic, S. Gross, B. Norris, I. Spaleniak, C. Schwab, M. J. Withford, M. Ireland, P. Tuthill, O. Guyon, F. Martinache, and J. S. Lawrence, “Modal noise in an integrated photonic lantern fed diffraction-limited spectrograph,” Opt. Express 25(21), 25546–25565 (2017).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20(3), 2062 (2012).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

N. Jovanovic, I. Spaleniak, S. Gross, M. Ireland, J. S. Lawrence, C. Miese, A. Fuerbach, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide,” Opt. Express 20(15),17029 (2012).
[Crossref]

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

J. Lawrence, J. Bland-Hawthorn, N. Cvetojevic, R. Haynes, and N. Jovanovic, “Miniature astronomical spectrographs using arrayed-waveguide gratings: capabilities and limitations,” Proc. SPIE 7739, 77394I (2010).
[Crossref]

Kalkman, J.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

Kamiya, T.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43 (8B), 5795–5799 (2004).
[Crossref]

Kar, A. K.

Kazansky, P. G.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Kodate, K.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43 (8B), 5795–5799 (2004).
[Crossref]

Komai, Y.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43 (8B), 5795–5799 (2004).
[Crossref]

Lang, T.

X. Xia, J. Zou, T. Lang, and J. J. He, “Experimental demonstration of birefringence compensation using angled star couplers in silica-based arrayed waveguide grating,” IEEE Photonics J. 4(6), 2236–2242 (2012).
[Crossref]

Lawrence, J.

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20(3), 2062 (2012).
[Crossref] [PubMed]

J. Lawrence, J. Bland-Hawthorn, N. Cvetojevic, R. Haynes, and N. Jovanovic, “Miniature astronomical spectrographs using arrayed-waveguide gratings: capabilities and limitations,” Proc. SPIE 7739, 77394I (2010).
[Crossref]

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

Lawrence, J. S.

Leon-Saval, S.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

Leon-Saval, S. G.

Mansour, I.

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Light. Technol. 14(3), 423–428 (1996).
[Crossref]

Martinache, F.

Mataloni, P.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
[Crossref]

Meany, T.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4),363–384 (2015).
[Crossref]

Miese, C.

Miura, K.

Nagano, H.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43 (8B), 5795–5799 (2004).
[Crossref]

Nguyen, V. D.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

Nolte, S.

Norris, B.

Okamoto, K.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4(6), 48–51 (2006).

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43 (8B), 5795–5799 (2004).
[Crossref]

Osellame, R.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
[Crossref]

Perez-Leija, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4),363–384 (2015).
[Crossref]

Pollnau, M.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed–waveguide grating,” Opt. Lett. 36(23), 4629 (2011).
[Crossref] [PubMed]

Pope, B.

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

Puppels, G. J.

Ramponi, R.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
[Crossref]

Robertson, G.

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

Ryf, R.

Sakakura, M.

Salazar-Gil, J. R.

Sansoni, L.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
[Crossref]

Santinelli, A.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
[Crossref]

Sawano, T.

Schwab, C.

Sciarrino, F.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
[Crossref]

Sengo, G.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

Shibata, T.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4(6), 48–51 (2006).

Shimotsuma, Y.

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136 (2010).
[Crossref] [PubMed]

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Smit, M. K.

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

M. K. Smit, “New focussing and dispersive planar component based on an optical phased array,” Electron. Lett 24(7), 385–386 (1988).
[Crossref]

Spaleniak, I.

Steel, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4),363–384 (2015).
[Crossref]

Sugimoto, N.

Sun, F.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

Suzuki, K.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4(6), 48–51 (2006).

Szameit, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4),363–384 (2015).
[Crossref]

Takahashi, H.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4(6), 48–51 (2006).

Thomson, R. R.

Tuthill, P.

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

van Leeuwen, T. G.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

Withford, M.

Withford, M. J.

Wörhoff, K.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed–waveguide grating,” Opt. Lett. 36(23), 4629 (2011).
[Crossref] [PubMed]

Xia, X.

X. Xia, J. Zou, T. Lang, and J. J. He, “Experimental demonstration of birefringence compensation using angled star couplers in silica-based arrayed waveguide grating,” IEEE Photonics J. 4(6), 2236–2242 (2012).
[Crossref]

Yang, W.

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Zou, J.

X. Xia, J. Zou, T. Lang, and J. J. He, “Experimental demonstration of birefringence compensation using angled star couplers in silica-based arrayed waveguide grating,” IEEE Photonics J. 4(6), 2236–2242 (2012).
[Crossref]

Appl. Phys. Lett. (1)

P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, “‘Quill’ writing with ultrashort light pulses in transparent optical materials,” Appl. Phys. Lett. 90, 151120 (2007).
[Crossref]

Astron. Astrophys. (1)

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

Electron. Lett (1)

M. K. Smit, “New focussing and dispersive planar component based on an optical phased array,” Electron. Lett 24(7), 385–386 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward Spectral-Domain Optical Coherence Tomography on a Chip,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1223 (2012).
[Crossref]

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[Crossref]

IEEE Photonics J. (1)

X. Xia, J. Zou, T. Lang, and J. J. He, “Experimental demonstration of birefringence compensation using angled star couplers in silica-based arrayed waveguide grating,” IEEE Photonics J. 4(6), 2236–2242 (2012).
[Crossref]

J. Light. Technol. (1)

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Light. Technol. 14(3), 423–428 (1996).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43 (8B), 5795–5799 (2004).
[Crossref]

Laser Photonics Rev. (1)

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4),363–384 (2015).
[Crossref]

Nat. Commun. (1)

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 1–6 (2014).
[Crossref]

NTT Tech. Rev. (1)

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4(6), 48–51 (2006).

Opt. Express (7)

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20(3), 2062 (2012).
[Crossref] [PubMed]

N. Jovanovic, I. Spaleniak, S. Gross, M. Ireland, J. S. Lawrence, C. Miese, A. Fuerbach, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide,” Opt. Express 20(15),17029 (2012).
[Crossref]

S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22(1), 1036 (2014).
[Crossref] [PubMed]

G. Douglass, F. Dreisow, S. Gross, S. Nolte, and M. J. Withford, “Towards femtosecond laser written arrayed waveguide gratings,” Opt. Express 23(16), 21392 (2015).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, S. Gross, B. Norris, I. Spaleniak, C. Schwab, M. J. Withford, M. Ireland, P. Tuthill, O. Guyon, F. Martinache, and J. S. Lawrence, “Modal noise in an integrated photonic lantern fed diffraction-limited spectrograph,” Opt. Express 25(21), 25546–25565 (2017).
[Crossref] [PubMed]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam,” Opt. Express 18(12), 12136 (2010).
[Crossref] [PubMed]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

Proc. SPIE (2)

J. Bland-Hawthorn, J. Lawrence, G. Robertson, S. Campbell, B. Pope, C. Betters, S. Leon-Saval, T. Birks, R. Haynes, N. Cvetojevic, and N. Jovanovic, “PIMMS: photonic integrated multimode microspectrograph,” Proc. SPIE 7735, 77350N (2010).
[Crossref]

J. Lawrence, J. Bland-Hawthorn, N. Cvetojevic, R. Haynes, and N. Jovanovic, “Miniature astronomical spectrographs using arrayed-waveguide gratings: capabilities and limitations,” Proc. SPIE 7739, 77394I (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of an arrayed waveguide grating with its individual components. This schematic demonstrates how the AWG’s input and outputs have been aligned perpendicular with the glass samples edges for simple post-processing and characterisation.
Fig. 2
Fig. 2 Comparison between experimental and simulated bend losses.
Fig. 3
Fig. 3 Comparison between the experimental AWG output for 632.8 nm and theoretical 640.5 nm. The theoretical diffraction envelope for a 40 and 42 μm wide taper have been added to guide the eye.
Fig. 4
Fig. 4 Emission spectra of two tunable laser diodes (638 and 642 nm) recorded with the fabricated AWG. The spectra correspond to the central diffraction order of the AWG. The 642 nm laser diode exhibits a broader emission spectrum.
Fig. 5
Fig. 5 a) 3 port photonic lantern schematic. The photonic lantern is designed to inscribe the waveguides in the following order −35, 0, +35 μm offset. This ensures that the lower waveguides are inscribed first to avoid focusing through previous modifications. b) End-on bright field image of the multimode region consisting of 3 waveguides radially separated by 2.5 μm. c) Top-down differential interference contrast microscope images of the photonic lantern AWG interface. The inputs are separated by 35 μm, and the central input is aligned with the FPZ central axis. d) End-on image of the photonic lanterns output, the 3 single-mode waveguides are spaced by 35 μm. e) Near-field output from the photonic lantern characterized at 632.8 nm.
Fig. 6
Fig. 6 Beam propagation modelling showing the designed optical output at 632.8 nm for a 3-port photonic lantern injection into an AWG, compared to the experimental optical response. The two spectral lines close together are from the input waveguides spaced at −35 and +35 μm, respectively. While the lone spectral line was injected at the centre of the AWG.

Metrics