Abstract

Quantitative phase imaging (QPI) is the name given to a set of microscopy techniques that map out variations in optical path lengths across a sample. These maps are a useful source of contrast for transparent samples such as biological cells, and because they are quantitative they can be used to measure refractive index and thickness variations. Here we detail the setup and operation of a new form of QPI microscope based on near-field ptychography. We test our system using a range of phase objects, and analyse the phase images it produces. Our results show that accurate, high quality images can be obtained from a ptychographical dataset containing as few as four near-field diffraction patterns. We also assess how our system copes with optically thick samples and samples with a wide range of spatial frequencies – two areas where conventional and Fourier ptychography struggle.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Automatic multicell identification using a compact lensless single and double random phase encoding system

Bahram Javidi, Adam Markman, and Siddharth Rawat
Appl. Opt. 57(7) B190-B196 (2018)

Illumination-related errors in limited-angle optical diffraction tomography

Arkadiusz Kuś
Appl. Opt. 56(33) 9247-9256 (2017)

Speckle reduction in quantitative phase imaging by generating spatially incoherent laser field at electroactive optical diffusers

Hamid Farrokhi, Jeeranan Boonruangkan, Byung Jae Chun, Thazhe Madam Rohith, Abhinay Mishra, Hui Ting Toh, Ho Sup Yoon, and Young-Jin Kim
Opt. Express 25(10) 10791-10800 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. G. Phillips, S. L. Jacques, and O. J. T. McCarty, “Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope,” Phys. Rev. Lett. 109, 118105 (2012).
    [Crossref] [PubMed]
  2. G. Popescu, Quantitative phase imaging of cells and tissues (McGraw-Hill, 2011).
  3. Y.-L. Lee, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15, 025403 (2013).
    [Crossref]
  4. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
    [Crossref] [PubMed]
  5. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
    [Crossref] [PubMed]
  6. L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18, 12552–12561 (2010).
    [Crossref] [PubMed]
  7. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
    [Crossref]
  8. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  9. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
    [Crossref] [PubMed]
  10. L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2, 904–911 (2015).
    [Crossref]
  11. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
    [Crossref] [PubMed]
  12. J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Reports 8, 7669 (2018).
    [Crossref]
  13. M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Reports 3, 1927 (2013).
    [Crossref]
  14. A.-L. Robisch, K. Kröger, A. Rack, and T. Salditt, “Near-field ptychography using lateral and longitudinal shifts,” New J. Phys. 17, 073033 (2015).
    [Crossref]
  15. J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Reports 3, 2369 (2013).
    [Crossref]
  16. P. Ferrand, A. Baroni, M. Allain, and V. Chamard, “Quantitative imaging of anisotropic material properties with vectorial ptychography,” Opt. Lett. 43, 763–766 (2018).
    [Crossref] [PubMed]
  17. A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,” Sci. Reports 5, 14690 (2015).
    [Crossref]
  18. R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728–19742 (2015).
    [Crossref] [PubMed]
  19. X. Huang, H. Yan, R. Harder, Y. Hwu, I. K. Robinson, and Y. S. Chu, “Optimization of overlap uniformness for ptychography,” Opt. Express 22, 12634–12644 (2014).
    [Crossref] [PubMed]
  20. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
    [Crossref] [PubMed]
  21. A. Maiden, M. Humphry, M. Sarahan, B. Kraus, and J. Rodenburg, “An annealing algorithm to correct positioning errors in ptychography,” Ultramicroscopy 120, 64–72 (2012).
    [Crossref] [PubMed]
  22. S. McDermott, P. Li, G. Williams, and A. Maiden, “Characterizing a spatial light modulator using ptychography,” Opt. Lett. 42, 371–374 (2017).
    [Crossref] [PubMed]
  23. P. Li and A. Maiden, “Optical ptychography with extended depth of field,” J. Physics: Conf. Ser. 902, 012015 (2017).
  24. L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).
    [Crossref]
  25. E. H. R. Tsai, I. Usov, A. Diaz, A. Menzel, and M. Guizar-Sicairos, “X-ray ptychography with extended depth of field,” Opt. Express 24, 29089–29108 (2016).
    [Crossref] [PubMed]
  26. A. Maiden, D. Johnson, and P. Li, “Further improvements to the ptychographical iterative engine,” Optica 4, 736–745 (2017).
    [Crossref]
  27. M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
    [Crossref]

2018 (2)

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Reports 8, 7669 (2018).
[Crossref]

P. Ferrand, A. Baroni, M. Allain, and V. Chamard, “Quantitative imaging of anisotropic material properties with vectorial ptychography,” Opt. Lett. 43, 763–766 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (1)

2015 (6)

M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
[Crossref]

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).
[Crossref]

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,” Sci. Reports 5, 14690 (2015).
[Crossref]

R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728–19742 (2015).
[Crossref] [PubMed]

A.-L. Robisch, K. Kröger, A. Rack, and T. Salditt, “Near-field ptychography using lateral and longitudinal shifts,” New J. Phys. 17, 073033 (2015).
[Crossref]

L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2, 904–911 (2015).
[Crossref]

2014 (2)

2013 (4)

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Reports 3, 2369 (2013).
[Crossref]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Reports 3, 1927 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Y.-L. Lee, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15, 025403 (2013).
[Crossref]

2012 (2)

K. G. Phillips, S. L. Jacques, and O. J. T. McCarty, “Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope,” Phys. Rev. Lett. 109, 118105 (2012).
[Crossref] [PubMed]

A. Maiden, M. Humphry, M. Sarahan, B. Kraus, and J. Rodenburg, “An annealing algorithm to correct positioning errors in ptychography,” Ultramicroscopy 120, 64–72 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (2)

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
[Crossref] [PubMed]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

2008 (1)

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

2004 (1)

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

Allain, M.

Barbastathis, G.

Baroni, A.

Bon, P.

Bonnin, A.

M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
[Crossref]

Bunk, O.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Chamard, V.

Chen, M.

Chen, Q.

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Reports 8, 7669 (2018).
[Crossref]

Cheng, C.-J.

Y.-L. Lee, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15, 025403 (2013).
[Crossref]

Chu, Y. S.

Clare, R.

M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
[Crossref]

Clare, R. M.

Cloetens, P.

M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
[Crossref]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Reports 3, 1927 (2013).
[Crossref]

David, C.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Diaz, A.

Dierolf, M.

R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728–19742 (2015).
[Crossref] [PubMed]

M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
[Crossref]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Reports 3, 1927 (2013).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Ding, H.

Enders, B.

M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
[Crossref]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Reports 3, 1927 (2013).
[Crossref]

Fan, Y.

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Reports 8, 7669 (2018).
[Crossref]

Faulkner, H. M. L.

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

Ferrand, P.

Gillette, M. U.

Guizar-Sicairos, M.

Harder, R.

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Huang, X.

Humphry, M.

A. Maiden, M. Humphry, M. Sarahan, B. Kraus, and J. Rodenburg, “An annealing algorithm to correct positioning errors in ptychography,” Ultramicroscopy 120, 64–72 (2012).
[Crossref] [PubMed]

Humphry, M. J.

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,” Sci. Reports 5, 14690 (2015).
[Crossref]

Hwu, Y.

Jacques, S. L.

K. G. Phillips, S. L. Jacques, and O. J. T. McCarty, “Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope,” Phys. Rev. Lett. 109, 118105 (2012).
[Crossref] [PubMed]

Johnson, D.

Kraus, B.

A. Maiden, M. Humphry, M. Sarahan, B. Kraus, and J. Rodenburg, “An annealing algorithm to correct positioning errors in ptychography,” Ultramicroscopy 120, 64–72 (2012).
[Crossref] [PubMed]

Kröger, K.

A.-L. Robisch, K. Kröger, A. Rack, and T. Salditt, “Near-field ptychography using lateral and longitudinal shifts,” New J. Phys. 17, 073033 (2015).
[Crossref]

Lee, Y.-L.

Y.-L. Lee, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15, 025403 (2013).
[Crossref]

Li, P.

Li, X.

Lin, Y.-C.

Y.-L. Lee, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15, 025403 (2013).
[Crossref]

Liu, Z.

Maiden, A.

S. McDermott, P. Li, G. Williams, and A. Maiden, “Characterizing a spatial light modulator using ptychography,” Opt. Lett. 42, 371–374 (2017).
[Crossref] [PubMed]

A. Maiden, D. Johnson, and P. Li, “Further improvements to the ptychographical iterative engine,” Optica 4, 736–745 (2017).
[Crossref]

P. Li and A. Maiden, “Optical ptychography with extended depth of field,” J. Physics: Conf. Ser. 902, 012015 (2017).

A. Maiden, M. Humphry, M. Sarahan, B. Kraus, and J. Rodenburg, “An annealing algorithm to correct positioning errors in ptychography,” Ultramicroscopy 120, 64–72 (2012).
[Crossref] [PubMed]

Maiden, A. M.

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,” Sci. Reports 5, 14690 (2015).
[Crossref]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

Marriott, P.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Reports 3, 2369 (2013).
[Crossref]

Marrison, J.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Reports 3, 2369 (2013).
[Crossref]

Maucort, G.

McCarty, O. J. T.

K. G. Phillips, S. L. Jacques, and O. J. T. McCarty, “Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope,” Phys. Rev. Lett. 109, 118105 (2012).
[Crossref] [PubMed]

McDermott, S.

Menzel, A.

E. H. R. Tsai, I. Usov, A. Diaz, A. Menzel, and M. Guizar-Sicairos, “X-ray ptychography with extended depth of field,” Opt. Express 24, 29089–29108 (2016).
[Crossref] [PubMed]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Millet, L.

Mir, M.

Monneret, S.

O’Toole, P.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Reports 3, 2369 (2013).
[Crossref]

Pfeiffer, F.

M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
[Crossref]

R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728–19742 (2015).
[Crossref] [PubMed]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Reports 3, 1927 (2013).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Phillips, K. G.

K. G. Phillips, S. L. Jacques, and O. J. T. McCarty, “Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope,” Phys. Rev. Lett. 109, 118105 (2012).
[Crossref] [PubMed]

Popescu, G.

Rack, A.

A.-L. Robisch, K. Kröger, A. Rack, and T. Salditt, “Near-field ptychography using lateral and longitudinal shifts,” New J. Phys. 17, 073033 (2015).
[Crossref]

Ramchandran, K.

Räty, L.

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Reports 3, 2369 (2013).
[Crossref]

Robinson, I. K.

Robisch, A.-L.

A.-L. Robisch, K. Kröger, A. Rack, and T. Salditt, “Near-field ptychography using lateral and longitudinal shifts,” New J. Phys. 17, 073033 (2015).
[Crossref]

Rodenburg, J.

A. Maiden, M. Humphry, M. Sarahan, B. Kraus, and J. Rodenburg, “An annealing algorithm to correct positioning errors in ptychography,” Ultramicroscopy 120, 64–72 (2012).
[Crossref] [PubMed]

Rodenburg, J. M.

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

Rogers, J.

Salditt, T.

A.-L. Robisch, K. Kröger, A. Rack, and T. Salditt, “Near-field ptychography using lateral and longitudinal shifts,” New J. Phys. 17, 073033 (2015).
[Crossref]

Sarahan, M.

A. Maiden, M. Humphry, M. Sarahan, B. Kraus, and J. Rodenburg, “An annealing algorithm to correct positioning errors in ptychography,” Ultramicroscopy 120, 64–72 (2012).
[Crossref] [PubMed]

Sarahan, M. C.

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,” Sci. Reports 5, 14690 (2015).
[Crossref]

Schramm, S. M.

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,” Sci. Reports 5, 14690 (2015).
[Crossref]

Stagg, M. D.

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,” Sci. Reports 5, 14690 (2015).
[Crossref]

Stockmar, M.

M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
[Crossref]

R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728–19742 (2015).
[Crossref] [PubMed]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Reports 3, 1927 (2013).
[Crossref]

Sun, J.

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Reports 8, 7669 (2018).
[Crossref]

Thibault, P.

M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
[Crossref]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Reports 3, 1927 (2013).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Tian, L.

Tsai, E. H. R.

Tu, H.-Y.

Y.-L. Lee, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15, 025403 (2013).
[Crossref]

Unarunotai, S.

Usov, I.

Waller, L.

Wang, Z.

Wattellier, B.

Williams, G.

Yan, H.

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Yeh, L.-H.

Zanette, I.

R. M. Clare, M. Stockmar, M. Dierolf, I. Zanette, and F. Pfeiffer, “Characterization of near-field ptychography,” Opt. Express 23, 19728–19742 (2015).
[Crossref] [PubMed]

M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
[Crossref]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Reports 3, 1927 (2013).
[Crossref]

Zhang, J.

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Reports 8, 7669 (2018).
[Crossref]

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Zhong, J.

Zuo, C.

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Reports 8, 7669 (2018).
[Crossref]

Appl. Phys. Lett. (1)

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

Biomed. Opt. Express (1)

J. Opt. (1)

Y.-L. Lee, Y.-C. Lin, H.-Y. Tu, and C.-J. Cheng, “Phase measurement accuracy in digital holographic microscopy using a wavelength-stabilized laser diode,” J. Opt. 15, 025403 (2013).
[Crossref]

J. Physics: Conf. Ser. (1)

P. Li and A. Maiden, “Optical ptychography with extended depth of field,” J. Physics: Conf. Ser. 902, 012015 (2017).

Nat. Photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

New J. Phys. (1)

A.-L. Robisch, K. Kröger, A. Rack, and T. Salditt, “Near-field ptychography using lateral and longitudinal shifts,” New J. Phys. 17, 073033 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Optica (3)

Phys. Rev. Appl. (1)

M. Stockmar, I. Zanette, M. Dierolf, B. Enders, R. Clare, F. Pfeiffer, P. Cloetens, A. Bonnin, and P. Thibault, “X-Ray near-field ptychography for optically thick specimens,” Phys. Rev. Appl. 3, 014005 (2015).
[Crossref]

Phys. Rev. Lett. (1)

K. G. Phillips, S. L. Jacques, and O. J. T. McCarty, “Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope,” Phys. Rev. Lett. 109, 118105 (2012).
[Crossref] [PubMed]

Sci. Reports (4)

J. Marrison, L. Räty, P. Marriott, and P. O’Toole, “Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information,” Sci. Reports 3, 2369 (2013).
[Crossref]

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, “High-speed Fourier ptychographic microscopy based on programmable annular illuminations,” Sci. Reports 8, 7669 (2018).
[Crossref]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Reports 3, 1927 (2013).
[Crossref]

A. M. Maiden, M. C. Sarahan, M. D. Stagg, S. M. Schramm, and M. J. Humphry, “Quantitative electron phase imaging with high sensitivity and an unlimited field of view,” Sci. Reports 5, 14690 (2015).
[Crossref]

Science (1)

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning X-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref] [PubMed]

Ultramicroscopy (2)

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

A. Maiden, M. Humphry, M. Sarahan, B. Kraus, and J. Rodenburg, “An annealing algorithm to correct positioning errors in ptychography,” Ultramicroscopy 120, 64–72 (2012).
[Crossref] [PubMed]

Other (1)

G. Popescu, Quantitative phase imaging of cells and tissues (McGraw-Hill, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The experimental setup of our near-field ptychographic microscope. An expanded 675nm laser beam illuminates the sample, which is mounted on a mechanical x–y stage and moves independently to the rest of the components. A weak diffuser of transparent adhesive tape is placed in the image plane of a standard optical microscope and a CCD placed 5cm downstream captures the resulting near-field diffraction patterns. A secondary CCD aids sample focussing.
Fig. 2
Fig. 2 (a) An exemplar diffraction pattern observed using our system when a sample of red blood cells was mounted in the microscope. (b) A typical pseudo-random spiral pattern of x/y stage positions used in the collection of ptychographic data. Data is collected starting in the centre and moving out following the dotted line, the four red positions represent the minimum data collection needed to realise reconstructed images of reasonable quality.
Fig. 3
Fig. 3 Phase reconstructions of frog’s red blood cells. For each subfigure (a), (c–g), the image on the left is the full field-of-view (Scale bar = 50μm), and the image on the right is the zoomed-in portion indicated by the boxes (Scale bar = 20μm). (h) shows cross-sections through a single red blood cell, taken along the lines indicated in each of subfigures (a), (c–g).
Fig. 4
Fig. 4 The same frog’s red blood cells from Fig. 3, using an objective lens with 4× magnification. 10 diffraction patterns, captured in 1s, were used to obtain this image. (Scale bar = 200μm).
Fig. 5
Fig. 5 210μm diameter glass microspheres suspended in index matching oil. This image was reconstructed from 100 diffraction patterns, captured with a 20× magnification, 0.4NA objective lens. (Scale bar = 50μm).
Fig. 6
Fig. 6 (a) A quantitative phase reconstruction of a singlet lens, focal length 50mm. (b) A comparison of the expected profile of the lens with the unwrapped reconstruction using near-field ptychography. The blue line is the radial average of the height change across the lens and the blue shaded surrounded is the radial standard deviation. The orange line is the model for the lens, based on its focal length.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ψ i ( x , y ) = p ( x , y ) s ( x M x i , y M y i ) ,
A z { ψ ( x , y ) } = 1 { { ψ ( x , y ) } × exp [ 2 i π z ( λ 2 u 2 v 2 ) 1 / 2 ] } ,
s ( x M x i , y M y i ) = s ( x M x i , y M y i ) + α p * ( x , y ) | p ( x , y ) | max 2 ( ψ i ( x , y ) ψ i ( x , y ) ) , p ( x , y ) = p ( x , y ) + β s * ( x M x i , y M y i ) | s ( x , y ) | max 2 ( ψ i ( x , y ) ψ i ( x , y ) ) ,

Metrics