Abstract

For the accommodation of mobile, business, and residential service in the same optical distribution network, we experimentally demonstrate 50 Gb/s (25 Gb/s × 2 wavelengths) wireless and wired service converged optical access network with 64-way power split over 20 km of single mode fiber in 1300 nm band. Applying simple Reed-Solomon based forward-error-correction and a cost-effective avalanche photodiode receiver without using an optical amplifier realize the 64-way power split. Accommodating dynamic bandwidth allocation and open interface control with OpenDaylight (ODL) controller via network configuration protocol (NETCONF) interface are demonstrated. Furthermore, error-free packet transmission of 50 Gb/s with low latency and guaranteed bandwidth are successfully demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Remote Repeater-Based EPON With MAC Forwarding for Long-Reach and High-Split-Ratio Passive Optical Networks

Chien Aun Chan, Manik Attygalle, and Ampalavanapillai Nirmalathas
J. Opt. Commun. Netw. 2(1) 28-37 (2010)

OLT Energy Savings via Software-Defined Dynamic Resource Provisioning in TWDM-PONs

Andrew Fernando Pakpahan, I-Shyan Hwang, and AliAkbar Nikoukar
J. Opt. Commun. Netw. 9(11) 1019-1029 (2017)

A Fully Distributed 10G-EPON-based Converged Fixed–Mobile Networking Transport Infrastructure for Next Generation Broadband Access

N. Madamopoulos, S. Peiris, N. Antoniades, D. Richards, B. Pathak, G. Ellinas, R. Dorsinville, and M. A. Ali
J. Opt. Commun. Netw. 4(5) 366-377 (2012)

References

  • View by:
  • |
  • |
  • |

  1. IEEE 5G and Beyond technology roadmap white paper, https://5g.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf .
  2. P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
    [Crossref]
  3. X. Liu and F. Effenberger, “Emerging optical access network technologies for 5G wireless [Invited],” J. Opt. Commun. Netw. 8(12), B70–B79 (2016).
    [Crossref]
  4. P. Chanclou, H. Suzuki, J. Wang, Y. Ma, M. R. Boldi, K. Tanaka, S. Hong, C. Rodrigues, L. A. Neto, and J. Ming, “How does passive optical network tackle radio access network evolution?” J. Opt. Commun. Netw. 9(11), 1030–1040 (2017).
    [Crossref]
  5. E. Harstead, “25G based PON technology,” in Proc. OFC (2018), paper Tu2B.5.
  6. J. Xia, Z. Li, Y. Li, T. Xu, J. Chen, Y. Song, and M. Wang, “Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON,” Opt. Commun. 410, 328–332 (2018).
    [Crossref]
  7. C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
    [Crossref]
  8. Z. Li, L. Yi, H. Ji, and W. Hu, “100-Gb/s TWDM-PON based on 10G optical devices,” Opt. Express 24(12), 12941–12948 (2016).
    [Crossref] [PubMed]
  9. H. H. Lee, K.-H. Doo, K. Kim, S.-G. Mun, S. H. Kim, and H. S. Chung, “Improved Link Budget (35 dB) of 2×25 Gb/s WDM/TDM-PON by using crosstalk-free SOA and FEC,” in Proc. OFC (2018), paper Th2A.52.
    [Crossref]
  10. Y. Luo, L. Zhang, N. Ansari, B. Gao, X. Liu, and F. Effenberger, “Wavelength channel bonding for 100 Gb/s next generation passive optical networks,” in Proc WOCC (2017), pp. 1–6.
    [Crossref]
  11. H. Naser and H. T. Mouftah, “A fast class-of-service oriented packet scheduling scheme for EPON Access networks,” IEEE Commun. Mag. 10(5), 396–398 (2006).
  12. I. T. Han, H.-S. Park, and M.-S. Han, “Enhanced class-of-service oriented packet scheduling scheme for EPON access networks,” IEICE Trans. Commun. E91-B(10), 3334–3337 (2008).
    [Crossref]

2018 (1)

J. Xia, Z. Li, Y. Li, T. Xu, J. Chen, Y. Song, and M. Wang, “Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON,” Opt. Commun. 410, 328–332 (2018).
[Crossref]

2017 (3)

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

P. Chanclou, H. Suzuki, J. Wang, Y. Ma, M. R. Boldi, K. Tanaka, S. Hong, C. Rodrigues, L. A. Neto, and J. Ming, “How does passive optical network tackle radio access network evolution?” J. Opt. Commun. Netw. 9(11), 1030–1040 (2017).
[Crossref]

2016 (2)

2008 (1)

I. T. Han, H.-S. Park, and M.-S. Han, “Enhanced class-of-service oriented packet scheduling scheme for EPON access networks,” IEICE Trans. Commun. E91-B(10), 3334–3337 (2008).
[Crossref]

2006 (1)

H. Naser and H. T. Mouftah, “A fast class-of-service oriented packet scheduling scheme for EPON Access networks,” IEEE Commun. Mag. 10(5), 396–398 (2006).

Almeroth, B.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Ansari, J.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Ansari, N.

Y. Luo, L. Zhang, N. Ansari, B. Gao, X. Liu, and F. Effenberger, “Wavelength channel bonding for 100 Gb/s next generation passive optical networks,” in Proc WOCC (2017), pp. 1–6.
[Crossref]

Ashraf, S. A.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Bae, S. H.

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Boldi, M. R.

Chanclou, P.

Chen, J.

J. Xia, Z. Li, Y. Li, T. Xu, J. Chen, Y. Song, and M. Wang, “Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON,” Opt. Commun. 410, 328–332 (2018).
[Crossref]

Effenberger, F.

X. Liu and F. Effenberger, “Emerging optical access network technologies for 5G wireless [Invited],” J. Opt. Commun. Netw. 8(12), B70–B79 (2016).
[Crossref]

Y. Luo, L. Zhang, N. Ansari, B. Gao, X. Liu, and F. Effenberger, “Wavelength channel bonding for 100 Gb/s next generation passive optical networks,” in Proc WOCC (2017), pp. 1–6.
[Crossref]

Elste, T.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Fettweis, G.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Gao, B.

Y. Luo, L. Zhang, N. Ansari, B. Gao, X. Liu, and F. Effenberger, “Wavelength channel bonding for 100 Gb/s next generation passive optical networks,” in Proc WOCC (2017), pp. 1–6.
[Crossref]

Han, I. T.

I. T. Han, H.-S. Park, and M.-S. Han, “Enhanced class-of-service oriented packet scheduling scheme for EPON access networks,” IEICE Trans. Commun. E91-B(10), 3334–3337 (2008).
[Crossref]

Han, M.-S.

I. T. Han, H.-S. Park, and M.-S. Han, “Enhanced class-of-service oriented packet scheduling scheme for EPON access networks,” IEICE Trans. Commun. E91-B(10), 3334–3337 (2008).
[Crossref]

Harstead, E.

E. Harstead, “25G based PON technology,” in Proc. OFC (2018), paper Tu2B.5.

Hong, S.

Hu, W.

Ji, H.

Kim, H.

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Klessig, H.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Li, Y.

J. Xia, Z. Li, Y. Li, T. Xu, J. Chen, Y. Song, and M. Wang, “Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON,” Opt. Commun. 410, 328–332 (2018).
[Crossref]

Li, Z.

J. Xia, Z. Li, Y. Li, T. Xu, J. Chen, Y. Song, and M. Wang, “Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON,” Opt. Commun. 410, 328–332 (2018).
[Crossref]

Z. Li, L. Yi, H. Ji, and W. Hu, “100-Gb/s TWDM-PON based on 10G optical devices,” Opt. Express 24(12), 12941–12948 (2016).
[Crossref] [PubMed]

Liu, X.

X. Liu and F. Effenberger, “Emerging optical access network technologies for 5G wireless [Invited],” J. Opt. Commun. Netw. 8(12), B70–B79 (2016).
[Crossref]

Y. Luo, L. Zhang, N. Ansari, B. Gao, X. Liu, and F. Effenberger, “Wavelength channel bonding for 100 Gb/s next generation passive optical networks,” in Proc WOCC (2017), pp. 1–6.
[Crossref]

Luo, Y.

Y. Luo, L. Zhang, N. Ansari, B. Gao, X. Liu, and F. Effenberger, “Wavelength channel bonding for 100 Gb/s next generation passive optical networks,” in Proc WOCC (2017), pp. 1–6.
[Crossref]

Ma, Y.

Matthé, M.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Ming, J.

Mitschele-Thiel, A.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Mouftah, H. T.

H. Naser and H. T. Mouftah, “A fast class-of-service oriented packet scheduling scheme for EPON Access networks,” IEEE Commun. Mag. 10(5), 396–398 (2006).

Muller, M.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Naser, H.

H. Naser and H. T. Mouftah, “A fast class-of-service oriented packet scheduling scheme for EPON Access networks,” IEEE Commun. Mag. 10(5), 396–398 (2006).

Neto, L. A.

Park, H.-S.

I. T. Han, H.-S. Park, and M.-S. Han, “Enhanced class-of-service oriented packet scheduling scheme for EPON access networks,” IEICE Trans. Commun. E91-B(10), 3334–3337 (2008).
[Crossref]

Puschmann, A.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Riedel, I.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Rodrigues, C.

Schulz, P.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Simsek, M.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Song, Y.

J. Xia, Z. Li, Y. Li, T. Xu, J. Chen, Y. Song, and M. Wang, “Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON,” Opt. Commun. 410, 328–332 (2018).
[Crossref]

Sun, C.

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

Suzuki, H.

Tanaka, K.

Voigt, J.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Wang, J.

Wang, M.

J. Xia, Z. Li, Y. Li, T. Xu, J. Chen, Y. Song, and M. Wang, “Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON,” Opt. Commun. 410, 328–332 (2018).
[Crossref]

Windisch, M.

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

Xia, J.

J. Xia, Z. Li, Y. Li, T. Xu, J. Chen, Y. Song, and M. Wang, “Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON,” Opt. Commun. 410, 328–332 (2018).
[Crossref]

Xu, T.

J. Xia, Z. Li, Y. Li, T. Xu, J. Chen, Y. Song, and M. Wang, “Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON,” Opt. Commun. 410, 328–332 (2018).
[Crossref]

Yi, L.

Zhang, L.

Y. Luo, L. Zhang, N. Ansari, B. Gao, X. Liu, and F. Effenberger, “Wavelength channel bonding for 100 Gb/s next generation passive optical networks,” in Proc WOCC (2017), pp. 1–6.
[Crossref]

IEEE Commun. Mag. (2)

P. Schulz, M. Matthé, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture,” IEEE Commun. Mag. 55(2), 70–78 (2017).
[Crossref]

H. Naser and H. T. Mouftah, “A fast class-of-service oriented packet scheduling scheme for EPON Access networks,” IEEE Commun. Mag. 10(5), 396–398 (2006).

IEEE Photonics Technol. Lett. (1)

C. Sun, S. H. Bae, and H. Kim, “Transmission of 28-Gb/s duobinary and PAM-4 signals using DML for optical access network,” IEEE Photonics Technol. Lett. 29(1), 130–133 (2017).
[Crossref]

IEICE Trans. Commun. (1)

I. T. Han, H.-S. Park, and M.-S. Han, “Enhanced class-of-service oriented packet scheduling scheme for EPON access networks,” IEICE Trans. Commun. E91-B(10), 3334–3337 (2008).
[Crossref]

J. Opt. Commun. Netw. (2)

Opt. Commun. (1)

J. Xia, Z. Li, Y. Li, T. Xu, J. Chen, Y. Song, and M. Wang, “Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON,” Opt. Commun. 410, 328–332 (2018).
[Crossref]

Opt. Express (1)

Other (4)

H. H. Lee, K.-H. Doo, K. Kim, S.-G. Mun, S. H. Kim, and H. S. Chung, “Improved Link Budget (35 dB) of 2×25 Gb/s WDM/TDM-PON by using crosstalk-free SOA and FEC,” in Proc. OFC (2018), paper Th2A.52.
[Crossref]

Y. Luo, L. Zhang, N. Ansari, B. Gao, X. Liu, and F. Effenberger, “Wavelength channel bonding for 100 Gb/s next generation passive optical networks,” in Proc WOCC (2017), pp. 1–6.
[Crossref]

E. Harstead, “25G based PON technology,” in Proc. OFC (2018), paper Tu2B.5.

IEEE 5G and Beyond technology roadmap white paper, https://5g.ieee.org/images/files/pdf/ieee-5g-roadmap-white-paper.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experiments setup of real-time SDN controlled 2 × 25 Gb/s WDM/TDM-PON demonstration (i) OLT linecard (ii) PON transceiver.
Fig. 2
Fig. 2 Control of DBA for each ONU through SDN (a) sequence diagram of QoS control (b) part of YANG model for bandwidth control (c) GUI of SDN controller and captured upstream traffic.
Fig. 3
Fig. 3 TO-46 packaged 25 Gb/s APD ROSA (a) top view (b) measured coupling efficiency according to X- and Y-axial displacements between APD and focusing lens.
Fig. 4
Fig. 4 Performances of optical links (a) BER performance (b) Eye diagrams (i) downstream: back-to-back (ii) downstream: after 20 km transmission (iii) upstream measured at the OLT (c) BER performances with FEC or without FEC.
Fig. 5
Fig. 5 A conceptual scheme of modified fast class-of-service oriented packet scheduling.
Fig. 6
Fig. 6 Performances of upstream access control with four different service classes (a) measured throughput (a-i) SBA control (a-ii) DBA control (b) measured latency (b-i) SBA control (b-ii) DBA control.

Tables (1)

Tables Icon

Table 1 Assignment of services types and granted bandwidth at each ONU for the test of QoS scenarios.

Metrics