Abstract

A compact, dual-stage, collinear-cascaded sum-frequency mixing configuration is presented for generating 193 nm sources. Due to the less-introduced, deep-ultraviolet optical components, the system is less prone to damage. In our proof-of-concept experiments, a 1030 nm laser and a 1553 nm laser synchronized to each other were used as drivers and an average power of ~0.7 W was obtained. For comparison, the noncollinear configuration gave an average power of 0.77 W. The difference of 0.07 W is attributed to the spatial walk-off inside the cesium lithium borate (CLBO) crystal, confirmed by indirect visualization. A possible way to overcome the small gap of 0.07 W is proposed for future work.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10

Jun Sakuma, Yuichi Asakawa, Tomohiro Imahoko, and Minoru Obara
Opt. Lett. 29(10) 1096-1098 (2004)

1 W solid-state 193 nm coherent light by sum-frequency generation

Hongwen Xuan, Chen Qu, Zhigang Zhao, Shinji Ito, and Yohei Kobayashi
Opt. Express 25(23) 29172-29179 (2017)

300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers

Hongwen Xuan, Zhigang Zhao, Hironori Igarashi, Shinji Ito, Kouji Kakizaki, and Yohei Kobayashi
Opt. Express 23(8) 10564-10572 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Sohn, R. Quintanilha, B. M. Barnes, and R. M. Silver, “193 nm angle-resolved scatter field microscope for semiconductor metrology,” Proc. SPIE 7405, 74050R (2009).
    [Crossref]
  2. R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26(2), 730–743 (2018).
    [Crossref] [PubMed]
  3. L. S. Wang, X. Li, and H. F. Zhang, “Probing the electronic structure of iron clusters using photoelectron spectroscopy,” Chem. Phys. 262(1), 53–63 (2000).
    [Crossref]
  4. S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).
  5. J. Fujimoto, M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, T. Matsunaga, and H. Mizoguchi, “193nm high power lasers for the wide bandgap material processing,” Proc. SPIE 10097, 100970T (2017).
    [Crossref]
  6. H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).
  7. T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17(10), 8696–8703 (2009).
    [Crossref] [PubMed]
  8. M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103(5), 051114 (2013).
    [Crossref]
  9. I. Horn, D. Gunther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta B At. Spectrosc. 58(10), 1837–1846 (2003).
    [Crossref]
  10. H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CTuT4.
  11. H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers,” Opt. Express 23(8), 10564–10572 (2015).
    [Crossref] [PubMed]
  12. P. Koch, J. Bartschke, and J. A. L’huillier, “All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd:YVO4 laser with excellent beam quality,” Opt. Express 22(11), 13648–13658 (2014).
    [Crossref] [PubMed]
  13. J. Sakuma, K. Moriizumi, and H. Kusunose, “True CW 193.4-nm light generation based on frequency conversion of fiber amplifiers,” Opt. Express 19(16), 15020–15025 (2011).
    [Crossref] [PubMed]
  14. N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, Z. G. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “200-mW-average power ultraviolet generation at 0.193 microm in K2Al2B2O7,” Appl. Opt. 42(15), 2716–2719 (2003).
    [Crossref] [PubMed]
  15. J. Ringling, O. Kittelmann, F. Seifert, F. Noack, G. Korn, and J. A. Squier, “Femtosecond solid state light sources tunable around 193 nm,” Proc. SPIE 2116, 56–65 (1994).
    [Crossref]
  16. A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Proc. SPIE 6520, 65202Z (2007).
    [Crossref]
  17. H. Xuan, C. Qu, Z. Zhao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29179 (2017).
    [Crossref]
  18. H. Chen, Q. Liu, P. Yan, and M. Gong, “High-power 355 nm ultraviolet lasers operating at ultrahigh repetition rate,” Laser Phys. Lett. 10(2), 025401 (2013).
    [Crossref]
  19. D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3-6), 393–398 (2002).
    [Crossref]
  20. I. A. Begishev, J. Bromage, P. S. Datte, S. T. Yang, and J. D. Zuegel, “Record Fifth-Harmonic-Generation Efficiency Producing 211-nm Pulses Using Cesium Lithium Borate,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM3M.1.
    [Crossref]
  21. A. M. Rodin and E. Zopelis, “Optimised Configuration for Two Cascaded Double-Pass Yb:YAG Chirped Pulse Amplifier,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CA_P_7.
    [Crossref]
  22. A. V. Smith, D. J. Armstrong, and W. J. Alford, “Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals,” J. Opt. Soc. Am. B 15(1), 122–141 (1998).
    [Crossref]

2018 (2)

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

R. Kirner, A. Vetter, D. Opalevs, C. Gilfert, M. Scholz, P. Leisching, T. Scharf, W. Noell, C. Rockstuhl, and R. Voelkel, “Mask-aligner lithography using a continuous-wave diode laser frequency-quadrupled to 193 nm,” Opt. Express 26(2), 730–743 (2018).
[Crossref] [PubMed]

2017 (2)

J. Fujimoto, M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, T. Matsunaga, and H. Mizoguchi, “193nm high power lasers for the wide bandgap material processing,” Proc. SPIE 10097, 100970T (2017).
[Crossref]

H. Xuan, C. Qu, Z. Zhao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29179 (2017).
[Crossref]

2015 (2)

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers,” Opt. Express 23(8), 10564–10572 (2015).
[Crossref] [PubMed]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

2014 (1)

2013 (2)

H. Chen, Q. Liu, P. Yan, and M. Gong, “High-power 355 nm ultraviolet lasers operating at ultrahigh repetition rate,” Laser Phys. Lett. 10(2), 025401 (2013).
[Crossref]

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103(5), 051114 (2013).
[Crossref]

2011 (1)

2009 (2)

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17(10), 8696–8703 (2009).
[Crossref] [PubMed]

Y. J. Sohn, R. Quintanilha, B. M. Barnes, and R. M. Silver, “193 nm angle-resolved scatter field microscope for semiconductor metrology,” Proc. SPIE 7405, 74050R (2009).
[Crossref]

2007 (1)

A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Proc. SPIE 6520, 65202Z (2007).
[Crossref]

2003 (2)

I. Horn, D. Gunther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta B At. Spectrosc. 58(10), 1837–1846 (2003).
[Crossref]

N. Umemura, M. Ando, K. Suzuki, E. Takaoka, K. Kato, Z. G. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “200-mW-average power ultraviolet generation at 0.193 microm in K2Al2B2O7,” Appl. Opt. 42(15), 2716–2719 (2003).
[Crossref] [PubMed]

2002 (1)

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3-6), 393–398 (2002).
[Crossref]

2000 (1)

L. S. Wang, X. Li, and H. F. Zhang, “Probing the electronic structure of iron clusters using photoelectron spectroscopy,” Chem. Phys. 262(1), 53–63 (2000).
[Crossref]

1998 (1)

1994 (1)

J. Ringling, O. Kittelmann, F. Seifert, F. Noack, G. Korn, and J. A. Squier, “Femtosecond solid state light sources tunable around 193 nm,” Proc. SPIE 2116, 56–65 (1994).
[Crossref]

Adachi, S.

Alford, W. J.

Ando, M.

Arakawa, M.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Armstrong, D. J.

Barnes, B. M.

Y. J. Sohn, R. Quintanilha, B. M. Barnes, and R. M. Silver, “193 nm angle-resolved scatter field microscope for semiconductor metrology,” Proc. SPIE 7405, 74050R (2009).
[Crossref]

Bartschke, J.

Bethune, D. S.

A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Proc. SPIE 6520, 65202Z (2007).
[Crossref]

Chen, C.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103(5), 051114 (2013).
[Crossref]

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17(10), 8696–8703 (2009).
[Crossref] [PubMed]

Chen, H.

H. Chen, Q. Liu, P. Yan, and M. Gong, “High-power 355 nm ultraviolet lasers operating at ultrahigh repetition rate,” Laser Phys. Lett. 10(2), 025401 (2013).
[Crossref]

Di Teodoro, F.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3-6), 393–398 (2002).
[Crossref]

Fuchimukai, A.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Fujimoto, J.

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

J. Fujimoto, M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, T. Matsunaga, and H. Mizoguchi, “193nm high power lasers for the wide bandgap material processing,” Proc. SPIE 10097, 100970T (2017).
[Crossref]

Gilfert, C.

Gong, M.

H. Chen, Q. Liu, P. Yan, and M. Gong, “High-power 355 nm ultraviolet lasers operating at ultrahigh repetition rate,” Laser Phys. Lett. 10(2), 025401 (2013).
[Crossref]

Guillong, M.

I. Horn, D. Gunther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta B At. Spectrosc. 58(10), 1837–1846 (2003).
[Crossref]

Gunther, D.

I. Horn, D. Gunther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta B At. Spectrosc. 58(10), 1837–1846 (2003).
[Crossref]

Hinsberg, W. D.

A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Proc. SPIE 6520, 65202Z (2007).
[Crossref]

Hoffnagle, J. A.

A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Proc. SPIE 6520, 65202Z (2007).
[Crossref]

Horn, I.

I. Horn, D. Gunther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta B At. Spectrosc. 58(10), 1837–1846 (2003).
[Crossref]

Hu, Z. G.

Igarashi, H.

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers,” Opt. Express 23(8), 10564–10572 (2015).
[Crossref] [PubMed]

Ito, S.

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

H. Xuan, C. Qu, Z. Zhao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29179 (2017).
[Crossref]

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers,” Opt. Express 23(8), 10564–10572 (2015).
[Crossref] [PubMed]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Jacob, J. J.

A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Proc. SPIE 6520, 65202Z (2007).
[Crossref]

Jefferson, C. M.

A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Proc. SPIE 6520, 65202Z (2007).
[Crossref]

Kaenders, W.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103(5), 051114 (2013).
[Crossref]

Kakizaki, K.

J. Fujimoto, M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, T. Matsunaga, and H. Mizoguchi, “193nm high power lasers for the wide bandgap material processing,” Proc. SPIE 10097, 100970T (2017).
[Crossref]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers,” Opt. Express 23(8), 10564–10572 (2015).
[Crossref] [PubMed]

Kamba, Y.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Kanai, T.

Kato, K.

Kirner, R.

Kittelmann, O.

J. Ringling, O. Kittelmann, F. Seifert, F. Noack, G. Korn, and J. A. Squier, “Femtosecond solid state light sources tunable around 193 nm,” Proc. SPIE 2116, 56–65 (1994).
[Crossref]

Kliner, D. A. V.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3-6), 393–398 (2002).
[Crossref]

Kobayashi, M.

J. Fujimoto, M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, T. Matsunaga, and H. Mizoguchi, “193nm high power lasers for the wide bandgap material processing,” Proc. SPIE 10097, 100970T (2017).
[Crossref]

Kobayashi, Y.

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

H. Xuan, C. Qu, Z. Zhao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29179 (2017).
[Crossref]

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers,” Opt. Express 23(8), 10564–10572 (2015).
[Crossref] [PubMed]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Koch, P.

Koplow, J. P.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3-6), 393–398 (2002).
[Crossref]

Korn, G.

J. Ringling, O. Kittelmann, F. Seifert, F. Noack, G. Korn, and J. A. Squier, “Femtosecond solid state light sources tunable around 193 nm,” Proc. SPIE 2116, 56–65 (1994).
[Crossref]

Kusunose, H.

L’huillier, J. A.

Leisching, P.

Li, R.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103(5), 051114 (2013).
[Crossref]

Li, X.

L. S. Wang, X. Li, and H. F. Zhang, “Probing the electronic structure of iron clusters using photoelectron spectroscopy,” Chem. Phys. 262(1), 53–63 (2000).
[Crossref]

Litvin, T.

A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Proc. SPIE 6520, 65202Z (2007).
[Crossref]

Liu, Q.

H. Chen, Q. Liu, P. Yan, and M. Gong, “High-power 355 nm ultraviolet lasers operating at ultrahigh repetition rate,” Laser Phys. Lett. 10(2), 025401 (2013).
[Crossref]

Matsunaga, T.

J. Fujimoto, M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, T. Matsunaga, and H. Mizoguchi, “193nm high power lasers for the wide bandgap material processing,” Proc. SPIE 10097, 100970T (2017).
[Crossref]

Merriam, A. J.

A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Proc. SPIE 6520, 65202Z (2007).
[Crossref]

Mimura, T.

J. Fujimoto, M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, T. Matsunaga, and H. Mizoguchi, “193nm high power lasers for the wide bandgap material processing,” Proc. SPIE 10097, 100970T (2017).
[Crossref]

Miura, T.

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

Mizoguchi, H.

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

J. Fujimoto, M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, T. Matsunaga, and H. Mizoguchi, “193nm high power lasers for the wide bandgap material processing,” Proc. SPIE 10097, 100970T (2017).
[Crossref]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Moore, S. W.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3-6), 393–398 (2002).
[Crossref]

Mori, Y.

Moriizumi, K.

Noack, F.

J. Ringling, O. Kittelmann, F. Seifert, F. Noack, G. Korn, and J. A. Squier, “Femtosecond solid state light sources tunable around 193 nm,” Proc. SPIE 2116, 56–65 (1994).
[Crossref]

Noell, W.

Oizumi, H.

J. Fujimoto, M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, T. Matsunaga, and H. Mizoguchi, “193nm high power lasers for the wide bandgap material processing,” Proc. SPIE 10097, 100970T (2017).
[Crossref]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Onose, T.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Opalevs, D.

Qu, C.

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

H. Xuan, C. Qu, Z. Zhao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29179 (2017).
[Crossref]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Quintanilha, R.

Y. J. Sohn, R. Quintanilha, B. M. Barnes, and R. M. Silver, “193 nm angle-resolved scatter field microscope for semiconductor metrology,” Proc. SPIE 7405, 74050R (2009).
[Crossref]

Ringling, J.

J. Ringling, O. Kittelmann, F. Seifert, F. Noack, G. Korn, and J. A. Squier, “Femtosecond solid state light sources tunable around 193 nm,” Proc. SPIE 2116, 56–65 (1994).
[Crossref]

Rockstuhl, C.

Sakuma, J.

Sasaki, T.

Sasaki, Y.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Scharf, T.

Scholz, M.

Seifert, F.

J. Ringling, O. Kittelmann, F. Seifert, F. Noack, G. Korn, and J. A. Squier, “Femtosecond solid state light sources tunable around 193 nm,” Proc. SPIE 2116, 56–65 (1994).
[Crossref]

Silver, R. M.

Y. J. Sohn, R. Quintanilha, B. M. Barnes, and R. M. Silver, “193 nm angle-resolved scatter field microscope for semiconductor metrology,” Proc. SPIE 7405, 74050R (2009).
[Crossref]

Smith, A. V.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3-6), 393–398 (2002).
[Crossref]

A. V. Smith, D. J. Armstrong, and W. J. Alford, “Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals,” J. Opt. Soc. Am. B 15(1), 122–141 (1998).
[Crossref]

Sohn, Y. J.

Y. J. Sohn, R. Quintanilha, B. M. Barnes, and R. M. Silver, “193 nm angle-resolved scatter field microscope for semiconductor metrology,” Proc. SPIE 7405, 74050R (2009).
[Crossref]

Squier, J. A.

J. Ringling, O. Kittelmann, F. Seifert, F. Noack, G. Korn, and J. A. Squier, “Femtosecond solid state light sources tunable around 193 nm,” Proc. SPIE 2116, 56–65 (1994).
[Crossref]

Suzuki, K.

Takaoka, E.

Tamaru, Y.

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

Tamiya, M.

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Tanaka, S.

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Umemura, N.

Vetter, A.

Voelkel, R.

Wang, G.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103(5), 051114 (2013).
[Crossref]

Wang, L. S.

L. S. Wang, X. Li, and H. F. Zhang, “Probing the electronic structure of iron clusters using photoelectron spectroscopy,” Chem. Phys. 262(1), 53–63 (2000).
[Crossref]

Wang, X.

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103(5), 051114 (2013).
[Crossref]

T. Kanai, X. Wang, S. Adachi, S. Watanabe, and C. Chen, “Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device,” Opt. Express 17(10), 8696–8703 (2009).
[Crossref] [PubMed]

Watanabe, S.

Xuan, H.

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

H. Xuan, C. Qu, Z. Zhao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29179 (2017).
[Crossref]

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers,” Opt. Express 23(8), 10564–10572 (2015).
[Crossref] [PubMed]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Yan, P.

H. Chen, Q. Liu, P. Yan, and M. Gong, “High-power 355 nm ultraviolet lasers operating at ultrahigh repetition rate,” Laser Phys. Lett. 10(2), 025401 (2013).
[Crossref]

Yoshimura, M.

Zhang, H. F.

L. S. Wang, X. Li, and H. F. Zhang, “Probing the electronic structure of iron clusters using photoelectron spectroscopy,” Chem. Phys. 262(1), 53–63 (2000).
[Crossref]

Zhao, Z.

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

H. Xuan, C. Qu, Z. Zhao, S. Ito, and Y. Kobayashi, “1 W solid-state 193 nm coherent light by sum-frequency generation,” Opt. Express 25(23), 29172–29179 (2017).
[Crossref]

H. Xuan, Z. Zhao, H. Igarashi, S. Ito, K. Kakizaki, and Y. Kobayashi, “300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers,” Opt. Express 23(8), 10564–10572 (2015).
[Crossref] [PubMed]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Scholz, D. Opalevs, P. Leisching, W. Kaenders, G. Wang, X. Wang, R. Li, and C. Chen, “A bright continuous-wave laser source at 193 nm,” Appl. Phys. Lett. 103(5), 051114 (2013).
[Crossref]

Chem. Phys. (1)

L. S. Wang, X. Li, and H. F. Zhang, “Probing the electronic structure of iron clusters using photoelectron spectroscopy,” Chem. Phys. 262(1), 53–63 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

H. Chen, Q. Liu, P. Yan, and M. Gong, “High-power 355 nm ultraviolet lasers operating at ultrahigh repetition rate,” Laser Phys. Lett. 10(2), 025401 (2013).
[Crossref]

Opt. Commun. (1)

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3-6), 393–398 (2002).
[Crossref]

Opt. Express (6)

Proc. SPIE (6)

Y. J. Sohn, R. Quintanilha, B. M. Barnes, and R. M. Silver, “193 nm angle-resolved scatter field microscope for semiconductor metrology,” Proc. SPIE 7405, 74050R (2009).
[Crossref]

S. Tanaka, M. Arakawa, A. Fuchimukai, Y. Sasaki, T. Onose, Y. Kamba, H. Igarashi, C. Qu, M. Tamiya, H. Oizumi, S. Ito, K. Kakizaki, H. Xuan, Z. Zhao, Y. Kobayashi, and H. Mizoguchi, “Development of high coherence high power 193 nm laser,” Proc. SPIE 9726, 972624 (2015).

J. Fujimoto, M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, T. Matsunaga, and H. Mizoguchi, “193nm high power lasers for the wide bandgap material processing,” Proc. SPIE 10097, 100970T (2017).
[Crossref]

H. Igarashi, Z. Zhao, H. Xuan, C. Qu, S. Ito, Y. Tamaru, M. Tamiya, T. Miura, J. Fujimoto, H. Mizoguchi, and Y. Kobayashi, “Improvement of conversion efficiency of DUV light generation at 221-nm using CLBO crystal,” Proc. SPIE 10516, 1051602 (2018).

J. Ringling, O. Kittelmann, F. Seifert, F. Noack, G. Korn, and J. A. Squier, “Femtosecond solid state light sources tunable around 193 nm,” Proc. SPIE 2116, 56–65 (1994).
[Crossref]

A. J. Merriam, D. S. Bethune, J. A. Hoffnagle, W. D. Hinsberg, C. M. Jefferson, J. J. Jacob, and T. Litvin, “A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography,” Proc. SPIE 6520, 65202Z (2007).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (1)

I. Horn, D. Gunther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta B At. Spectrosc. 58(10), 1837–1846 (2003).
[Crossref]

Other (3)

H. Kawai, A. Tokuhisa, M. Doi, S. Miwa, H. Matsuura, H. Kitano, and S. Owa, “UV light source using fiber amplifier and nonlinear wavelength conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CTuT4.

I. A. Begishev, J. Bromage, P. S. Datte, S. T. Yang, and J. D. Zuegel, “Record Fifth-Harmonic-Generation Efficiency Producing 211-nm Pulses Using Cesium Lithium Borate,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM3M.1.
[Crossref]

A. M. Rodin and E. Zopelis, “Optimised Configuration for Two Cascaded Double-Pass Yb:YAG Chirped Pulse Amplifier,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CA_P_7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of dual-stage collinear cascaded SFM setup for generating 193 nm beam. (a) Fundamental laser at 1030 nm with repetition rate of 10 kHz. (b) Fundamental laser at 1553 nm with repetition rate of 10 kHz. (c) Nonlinear frequency conversion to 515 nm and 258 nm. (d) Dual-stage collinear cascaded configuration to generate a 193 nm beam. HWP: half-wave plate. DM: dichroic mirror.
Fig. 2
Fig. 2 Different setups for a 193 nm beam generation, especially for part-(d) from Fig. 1. Setup (d)-1 is the previous setup used in Ref [17]. Setups (d)-2 and (d)-3 are two types of collinear cascaded SMF configurations. HWP: half-wave plate. DM: dichroic mirror.
Fig. 3
Fig. 3 Output powers as function of pumping power for different SCF and ceramic Yb:YAG thin rod amplifiers. The inset shows a typical three-dimensional beam profile of the amplified laser at the highest output power for a 2-mm-diameter, 30-mm long Yb:YAG ceramic rod with 2% doping.
Fig. 4
Fig. 4 Average powers at (a) 515 nm, and (b) 258 nm beams as a function of average power at 1030 and 515 nm beams, respectively.
Fig. 5
Fig. 5 Average power and conversion efficiency for (a) 221 nm and (b) 193 nm beams. Type-I and -II are the phase-matching type of CLBO-2 and CLBO-2′, respectively, shown in Fig. 2. CE: conversion efficiency.
Fig. 6
Fig. 6 Experimental setup for direct observation of spatial walk-off between the 1553 nm and 258 nm beams, a-d; and the results, e-h. HWP: half wave plate. In e-h, the yellow spot is for 1553 nm, the blue color for 258 nm.
Fig. 7
Fig. 7 Average power of 193 nm beam as a function of average power of 258 nm beam obtained by using the three kinds of configurations shown in Fig. 2.
Fig. 8
Fig. 8 Typical two- and three-dimensional beam profiles of the 193 nm beams.
Fig. 9
Fig. 9 Proposed method for compensating the spatial walk-off between the 1553 nm and 221 nm beams for more efficient generation of the 193 nm radiation.

Metrics