Abstract

We report a switchable holographic optical element based on a liquid lens for a see-through display. For the switchable holographic optical element, we recorded two optical components in the holographic film in two steps. A numerical simulation was also done to define the recording and reconstruction conditions. After the recording process, the entire system was changed from 4f optics to Maxwellian optics by changing wavefront of the reference wave using a liquid lens. The diffraction efficiency was 0.46 for a single element recording and around 0.14 for a double element recording. The holographic display and the Maxwellian display were successfully switched without any crosstalk. The field of view and eye box of the holographic display were 1° and 4.36 mm, respectively, and the field of view and the eye box of the Maxwellian display were 3.8° and 23.2 um, respectively. In the proposed system, spatial frequency filtering by the liquid lens and image shape distortion seriously affected the hologram image. However, we successfully verified the feasibility of our proposed switchable holographic optical element using a liquid lens.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Recent progress in see-through three-dimensional displays using holographic optical elements [Invited]

Changwon Jang, Chang-Kun Lee, Jinsoo Jeong, Gang Li, Seungjae Lee, Jiwoon Yeom, Keehoon Hong, and Byoungho Lee
Appl. Opt. 55(3) A71-A85 (2016)

See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element

Changwon Jang, Keehoon Hong, Jiwoon Yeom, and Byoungho Lee
Opt. Express 22(23) 27958-27967 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
    [Crossref] [PubMed]
  2. S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
    [Crossref]
  3. J. L. Martinez, E. J. Fernandez, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
    [Crossref] [PubMed]
  4. Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
    [Crossref] [PubMed]
  5. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
    [Crossref] [PubMed]
  6. Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56(13), F112–F120 (2017).
    [Crossref] [PubMed]
  7. Y. Z. Liu, X. N. Pang, S. Jiang, and J. W. Dong, “Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling,” Opt. Express 21(10), 12068–12076 (2013).
    [Crossref] [PubMed]
  8. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
    [Crossref] [PubMed]
  9. Y. Mori, T. Fukuoka, and T. Nomura, “Speckle reduction in holographic projection by random pixel separation with time multiplexing,” Appl. Opt. 53(35), 8182–8188 (2014).
    [Crossref] [PubMed]
  10. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
    [Crossref] [PubMed]
  11. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range,” Opt. Express 22(14), 17590–17599 (2014).
    [Crossref] [PubMed]
  12. J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl. Opt. 51(16), 3294–3304 (2012).
    [Crossref] [PubMed]
  13. M. Kick, R. Fie, and W. Stork, “Sequential and non-sequential simulation of volume holographic gratings,” J. Eur. Opt. Soc.-Rapid Pub. 14(1), 15 (2018).
    [Crossref]
  14. N. Kim, Y. L. Piao, and H. Y. Wu, “Holographic Optical Elements and Application.” In Holographic Materials and Optical Systems. InTech, (2017).
  15. J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
    [Crossref] [PubMed]
  16. G. Kramida, “Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
    [Crossref] [PubMed]
  17. M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
    [Crossref]
  18. H. Urey, S. Holmstrom, U. Baran, K. Aksit, M. K. Hedili, and O. Eides, “MEMS scanners and emerging 3D and interactive Augmented Reality display applications,” in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2485–2488 (2013).
    [Crossref]
  19. D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
    [Crossref]
  20. W. Jia, Z. Chen, F. J. Wen, C. Zhou, Y. T. Chow, and P. S. Chung, “Coaxial holographic encoding based on pure phase modulation,” Appl. Opt. 50(34), H10–H15 (2011).
    [Crossref] [PubMed]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  22. H. J. Yeom, H. J. Kim, S. B. Kim, H. Zhang, B. Li, Y. M. Ji, S. H. Kim, and J. H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
    [Crossref] [PubMed]
  23. J. Marín-Sáez, J. Atencia, D. Chemisana, and M. V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
    [Crossref] [PubMed]
  24. A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymeric films with highly tunable refractive index modulation for high precision diffractive optics,” Opt. Mater. Express 6(1), 252–263 (2016).
    [Crossref]
  25. G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
    [Crossref] [PubMed]
  26. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11(26), 3555–3561 (2003).
    [Crossref] [PubMed]
  27. S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, and D. Levy, “Optimization of an acrylamide-based dry film used for holographic recording,” Appl. Opt. 37(32), 7604–7610 (1998).
    [Crossref] [PubMed]
  28. O. Prucker, M. Schimmel, G. Tovar, W. Knoll, and J. Rühe, “Microstructuring of Molecularly Thin Polymer Layers by Photolithography,” Adv. Mater. 10(14), 1073–1077 (1998).
    [Crossref]
  29. H. Wei, G. Gong, and N. Li, “Improved look-up table method of computer-generated holograms,” Appl. Opt. 55(32), 9255–9264 (2016).
    [Crossref] [PubMed]
  30. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
    [Crossref] [PubMed]
  31. Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
    [Crossref] [PubMed]
  32. H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56(13), F138–F143 (2017).
    [Crossref] [PubMed]
  33. K. Matsushima and T. Shimobaba, “Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields,” Opt. Express 17(22), 19662–19673 (2009).
    [Crossref] [PubMed]
  34. P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26(8), 10140–10151 (2018).
    [Crossref] [PubMed]
  35. H. E. Hwang, H. T. Chang, and W. N. Lie, “Fast double-phase retrieval in Fresnel domain using modified Gerchberg-Saxton algorithm for lensless optical security systems,” Opt. Express 17(16), 13700–13710 (2009).
    [Crossref] [PubMed]
  36. S. Vorndran, J. M. Russo, Y. Wu, S. A. Pelaez, and R. K. Kostuk, “Broadband Gerchberg-Saxton algorithm for freeform diffractive spectral filter design,” Opt. Express 23(24), A1512–A1527 (2015).
    [Crossref] [PubMed]
  37. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
    [Crossref]
  38. N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24(12), 13334–13342 (2016).
    [Crossref] [PubMed]
  39. R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
    [Crossref]
  40. R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
    [Crossref] [PubMed]
  41. S. B. Kim and J. H. Park, “Optical see-through Maxwellian near-to-eye display with an enlarged eyebox,” Opt. Lett. 43(4), 767–770 (2018).
    [Crossref] [PubMed]
  42. C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
    [Crossref]

2018 (4)

2017 (7)

2016 (7)

2015 (3)

2014 (3)

2013 (1)

2012 (1)

2011 (3)

2010 (1)

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
[Crossref]

2009 (5)

2005 (1)

M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
[Crossref]

2003 (1)

1998 (2)

S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, and D. Levy, “Optimization of an acrylamide-based dry film used for holographic recording,” Appl. Opt. 37(32), 7604–7610 (1998).
[Crossref] [PubMed]

O. Prucker, M. Schimmel, G. Tovar, W. Knoll, and J. Rühe, “Microstructuring of Molecularly Thin Polymer Layers by Photolithography,” Adv. Mater. 10(14), 1073–1077 (1998).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Artal, P.

Asundi, A. K.

Atencia, J.

Bang, K.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Becker, M. F.

Bernet, S.

Bertolotti, J.

Bianco, A.

Blaya, S.

Cao, L.

Carretero, L.

Chang, H. T.

Chang, S.

Chemisana, D.

Chen, Z.

Cho, J.

Chow, Y. T.

Chung, P. S.

Collados, M. V.

Dillon, T.

Dong, J. W.

Duan, X.

Fäcke, T.

Fatemi, F. K.

Fernandez, E. J.

Fie, R.

M. Kick, R. Fie, and W. Stork, “Sequential and non-sequential simulation of volume holographic gratings,” J. Eur. Opt. Soc.-Rapid Pub. 14(1), 15 (2018).
[Crossref]

Fimia, A.

Fukuoka, T.

Fütterer, G.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
[Crossref]

Gao, Q.

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Golan, L.

Gong, G.

Goorden, S. A.

Gritsai, Y.

Han, J.

Hasan, N.

Häussler, R.

R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
[Crossref] [PubMed]

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
[Crossref]

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Hwang, H. E.

Jang, C.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Jeong, Y.

Jesacher, A.

Ji, Y. M.

Jia, W.

Jiang, S.

Jin, G.

Kick, M.

M. Kick, R. Fie, and W. Stork, “Sequential and non-sequential simulation of volume holographic gratings,” J. Eur. Opt. Soc.-Rapid Pub. 14(1), 15 (2018).
[Crossref]

Kim, D. W.

D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
[Crossref]

Kim, H.

Kim, H. J.

Kim, J.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Kim, S. B.

Kim, S. H.

Kim, S. K.

D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
[Crossref]

Kim, Y. K.

Knoll, W.

O. Prucker, M. Schimmel, G. Tovar, W. Knoll, and J. Rühe, “Microstructuring of Molecularly Thin Polymer Layers by Photolithography,” Adv. Mater. 10(14), 1073–1077 (1998).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Kong, D.

Kostuk, R. K.

Kramida, G.

G. Kramida, “Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
[Crossref] [PubMed]

Kwon, Y. M.

D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
[Crossref]

Lee, B.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
[Crossref] [PubMed]

Lee, D.

Lee, J. S.

Lee, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Leister, N.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
[Crossref]

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Levy, D.

Li, B.

Li, G.

Li, N.

Li, X.

Liang, J.

Lie, W. N.

Lin, C.

Liu, J.

Liu, P.

Liu, S.

Liu, Y. Z.

Lukowicz, P.

M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
[Crossref]

Madrigal, R. F.

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Mallavia, R.

Marín-Sáez, J.

Martinez, J. L.

Mastrangelo, C. H.

Matsushima, K.

Missbach, R.

R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
[Crossref] [PubMed]

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Moon, S.

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

Mori, Y.

Mosk, A. P.

Murakowski, J.

Nakahara, S.

Nomura, T.

Orselli, E.

Pang, X. N.

Park, J. H.

Park, Q. H.

D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
[Crossref]

Pelaez, S. A.

Prather, D.

Prieto, P. M.

Prucker, O.

O. Prucker, M. Schimmel, G. Tovar, W. Knoll, and J. Rühe, “Microstructuring of Molecularly Thin Polymer Layers by Photolithography,” Adv. Mater. 10(14), 1073–1077 (1998).
[Crossref]

Pustai, D.

Reichelt, S.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
[Crossref]

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Ritsch-Marte, M.

Rühe, J.

O. Prucker, M. Schimmel, G. Tovar, W. Knoll, and J. Rühe, “Microstructuring of Molecularly Thin Polymer Layers by Photolithography,” Adv. Mater. 10(14), 1073–1077 (1998).
[Crossref]

Russo, J. M.

Sahm, H.

Schimmel, M.

O. Prucker, M. Schimmel, G. Tovar, W. Knoll, and J. Rühe, “Microstructuring of Molecularly Thin Polymer Layers by Photolithography,” Adv. Mater. 10(14), 1073–1077 (1998).
[Crossref]

Schwerdtner, A.

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

Shimobaba, T.

Shoham, S.

Stock, M.

Stolle, H.

Stork, W.

M. Kick, R. Fie, and W. Stork, “Sequential and non-sequential simulation of volume holographic gratings,” J. Eur. Opt. Soc.-Rapid Pub. 14(1), 15 (2018).
[Crossref]

Sun, P.

Sure, A.

Takaki, Y.

Tao, X.

Tovar, G.

O. Prucker, M. Schimmel, G. Tovar, W. Knoll, and J. Rühe, “Microstructuring of Molecularly Thin Polymer Layers by Photolithography,” Adv. Mater. 10(14), 1073–1077 (1998).
[Crossref]

Tröster, G.

M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
[Crossref]

Ulibarrena, M.

Valyukh, S.

Vorndran, S.

Waldkirch, M.

M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
[Crossref]

Wang, C.

Wei, H.

Wen, F. J.

Won, Y. H.

Wu, S. Y.

Wu, Y.

Yeom, H. J.

Yokouchi, M.

Yu, Y.

Zanutta, A.

Zeng, Z.

Zhang, H.

Zhao, T.

Zhao, Y.

Zheng, H.

Zheng, Z.

Zhou, C.

Zschau, E.

R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
[Crossref] [PubMed]

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

ACM Trans. Graph. (2)

C. Jang, K. Bang, S. Moon, J. Kim, S. Lee, and B. Lee, “Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina,” ACM Trans. Graph. 36(6), 190 (2017).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Adv. Mater. (1)

O. Prucker, M. Schimmel, G. Tovar, W. Knoll, and J. Rühe, “Microstructuring of Molecularly Thin Polymer Layers by Photolithography,” Adv. Mater. 10(14), 1073–1077 (1998).
[Crossref]

Appl. Opt. (9)

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
[Crossref] [PubMed]

S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, and D. Levy, “Optimization of an acrylamide-based dry film used for holographic recording,” Appl. Opt. 37(32), 7604–7610 (1998).
[Crossref] [PubMed]

W. Jia, Z. Chen, F. J. Wen, C. Zhou, Y. T. Chow, and P. S. Chung, “Coaxial holographic encoding based on pure phase modulation,” Appl. Opt. 50(34), H10–H15 (2011).
[Crossref] [PubMed]

J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl. Opt. 51(16), 3294–3304 (2012).
[Crossref] [PubMed]

Y. Mori, T. Fukuoka, and T. Nomura, “Speckle reduction in holographic projection by random pixel separation with time multiplexing,” Appl. Opt. 53(35), 8182–8188 (2014).
[Crossref] [PubMed]

H. Wei, G. Gong, and N. Li, “Improved look-up table method of computer-generated holograms,” Appl. Opt. 55(32), 9255–9264 (2016).
[Crossref] [PubMed]

R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
[Crossref] [PubMed]

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56(13), F112–F120 (2017).
[Crossref] [PubMed]

H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56(13), F138–F143 (2017).
[Crossref] [PubMed]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

G. Kramida, “Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
[Crossref] [PubMed]

J. Eur. Opt. Soc.-Rapid Pub. (1)

M. Kick, R. Fie, and W. Stork, “Sequential and non-sequential simulation of volume holographic gratings,” J. Eur. Opt. Soc.-Rapid Pub. 14(1), 15 (2018).
[Crossref]

Opt. Commun. (1)

M. Waldkirch, P. Lukowicz, and G. Tröster, “Oscillating fluid lens in coherent retinal projection displays for extending depth of focus,” Opt. Commun. 253(4–6), 407–418 (2005).
[Crossref]

Opt. Eng. (1)

D. W. Kim, Y. M. Kwon, Q. H. Park, and S. K. Kim, “Analysis of a head-mounted display-type multifocus display system using a laser scanning method,” Opt. Eng. 50(3), 034006 (2011).
[Crossref]

Opt. Express (18)

A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11(26), 3555–3561 (2003).
[Crossref] [PubMed]

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
[Crossref] [PubMed]

H. E. Hwang, H. T. Chang, and W. N. Lie, “Fast double-phase retrieval in Fresnel domain using modified Gerchberg-Saxton algorithm for lensless optical security systems,” Opt. Express 17(16), 13700–13710 (2009).
[Crossref] [PubMed]

K. Matsushima and T. Shimobaba, “Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields,” Opt. Express 17(22), 19662–19673 (2009).
[Crossref] [PubMed]

Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
[Crossref] [PubMed]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
[Crossref] [PubMed]

J. L. Martinez, E. J. Fernandez, P. M. Prieto, and P. Artal, “Chromatic aberration control with liquid crystal spatial phase modulators,” Opt. Express 25(9), 9793–9801 (2017).
[Crossref] [PubMed]

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
[Crossref] [PubMed]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

S. Vorndran, J. M. Russo, Y. Wu, S. A. Pelaez, and R. K. Kostuk, “Broadband Gerchberg-Saxton algorithm for freeform diffractive spectral filter design,” Opt. Express 23(24), A1512–A1527 (2015).
[Crossref] [PubMed]

H. J. Yeom, H. J. Kim, S. B. Kim, H. Zhang, B. Li, Y. M. Ji, S. H. Kim, and J. H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
[Crossref] [PubMed]

Y. Z. Liu, X. N. Pang, S. Jiang, and J. W. Dong, “Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling,” Opt. Express 21(10), 12068–12076 (2013).
[Crossref] [PubMed]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range,” Opt. Express 22(14), 17590–17599 (2014).
[Crossref] [PubMed]

S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22(15), 17999–18009 (2014).
[Crossref] [PubMed]

J. Marín-Sáez, J. Atencia, D. Chemisana, and M. V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
[Crossref] [PubMed]

N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24(12), 13334–13342 (2016).
[Crossref] [PubMed]

Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
[Crossref] [PubMed]

P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, and Z. Zheng, “Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm,” Opt. Express 26(8), 10140–10151 (2018).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (2)

R. Häussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[Crossref]

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D display,” Proc. SPIE 7690(1), 76900B (2010).
[Crossref]

Other (2)

H. Urey, S. Holmstrom, U. Baran, K. Aksit, M. K. Hedili, and O. Eides, “MEMS scanners and emerging 3D and interactive Augmented Reality display applications,” in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2485–2488 (2013).
[Crossref]

N. Kim, Y. L. Piao, and H. Y. Wu, “Holographic Optical Elements and Application.” In Holographic Materials and Optical Systems. InTech, (2017).

Supplementary Material (1)

NameDescription
» Visualization 1       Switching objective waves using a liquid lens

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Our proposed switchable holographic optical element based see-through display: (a) switchable holographic optical element recording setup, and (b) reconstruction setup.
Fig. 2
Fig. 2 Basic model of a reflection volume hologram.
Fig. 3
Fig. 3 Numerical simulation results of the diffraction efficiency with reference wave angle variation.
Fig. 4
Fig. 4 Schematic of angle of reference wave limitation (author’s head).
Fig. 5
Fig. 5 (a) Lithography of thick photopolymer and (b) simple schematic of grayscale lithography.
Fig. 6
Fig. 6 (a) First recording step and (b) second recording step.
Fig. 7
Fig. 7 (a) Object wave 1 recording illustration, (b) Object wave 2 recording illustration, and (c) Recorded holographic film with 2 layers.
Fig. 8
Fig. 8 (a) Reconstructing object wave 1 (Lens) and (b) reconstructing object wave 2 (Mirror) (Visualization 1).
Fig. 9
Fig. 9 (a) Recording setup of switchable holographic optical element film and (b) See-Through Display system based on switchable holographic optical elements.
Fig. 10
Fig. 10 (a) and (d) are original images, (b) and (e) are shape distorted hologram images, (c) and (f) are compensated hologram images.
Fig. 11
Fig. 11 Depth layer based hologram generation diagram.
Fig. 12
Fig. 12 (a) Liquid lens and hologram pattern, (b) Numerical reconstructed hologram of square, and (c) Numerical reconstructed hologram of letter ‘K’.
Fig. 13
Fig. 13 Original images and reconstructed hologram.
Fig. 14
Fig. 14 Schematic of optical system of Maxwellian display.
Fig. 15
Fig. 15 Simulation results of our designed Maxwellian display, when eye focused at (a) 30 cm, (b) 50 cm, (c) 70 cm and (d) 100cm.
Fig. 16
Fig. 16 Original images and reconstructed Maxwellian images.

Tables (2)

Tables Icon

Table 1 Specifications of the spatial light modulator, liquid lens, and holographic film.

Tables Icon

Table 2 Holographic Film recording condition and diffraction efficiency.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η= ( 1+ 1 ξ 2 / v 2 sin h 2 v 2 ξ 2 ) 1
v= iπdΔn λ cos θ R cos θ O
ξ= Γd 2cos θ O
Δn= λcos(Φ θ R )tan h 1 ( η ) πd
η= I D I D + I T
DoF= 8λ f 2 d 2
FOV.H=2× sin 1 ( λ/2p )
ExitPupil.H=L×tan( FOV.H/2 )
FOV.M=2× tan 1 ( R f )
FOV.M=1.22 λf R

Metrics