Abstract

We demonstrate a Fourier transform (FT) coherent anti-Stokes Raman scattering (CARS) spectroscopy system based on fiber technology with ultra-broad spectral coverage and high-sensitivity. A femtosecond ytterbium fiber oscillator is amplified and spectrally broadened in a photonic crystal fiber to synthesize pulses with energy of 14 nJ at 1040 nm, that are compressed to durations below 20 fs. The resulting pulse train is coupled to a FT-CARS interferometer enabling measurement of high-quality CARS spectra with Raman shifts of ~3000 cm−1 and signal to noise ratio up to 240 and 690 with acetonitrile and polystyrene samples, respectively, for observation times of 160 µs; a detection limit of one part per thousand is demonstrated with a cyanide/water solution. The system has the potential to detect trace contaminants in water as well as other broadband high-sensitivity CARS spectroscopy applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband stimulated Raman scattering with Fourier-transform detection

Julien Réhault, Francesco Crisafi, Vikas Kumar, Gustavo Ciardi, Marco Marangoni, Giulio Cerullo, and Dario Polli
Opt. Express 23(19) 25235-25246 (2015)

Fiber-format dual-comb coherent Raman spectrometer

Nicola Coluccelli, Christopher R. Howle, Kenneth McEwan, Yuchen Wang, Toney Teddy Fernandez, Alessio Gambetta, Paolo Laporta, and Gianluca Galzerano
Opt. Lett. 42(22) 4683-4686 (2017)

Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection

Kotaro Hiramatsu, Yizhi Luo, Takuro Ideguchi, and Keisuke Goda
Opt. Lett. 42(21) 4335-4338 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008)
    [Crossref]
  2. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
    [Crossref] [PubMed]
  3. R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35, 3282 (2010).
    [Crossref] [PubMed]
  4. D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 35, 5787 (2004).
    [Crossref]
  5. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Science 418, 512 (2002).
  6. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872 (2006).
    [Crossref] [PubMed]
  7. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics 8, 627–634 (2014)
    [Crossref]
  8. M. Cui, M. Joffre, J. Skodack, and J. P. Ogilvie, “Interferometric Fourier transform coherent anti-stokes Raman scattering,” Opt. Express 35, 8448 (2006).
    [Crossref]
  9. K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
    [Crossref]
  10. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013)
    [Crossref] [PubMed]
  11. M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163 (2017)
    [Crossref]
  12. K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24000 spectra per second,” Sci. Rep. 6, 21036 (2016)
    [Crossref]
  13. K. J. Mohler, B. J. Bohn, M. Yan, G. Melen, T. W. Hansch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318 (2017)
    [Crossref] [PubMed]
  14. N. Coluccelli, C. R. Howle, K. McEwan, Y. Wang, T. T. Fernandez, A. Gambetta, P. Laporta, and G. Galzerano, “Fiber-format dual-comb coherent Raman spectrometer,” Opt. Lett. 42, 4683 (2017)
    [Crossref] [PubMed]
  15. S. R. Domingue and R. A. Bartels, “Overcoming temporal polarization instabilities from the latent birefringence in all-normal dispersion, wave-breaking-extended nonlinear fiber supercontinuum generation,” Opt. Express 21, 13305 (2013)
    [Crossref] [PubMed]
  16. H. Tu, Y. Liu, J. Laegsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrodinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express 18, 27872 (2010)
    [Crossref]
  17. D. M. Riffe and A. J. Sabbah, “A compact rotating-mirror autocorrelator design for femtosecond and picosecond laser pulses,” Rev. Sci. Instrum. 69, 3099 (1998)
    [Crossref]
  18. K. Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection,” Opt. Lett. 42, 4335–4338 (2017)
    [Crossref] [PubMed]

2017 (4)

2016 (1)

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24000 spectra per second,” Sci. Rep. 6, 21036 (2016)
[Crossref]

2014 (1)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics 8, 627–634 (2014)
[Crossref]

2013 (2)

2010 (2)

2008 (2)

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[Crossref]

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008)
[Crossref]

2006 (2)

M. Cui, M. Joffre, J. Skodack, and J. P. Ogilvie, “Interferometric Fourier transform coherent anti-stokes Raman scattering,” Opt. Express 35, 8448 (2006).
[Crossref]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872 (2006).
[Crossref] [PubMed]

2004 (1)

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 35, 5787 (2004).
[Crossref]

2003 (1)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[Crossref] [PubMed]

2002 (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Science 418, 512 (2002).

1998 (1)

D. M. Riffe and A. J. Sabbah, “A compact rotating-mirror autocorrelator design for femtosecond and picosecond laser pulses,” Rev. Sci. Instrum. 69, 3099 (1998)
[Crossref]

Bartels, R. A.

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013)
[Crossref] [PubMed]

Bohn, B. J.

Boppart, S. A.

H. Tu, Y. Liu, J. Laegsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrodinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express 18, 27872 (2010)
[Crossref]

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 35, 5787 (2004).
[Crossref]

Bredfeldt, J. S.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 35, 5787 (2004).
[Crossref]

Camp, C. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics 8, 627–634 (2014)
[Crossref]

Cicerone, M. T.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics 8, 627–634 (2014)
[Crossref]

Coluccelli, N.

Cui, M.

M. Cui, M. Joffre, J. Skodack, and J. P. Ogilvie, “Interferometric Fourier transform coherent anti-stokes Raman scattering,” Opt. Express 35, 8448 (2006).
[Crossref]

Domingue, S. R.

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[Crossref] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Science 418, 512 (2002).

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008)
[Crossref]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872 (2006).
[Crossref] [PubMed]

Fernandez, T. T.

Galzerano, G.

Gambetta, A.

Ganikhanov, F.

Goda, K.

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163 (2017)
[Crossref]

K. Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection,” Opt. Lett. 42, 4335–4338 (2017)
[Crossref] [PubMed]

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24000 spectra per second,” Sci. Rep. 6, 21036 (2016)
[Crossref]

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013)
[Crossref] [PubMed]

Hanke, T.

Hansch, T. W.

K. J. Mohler, B. J. Bohn, M. Yan, G. Melen, T. W. Hansch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318 (2017)
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013)
[Crossref] [PubMed]

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics 8, 627–634 (2014)
[Crossref]

Hashimoto, K.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24000 spectra per second,” Sci. Rep. 6, 21036 (2016)
[Crossref]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics 8, 627–634 (2014)
[Crossref]

Hight Walker, A. R.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics 8, 627–634 (2014)
[Crossref]

Hiramatsu, K.

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013)
[Crossref] [PubMed]

Howle, C. R.

Ideguchi, T.

K. Hiramatsu, Y. Luo, T. Ideguchi, and K. Goda, “Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection,” Opt. Lett. 42, 4335–4338 (2017)
[Crossref] [PubMed]

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163 (2017)
[Crossref]

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24000 spectra per second,” Sci. Rep. 6, 21036 (2016)
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013)
[Crossref] [PubMed]

Isobe, K.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[Crossref]

Joffre, M.

M. Cui, M. Joffre, J. Skodack, and J. P. Ogilvie, “Interferometric Fourier transform coherent anti-stokes Raman scattering,” Opt. Express 35, 8448 (2006).
[Crossref]

Kannari, F.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[Crossref]

Kawano, H.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[Crossref]

Kopf, D.

Krauss, G.

Laegsgaard, J.

Laporta, P.

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics 8, 627–634 (2014)
[Crossref]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics 8, 627–634 (2014)
[Crossref]

Leitenstorfer, A.

Liu, Y.

Luo, Y.

Marks, D. L.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 35, 5787 (2004).
[Crossref]

McEwan, K.

Melen, G.

Midorikawa, K.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[Crossref]

Miyawaki, A.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[Crossref]

Mizuno, H.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[Crossref]

Mohler, K. J.

Nakamura, T.

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163 (2017)
[Crossref]

Ogilvie, J. P.

M. Cui, M. Joffre, J. Skodack, and J. P. Ogilvie, “Interferometric Fourier transform coherent anti-stokes Raman scattering,” Opt. Express 35, 8448 (2006).
[Crossref]

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[Crossref] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Science 418, 512 (2002).

Picqué, N.

K. J. Mohler, B. J. Bohn, M. Yan, G. Melen, T. W. Hansch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318 (2017)
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013)
[Crossref] [PubMed]

Podagatlapalli, G. K.

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163 (2017)
[Crossref]

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics 8, 627–634 (2014)
[Crossref]

Riffe, D. M.

D. M. Riffe and A. J. Sabbah, “A compact rotating-mirror autocorrelator design for femtosecond and picosecond laser pulses,” Rev. Sci. Instrum. 69, 3099 (1998)
[Crossref]

Saar, B. G.

Sabbah, A. J.

D. M. Riffe and A. J. Sabbah, “A compact rotating-mirror autocorrelator design for femtosecond and picosecond laser pulses,” Rev. Sci. Instrum. 69, 3099 (1998)
[Crossref]

Sakaki, Y.

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163 (2017)
[Crossref]

Sell, A.

Selm, R.

Sharma, U.

Siegel, M.

Silberberg, Y.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[Crossref] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Science 418, 512 (2002).

Skodack, J.

M. Cui, M. Joffre, J. Skodack, and J. P. Ogilvie, “Interferometric Fourier transform coherent anti-stokes Raman scattering,” Opt. Express 35, 8448 (2006).
[Crossref]

Suda, A.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[Crossref]

Takahashi, M.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24000 spectra per second,” Sci. Rep. 6, 21036 (2016)
[Crossref]

Tamamitsu, M.

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163 (2017)
[Crossref]

Tanaka, M.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[Crossref]

Tu, H.

Vinegoni, C.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 35, 5787 (2004).
[Crossref]

Wang, Y.

Winterhalder, M.

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008)
[Crossref]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872 (2006).
[Crossref] [PubMed]

Yan, M.

Zumbusch, A.

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008)
[Crossref]

Appl. Phys. Lett. (1)

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 35, 5787 (2004).
[Crossref]

Nature (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355 (2013)
[Crossref] [PubMed]

Nature Photonics (1)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nature Photonics 8, 627–634 (2014)
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. A (1)

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Fourier-transform spectroscopy combined with a 5-fs broadband pulse for multispectral nonlinear microscopy,” Phys. Rev. A 77, 063832 (2008).
[Crossref]

Phys. Rev. Lett. (1)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond Phase-and-Polarization Control for Background-Free Coherent Anti-Stokes Raman Spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

D. M. Riffe and A. J. Sabbah, “A compact rotating-mirror autocorrelator design for femtosecond and picosecond laser pulses,” Rev. Sci. Instrum. 69, 3099 (1998)
[Crossref]

Sci. Rep. (1)

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24000 spectra per second,” Sci. Rep. 6, 21036 (2016)
[Crossref]

Science (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Science 418, 512 (2002).

Vib. Spectrosc. (1)

M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, and K. Goda, “Ultrafast broadband Fourier-transform CARS spectroscopy at 50000 spectra/s enabled by a scanning Fourier-domain delay line,” Vib. Spectrosc. 91, 163 (2017)
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Layout of the FT-CARS system with detail of the interferometer and coherent Raman excitation and detection unit. LPF, long-pass filter; SPF, short-pass filter; APD, avalanche photodiode
Fig. 2
Fig. 2 Spectra (a,c) and autocorrelations (b,d) of pulses generated by the Yb-fiber amplifier (orange lines) and LMA-PCF (green lines).
Fig. 3
Fig. 3 a) Average power of CARS beam as a function of power incident onto the acetonitrile sample (beam in the rotating arm blocked). b) Spectrum of CARS radiation generated by pulses in the fixed (blue line) and rotating (red line) arm of the interferometer.
Fig. 4
Fig. 4 a) Typical oscilloscope trace showing equalized CARS contributions from the fixed and rotating interferometer arms, and interferogram with large non-resonant background around zero delay followed (and preceded) by the Raman relaxation signal. b) Detail of the 160-µs time window selected for FT calculation. c) Background-free CARS spectrum calculated by FT of one interferogram (top), and reference spectrum (bottom), of pure acetonitrile. The inset shows the detail of noise floor.
Fig. 5
Fig. 5 CARS spectrum of pure acetonitrile as obtained by averaging over 100 consecutive spectra. The inset shows the detail of noise floor.
Fig. 6
Fig. 6 Background-free CARS spectrum calculated by FT of a single interferogram (top), and reference spectrum (bottom), of an 80-µm thick polystyrene film. The inset shows the detail of noise floor.
Fig. 7
Fig. 7 Signal-to-noise ratio as a function of the number of averaged spectra calculated on the cyanide resonance at 2253 cm−1, for different concentrations of cyanide diluted in water.