Abstract

Doppler optical coherence tomography (OCT) quantifies axial motion with high precision, whereas lateral motion cannot be detected by a mere evaluation of phase changes. This problem was solved by the introduction of three-beam Doppler OCT, which, however, entails a high experimental effort. Here, we present the numerical analogue to this experimental approach. Phase-stable complex-valued OCT datasets, recorded with full-field swept-source OCT, are filtered in the Fourier domain to limit imaging to different computational subapertures. These are used to calculate all three components of the motion vector with interferometric precision. As known from conventional Doppler OCT for axial motion only, the achievable accuracy exceeds the actual imaging resolution by orders of magnitude in all three dimensions. The feasibility of this method is first demonstrated by quantifying micro-rotation of a scattering sample. Subsequently, a potential application is explored by recording the 3D motion vector field of tissue during laser photocoagulation in ex-vivo porcine retina.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction [Invited]

Clara Pfäffle, Hendrik Spahr, Dierck Hillmann, Helge Sudkamp, Gesa Franke, Peter Koch, and Gereon Hüttmann
Biomed. Opt. Express 8(3) 1499-1511 (2017)

Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging

Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler
Biomed. Opt. Express 2(8) 2202-2215 (2011)

Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns

Martin F. Kraus, Benjamin Potsaid, Markus A. Mayer, Ruediger Bock, Bernhard Baumann, Jonathan J. Liu, Joachim Hornegger, and James G. Fujimoto
Biomed. Opt. Express 3(6) 1182-1199 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
    [Crossref] [PubMed]
  2. K. Kurokawa, S. Makita, Y.-J. Hong, and Y. Yasuno, “Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography,” Biomed. Opt. Express 6, 170–190 (2015).
    [Crossref] [PubMed]
  3. K. Kurokawa, S. Makita, and Y. Yasuno, “Investigation of thermal effects of photocoagulation on retinal tissue using fine-motion-sensitive dynamic optical coherence tomography,” PLoS ONE 11, 1–12 (2016).
    [Crossref]
  4. S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8, 279–302 (2015).
    [Crossref]
  5. N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5, 4131–4143 (2014).
    [Crossref]
  6. R. L. Maurice and M. Bertrand, “Speckle-motion artifact under tissue shearing,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 46, 584–594 (1999).
    [Crossref]
  7. H. Spahr, D. Hillmann, C. Pfäffle, and G. Hüttmann, “Defocus-induced motion artifact in optical coherence tomography,” Opt. Lett. (submitted 2018).
  8. W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18, 116010 (2013).
    [Crossref] [PubMed]
  9. R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62, 1781–1788 (2015).
    [Crossref] [PubMed]
  10. R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
    [Crossref] [PubMed]
  11. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Reports 6, 35209 (2016).
    [Crossref]
  12. J. W. Goodman, Introduction to Fourier optics (Roberts & Company Publishers, 2005), 3rd ed.
  13. B. H. Park, M. C. Pierce, B. Cense, S.-h. Yun, M. Mujat, G. J. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 micrometer,” Opt. Express 13, 3931–3944 (2005).
    [Crossref] [PubMed]
  14. S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13, 410 (2005).
    [Crossref] [PubMed]
  15. H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
    [Crossref] [PubMed]
  16. D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
    [Crossref] [PubMed]
  17. H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
    [Crossref] [PubMed]
  18. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
    [Crossref] [PubMed]

2016 (3)

K. Kurokawa, S. Makita, and Y. Yasuno, “Investigation of thermal effects of photocoagulation on retinal tissue using fine-motion-sensitive dynamic optical coherence tomography,” PLoS ONE 11, 1–12 (2016).
[Crossref]

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Reports 6, 35209 (2016).
[Crossref]

2015 (4)

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8, 279–302 (2015).
[Crossref]

K. Kurokawa, S. Makita, Y.-J. Hong, and Y. Yasuno, “Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography,” Biomed. Opt. Express 6, 170–190 (2015).
[Crossref] [PubMed]

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62, 1781–1788 (2015).
[Crossref] [PubMed]

2014 (2)

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5, 4131–4143 (2014).
[Crossref]

2013 (1)

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18, 116010 (2013).
[Crossref] [PubMed]

2012 (2)

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

2005 (2)

B. H. Park, M. C. Pierce, B. Cense, S.-h. Yun, M. Mujat, G. J. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 micrometer,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13, 410 (2005).
[Crossref] [PubMed]

2004 (1)

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[Crossref] [PubMed]

1999 (1)

R. L. Maurice and M. Bertrand, “Speckle-motion artifact under tissue shearing,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 46, 584–594 (1999).
[Crossref]

Ahn, S. S.

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5, 4131–4143 (2014).
[Crossref]

Baumann, B.

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
[Crossref] [PubMed]

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62, 1781–1788 (2015).
[Crossref] [PubMed]

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18, 116010 (2013).
[Crossref] [PubMed]

Bertrand, M.

R. L. Maurice and M. Bertrand, “Speckle-motion artifact under tissue shearing,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 46, 584–594 (1999).
[Crossref]

Bever, M.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

Birngruber, R.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

Blatter, C.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Bonin, T.

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

Boppart, S. A.

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5, 4131–4143 (2014).
[Crossref]

Bouma, B.

B. H. Park, M. C. Pierce, B. Cense, S.-h. Yun, M. Mujat, G. J. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 micrometer,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[Crossref] [PubMed]

Brinkmann, R.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

Carney, P. S.

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5, 4131–4143 (2014).
[Crossref]

Cense, B.

B. H. Park, M. C. Pierce, B. Cense, S.-h. Yun, M. Mujat, G. J. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 micrometer,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

de Boer, J.

B. H. Park, M. C. Pierce, B. Cense, S.-h. Yun, M. Mujat, G. J. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 micrometer,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[Crossref] [PubMed]

Debbeler, C.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

Franke, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Reports 6, 35209 (2016).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics (Roberts & Company Publishers, 2005), 3rd ed.

Hagen-Eggert, M.

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

Hain, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Reports 6, 35209 (2016).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

Haindl, R.

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
[Crossref] [PubMed]

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62, 1781–1788 (2015).
[Crossref] [PubMed]

Hillmann, D.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Reports 6, 35209 (2016).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Pfäffle, and G. Hüttmann, “Defocus-induced motion artifact in optical coherence tomography,” Opt. Lett. (submitted 2018).

Hitzenberger, C. K.

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
[Crossref] [PubMed]

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62, 1781–1788 (2015).
[Crossref] [PubMed]

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18, 116010 (2013).
[Crossref] [PubMed]

Hong, Y.-J.

K. Kurokawa, S. Makita, Y.-J. Hong, and Y. Yasuno, “Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography,” Biomed. Opt. Express 6, 170–190 (2015).
[Crossref] [PubMed]

Hüttmann, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Reports 6, 35209 (2016).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Pfäffle, and G. Hüttmann, “Defocus-induced motion artifact in optical coherence tomography,” Opt. Lett. (submitted 2018).

Izatt, J. A.

S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13, 410 (2005).
[Crossref] [PubMed]

Koch, P.

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

Koinzer, S.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

Kurokawa, K.

K. Kurokawa, S. Makita, and Y. Yasuno, “Investigation of thermal effects of photocoagulation on retinal tissue using fine-motion-sensitive dynamic optical coherence tomography,” PLoS ONE 11, 1–12 (2016).
[Crossref]

K. Kurokawa, S. Makita, Y.-J. Hong, and Y. Yasuno, “Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography,” Biomed. Opt. Express 6, 170–190 (2015).
[Crossref] [PubMed]

Larin, K. V.

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8, 279–302 (2015).
[Crossref]

Leitgeb, R. A.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Liu, Y.-Z.

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5, 4131–4143 (2014).
[Crossref]

Lührs, C.

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

Makita, S.

K. Kurokawa, S. Makita, and Y. Yasuno, “Investigation of thermal effects of photocoagulation on retinal tissue using fine-motion-sensitive dynamic optical coherence tomography,” PLoS ONE 11, 1–12 (2016).
[Crossref]

K. Kurokawa, S. Makita, Y.-J. Hong, and Y. Yasuno, “Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography,” Biomed. Opt. Express 6, 170–190 (2015).
[Crossref] [PubMed]

Maurice, R. L.

R. L. Maurice and M. Bertrand, “Speckle-motion artifact under tissue shearing,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 46, 584–594 (1999).
[Crossref]

Mujat, M.

B. H. Park, M. C. Pierce, B. Cense, S.-h. Yun, M. Mujat, G. J. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 micrometer,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

Müller, H. H.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

Park, B. H.

B. H. Park, M. C. Pierce, B. Cense, S.-h. Yun, M. Mujat, G. J. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 micrometer,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

Pfäffle, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Reports 6, 35209 (2016).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Pfäffle, and G. Hüttmann, “Defocus-induced motion artifact in optical coherence tomography,” Opt. Lett. (submitted 2018).

Pierce, M. C.

B. H. Park, M. C. Pierce, B. Cense, S.-h. Yun, M. Mujat, G. J. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 micrometer,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

Pircher, M.

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
[Crossref] [PubMed]

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62, 1781–1788 (2015).
[Crossref] [PubMed]

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18, 116010 (2013).
[Crossref] [PubMed]

Ptaszynski, L.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

Sarunic, M. V.

S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13, 410 (2005).
[Crossref] [PubMed]

Schlott, K.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

Schmetterer, L.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Shemonski, N. D.

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5, 4131–4143 (2014).
[Crossref]

South, F. A.

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5, 4131–4143 (2014).
[Crossref]

Spahr, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Reports 6, 35209 (2016).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Pfäffle, and G. Hüttmann, “Defocus-induced motion artifact in optical coherence tomography,” Opt. Lett. (submitted 2018).

Sudkamp, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Reports 6, 35209 (2016).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

Tearney, G.

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[Crossref] [PubMed]

Tearney, G. J.

B. H. Park, M. C. Pierce, B. Cense, S.-h. Yun, M. Mujat, G. J. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 micrometer,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

Torzicky, T.

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18, 116010 (2013).
[Crossref] [PubMed]

Trasischker, W.

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
[Crossref] [PubMed]

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62, 1781–1788 (2015).
[Crossref] [PubMed]

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18, 116010 (2013).
[Crossref] [PubMed]

Wang, S.

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8, 279–302 (2015).
[Crossref]

Wartak, A.

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
[Crossref] [PubMed]

Werkmeister, R. M.

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18, 116010 (2013).
[Crossref] [PubMed]

Winter, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Reports 6, 35209 (2016).
[Crossref]

Yang, C.

S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13, 410 (2005).
[Crossref] [PubMed]

Yasuno, Y.

K. Kurokawa, S. Makita, and Y. Yasuno, “Investigation of thermal effects of photocoagulation on retinal tissue using fine-motion-sensitive dynamic optical coherence tomography,” PLoS ONE 11, 1–12 (2016).
[Crossref]

K. Kurokawa, S. Makita, Y.-J. Hong, and Y. Yasuno, “Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography,” Biomed. Opt. Express 6, 170–190 (2015).
[Crossref] [PubMed]

Yazdanfar, S.

S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13, 410 (2005).
[Crossref] [PubMed]

Yun, S. H.

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[Crossref] [PubMed]

Yun, S.-h.

B. H. Park, M. C. Pierce, B. Cense, S.-h. Yun, M. Mujat, G. J. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 micrometer,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

Zotter, S.

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18, 116010 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

K. Kurokawa, S. Makita, Y.-J. Hong, and Y. Yasuno, “Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography,” Biomed. Opt. Express 6, 170–190 (2015).
[Crossref] [PubMed]

N. D. Shemonski, S. S. Ahn, Y.-Z. Liu, F. A. South, P. S. Carney, and S. A. Boppart, “Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography,” Biomed. Opt. Express 5, 4131–4143 (2014).
[Crossref]

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
[Crossref] [PubMed]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control. (1)

R. L. Maurice and M. Bertrand, “Speckle-motion artifact under tissue shearing,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 46, 584–594 (1999).
[Crossref]

J. Biomed. Opt. (1)

W. Trasischker, R. M. Werkmeister, S. Zotter, B. Baumann, T. Torzicky, M. Pircher, and C. K. Hitzenberger, “In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography,” J. Biomed. Opt. 18, 116010 (2013).
[Crossref] [PubMed]

J. Biophotonics (1)

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8, 279–302 (2015).
[Crossref]

J. Mod. Opt. (1)

R. Haindl, W. Trasischker, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Three-beam Doppler optical coherence tomography using a facet prism telescope and MEMS mirror for improved transversal resolution,” J. Mod. Opt. 62, 1781–1788 (2015).
[Crossref] [PubMed]

Opt. Express (4)

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
[Crossref] [PubMed]

D. Hillmann, T. Bonin, C. Lührs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20, 6761–6776 (2012).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S.-h. Yun, M. Mujat, G. J. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 micrometer,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13, 410 (2005).
[Crossref] [PubMed]

Opt. Lett. (1)

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

PLoS ONE (1)

K. Kurokawa, S. Makita, and Y. Yasuno, “Investigation of thermal effects of photocoagulation on retinal tissue using fine-motion-sensitive dynamic optical coherence tomography,” PLoS ONE 11, 1–12 (2016).
[Crossref]

Prog. Retin. Eye Res. (1)

R. A. Leitgeb, R. M. Werkmeister, C. Blatter, and L. Schmetterer, “Doppler optical coherence tomography,” Prog. Retin. Eye Res. 41, 26–43 (2014).
[Crossref] [PubMed]

Sci. Reports (1)

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Reports 6, 35209 (2016).
[Crossref]

Other (2)

J. W. Goodman, Introduction to Fourier optics (Roberts & Company Publishers, 2005), 3rd ed.

H. Spahr, D. Hillmann, C. Pfäffle, and G. Hüttmann, “Defocus-induced motion artifact in optical coherence tomography,” Opt. Lett. (submitted 2018).

Supplementary Material (1)

NameDescription
» Visualization 1       3D motion vector field of ex-vivo retinal tissue during photocoagulation

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Principle of computational-subaperture processing for a determination of lateral motion. (a) Lateral Fourier transform of phase-stable complex-valued OCT data showing a superposition of the physical aperture and four computational subapertures. (b) Relation between detection angle and position of the subaperture in the Fourier plane: The sample is illuminated by a plane wave kin of wavenumber k propagating along the z-direction. The detection of scattered light is computationally limited to light that passed the aperture in a certain sub-region specified by its radius r, its eccentricity , and its azimuthal angle θ.
Fig. 2
Fig. 2 Full-field swept-source OCT setup used for the phase-stable acquisition of volume datasets. The sample is positioned in a cuvette containing saline solution. It is illuminated with a collimated beam and then imaged onto the sensor of a high-speed camera, where it is superimposed with a reference wave. An Arduino Uno microprocessor board synchronizes the swept laser source, the high-speed camera, and a green laser diode used to heat a 200 μm sized spot of the sample.
Fig. 3
Fig. 3 OCT images of the rotated cardboard sample (en-face representation) and rotation profile. The sample was intended to be rotated by 0.2° between the first (a) and second (b) exposure. The rotation profile (c) corresponds to a rotation by 0.22°.
Fig. 4
Fig. 4 Three-dimensional motion of the rotating cardboard sample. The lateral x- and y-components (d,e) were calculated by determining the difference of phase changes in opposite subapertures (a,b). The z-component (f) is given by the full-aperture inter-volume phase change (c). The resulting cartesian representation of the x, y, and z-component of the motion vector field was transformed into the spherical components, i.e., magnitude m(g), azimuthal angle φ (h) and polar angle ϑ. Due to the in-plane motion, the latter is very close to zero in the whole field of view and therefore not shown. The in-plane motion is additionally visualized by the corresponding vector field (i).
Fig. 5
Fig. 5 Tomographic representation of the detected axial motion of retinal tissue before and during the irradiation, overlayed with an averaged OCT B-scan of the porcine retina.
Fig. 6
Fig. 6 En-face representation of the detected axial and lateral motion of the nerve fiber layer before and during the irradiation. The irradiated area is marked by the dashed circle.
Fig. 7
Fig. 7 3D motion vector field of retinal tissue during photocoagulation. See Visualization 1 for the temporal evolution of the vector field.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

k out ( , θ ) = k ( NA cos θ NA sin θ 1 2 NA 2 ) .
Δ ϕ = n ( k out k in ) Δ r = n k [ ( NA cos θ NA sin θ 1 2 NA 2 ) ( Δ x Δ y Δ z ) ( 0 0 1 ) ( Δ x Δ y Δ z ) ] = n k [ ( NA cos θ NA sin θ 1 2 NA 2 ) ( Δ x Δ y Δ z ) + Δ z ]
Δ θ θ + π Δ ϕ = 2 n k ( NA cos θ NA sin θ 0 ) ( Δ x Δ y Δ z ) .
Δ 0 π Δ ϕ = 2 n k NA Δ x Δ x = Δ 0 π Δ ϕ 2 n k NA
Δ π / 2 3 π / 2 Δ ϕ = 2 n k N A Δ y Δ y = Δ π / 2 3 π / 2 Δ ϕ 2 n k NA
Δ z = Δ ϕ 2 n k
σ Δ 0 π Δ ϕ = σ Δ π / 2 3 π / 2 Δ ϕ = 2 / SNR .
σ Δ x = 2 SNR 1 2 k n NA
σ Δ x eff = 2 SNR 1 2 k n NA 1 1
Δ x max / min = ± π 2 n k NA .
r ( t ) = ( x ( t ) y ( t ) z ( t ) ) = ( ρ cos ( ω t + ϕ 0 ) ρ sin ( ω t + ϕ 0 ) z 0 )
v ( t ) = d r ( t ) d t = ( ρ ω sin ( ω t + ϕ 0 ) ρ ω cos ( ω t + ϕ 0 ) 0 ) = ( ω y ( t ) ω x ( t ) 0 )