Abstract

We report the design, fabrication, and characterization of ultralight highly emissive structures with a record-low mass per area that emit thermal radiation efficiently over a broad spectral (2 to 30 microns) and angular (0–60°) range. The structures comprise one to three pairs of alternating metallic and dielectric thin films and have measured effective 300 K hemispherical emissivity of 0.7 to 0.9 (inferred from angular measurements which cover a bandwidth corresponding to 88% of 300K blackbody power). To our knowledge, these micron-scale-thickness structures, are the lightest reported optical coatings with comparable infrared emissivity. The superior optical properties, together with their mechanical flexibility, low outgassing, and low areal mass, suggest that these coatings are candidates for thermal management in applications demanding of ultralight flexible structures, including aerospace applications, ultralight photovoltaics, lightweight flexible electronics, and textiles for thermal insulation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Realization of narrowband thermal emission with optical nanostructures

Takuya Inoue, Menaka De Zoysa, Takashi Asano, and Susumu Noda
Optica 2(1) 27-35 (2015)

Strong absorption and selective emission from engineered metals with dielectric coatings

W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman
Opt. Express 21(7) 9113-9122 (2013)

Taming parasitic thermal emission by Tamm plasmon polaritons for the mid-infrared

Gerald Pühringer and Bernhard Jakoby
J. Opt. Soc. Am. B 35(7) 1490-1503 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
    [Crossref] [PubMed]
  2. S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical–thermal antennas for enhanced light focusing and local temperature control,” ACS Photonics 3(9), 1714–1722 (2016).
    [Crossref]
  3. For a brief introduction on the primary works on this subject, the reader may read M. G. Hutchins, “Spectrally selective materials for efficient visible, color, solar and thermal radiation control,” in Solar thermal technologies for buildings: The state of the art, M. Santamouris. ed (Rotledge, 2014), pp. 37–38. ‏
  4. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  5. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [Crossref]
  6. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
    [Crossref] [PubMed]
  7. J. Meseguer, I. Pérez-Grande, and A. Sanz-Andrés, Spacecraft Thermal Control, (Elsevier, 2012).
  8. C. R. McInnes, Solar Sailing: Technology, Dynamics and Mission Applications, (Springer Science & Business Media, 2013).
  9. S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
    [Crossref] [PubMed]
  10. L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
    [Crossref]
  11. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
    [Crossref] [PubMed]
  12. A. Manjavacas, S. Thongrattanasiri, J.-J. Greffet, and F. J. G. de Abajo, “Graphene optical-to-thermal converter,” Appl. Phys. Lett. 105(21), 211102 (2014).
    [Crossref]
  13. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96(11), 1810–1835 (2008).
    [Crossref]
  14. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
    [Crossref]
  15. P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
    [Crossref] [PubMed]
  16. H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
    [Crossref]
  17. S. J. Orfanidis, Electromagnetic Waves and Antennas, [Online]. Available: http://www.ece.rutgers.edu/~orfanidi/ewa/ . [Accessed: 6-March-2018].
  18. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
    [Crossref] [PubMed]
  19. “AZ Technology | Materials, Paint and Coatings: AZ-93 White Thermal Control, Electrically Conductive Paint / Coating (AZ’s Z-93P).” [Online]. Available: http://www.aztechnology.com/materials-coatings-az-93.html . [Accessed: 19-Dec-2016].
  20. Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared refractive index and extinction coefficient of polyimide films,” Int. J. Thermophys. 19(3), 905–916 (1998).
    [Crossref]
  21. S. W. W, “Absorbent body for electromagnetic waves,” US2599944 A, (10-Jun-1952).
  22. R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
    [Crossref]
  23. E. Knott and K. Langseth, “Performance degradation of Jaumann absorbers due to curvature,” IEEE Trans. Antenn. Propag. 28(1), 137–139 (1980).
    [Crossref]
  24. B. M. Wells, C. M. Roberts, and V. A. Podolskiy, “Metamaterials-based Salisbury screens with reduced angular sensitivity,” Appl. Phys. Lett. 105(16), 161105 (2014).
    [Crossref]
  25. M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
    [Crossref]
  26. W. Emerson, “Electromagnetic wave absorbers and anechoic chambers through the years,” IEEE Trans. Antenn. Propag. 21(4), 484–490 (1973).
    [Crossref]
  27. L. J. du Toit and J. H. Cloete, “Advances in the design of Jaumann absorbers,” IEEE AP-S/URSI International Symposium Digest, Dallas, TX, 1212- 1215 (1990).
    [Crossref]
  28. Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
    [Crossref] [PubMed]
  29. F. J. Kelly, “On Kirchhoff’s law and its generalized application to absorption and emission by cavities,” J. Res. Natl. Bur. Stand. Sec. 69B(3), 165–171 (1965).
    [Crossref]
  30. Validity of Kirchoff’s law is generally accepted in the literature. However, its experimental evidence is under question (See for example ref. [31]).
  31. E. D. Palik, Handbook of Optical Constants of Solids. Academic (1998).
  32. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995).
    [Crossref] [PubMed]
  33. We used Matlab optimization toolbox to optimize the multilayer thicknesses, and observed that there is more than one optimum set of layer thicknesses. However, as far as we calculated, the obtained emissivity values for the different optima were close to the values reported here.
  34. The Brewster effect is commonly known as lack of the reflection for TM polarization of light at the interface between two dielectrics.
  35. A planwave impinging on a planar multilayer may have two independent solutions: TE and TM. Since any solution for planewave reflection should be decomposable into these two solutions, and we assume in general both TE and TM may have the same probability of occurrence, so, unpolarized reflection can be obtained by averaging them.
  36. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
    [Crossref] [PubMed]
  37. H. Köppel, “Vibronic coupling effects in spectroscopy and non-adiabatic transitions in molecular photodynamics,” in Molecular Quantum Dynamics, F. Gatti. ed (Springer, 2014), pp. 147–180.‏
  38. M. M. Finckenor and D. Dooling, “Multilayer insulation material guidelines,” NASA/TP-1999–209263 (1999).
  39. “Nexolve Materials | Advanced Polymer Materials For High-Tech Applications,” [Online]. Available: http://www.nexolvematerials.com/ . [Accessed: 27-May-2018].
  40. For spin coating, we used CP1 polyimide resin diluted in dyglyme (35% solution). After spin coating, we put the sample on the hot plate at approximately 100°C for one minute to vaporize the volatile gases. To our knowledge, this causes no relevant chemical reaction.
  41. P.-M. Robitaille, “On the validity of Kirchhoff’s law of thermal emission,” IEEE Trans. Plasma Sci. 31(6), 1263–1267 (2003).
    [Crossref]
  42. R. H. Morf, “Exponentially convergent and numerically efficient solution of Maxwell’s equations for lamellar gratings,” J. Opt. Soc. Am. A 12(5), 1043–1056 (1995).
    [Crossref]
  43. http://ee.sharif.edu/~khavasi/index_files/Page1077.htm [Accessed: 14-March-2018]
  44. https://www.lp2n.institutoptique.fr/Membres-Services/Responsables-d-equipe/LALANNE-Philippe [Accessed: 14-March-2018]
  45. P. Willis and C. H Hsieh, “Space applications of polymeric materials,” Society of Polymer Science Meeting- Kobunshi (1999).
  46. W.-L. Qu, T.-M. Ko, R. H. Vora, and T.-S. Chung, “Anisotropic dielectric properties of polyimides consisting of various molar ratios of meta to para diamine with trifluoromethyl group,” Polym. Eng. Sci. 41(10), 1783–1793 (2001).
    [Crossref]
  47. G. Yu, H. Ishikawa, T. Egawa, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire,” J. J. Appl. Phys., Part 2 36(8A), L1029–L1031 (1997).
  48. D. E. Aspnes, “Approximate solution of ellipsometric equations for optically biaxial crystals,” J. Opt. Soc. Am. 70(10), 1275–1277 (1980).
    [Crossref] [PubMed]
  49. G. E. Jellison and J. S. Baba, “Pseudodielectric functions of uniaxial materials in certain symmetry directions,” J. Opt. Soc. Am. A 23(2), 468–475 (2006).
    [Crossref] [PubMed]
  50. S. A. Francis and A. H. Ellison, “Infrared spectra of monolayers on metal mirrors,” J. Opt. Soc. Am. 49(2), 131–138 (1959).
    [Crossref]
  51. R. G. Greenler, “Infrared study of adsorbed molecules on metal surfaces by reflection techniques,” J. Chem. Phys. 44(1), 310–315 (1966).
    [Crossref]
  52. G. E. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1–2), 416–422 (1993).
    [Crossref]
  53. G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” in Handbook of Ellipsometry, J.G. Tompkins and E.A. Irene, eds. (William Andrew, 2005) pp 237 – 296.
  54. C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, “InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,” J. Appl. Phys. 77(4), 1715–1724 (1995).
    [Crossref]
  55. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
    [Crossref]
  56. C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, and J. A. Woollam, “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis,” J. Appl. Phys. 77(9), 4677–4687 (1995).
    [Crossref]
  57. D. De Sousa Meneses, M. Malki, and P. Echegut, “Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy,” J. Non-Cryst. Solids 352(8), 769–776 (2006).
    [Crossref]
  58. A. Naqavi, S. P. Loke, M. D. Kelzenberg, D. M. Callahan, T. Tiwald, E. C. Warmann, P. Espinet-González, N. Vaidya, T. A. Roy, J.-S. Huang, T. G. Vinogradova, and H. A. Atwater, “n, k data and model parameters,” figshare (2018) [retrieved 5 July 2018], https://doi.org/10.6084/m9.figshare.6387395 .
  59. We used different data sets for gold from https://refractiveindex.info . [Accessed: 20-May-2018], which in turn obtained data from Refs. [61–65].
  60. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  61. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
    [Crossref] [PubMed]
  62. A. Ciesielski, L. Skowronski, M. Trzcinski, E. Górecka, P. Trautman, and T. Szoplik, “Evidence of germanium segregation in gold thin films,” Surf. Sci. 674, 73–78 (2018).
    [Crossref]
  63. H.-J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. 65(6), 742–744 (1975).
    [Crossref]
  64. H.-J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY report SR-74/7 (1974). https://refractiveindex.info/download/data/1974/Hagemann%201974%20-%20DESY%20report%20SR-74-7.pdf [Accessed: 27-May-2018].
  65. A. L. Wasserman, Thermal Physics (Cambridge University, 2012). Ch. 14, Eq. (14).39 (p. 218).
  66. These measurements were done at the Northrop Grumman Corporation and we have no information on the approach they were obtained. Nevertheless, we speculate that these are reflection measurements.

2018 (1)

A. Ciesielski, L. Skowronski, M. Trzcinski, E. Górecka, P. Trautman, and T. Szoplik, “Evidence of germanium segregation in gold thin films,” Surf. Sci. 674, 73–78 (2018).
[Crossref]

2016 (3)

S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical–thermal antennas for enhanced light focusing and local temperature control,” ACS Photonics 3(9), 1714–1722 (2016).
[Crossref]

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref] [PubMed]

2015 (2)

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

2014 (5)

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

B. M. Wells, C. M. Roberts, and V. A. Podolskiy, “Metamaterials-based Salisbury screens with reduced angular sensitivity,” Appl. Phys. Lett. 105(16), 161105 (2014).
[Crossref]

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

A. Manjavacas, S. Thongrattanasiri, J.-J. Greffet, and F. J. G. de Abajo, “Graphene optical-to-thermal converter,” Appl. Phys. Lett. 105(21), 211102 (2014).
[Crossref]

2013 (3)

L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

2012 (1)

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

2011 (3)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

2009 (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

2008 (1)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

2006 (2)

G. E. Jellison and J. S. Baba, “Pseudodielectric functions of uniaxial materials in certain symmetry directions,” J. Opt. Soc. Am. A 23(2), 468–475 (2006).
[Crossref] [PubMed]

D. De Sousa Meneses, M. Malki, and P. Echegut, “Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy,” J. Non-Cryst. Solids 352(8), 769–776 (2006).
[Crossref]

2003 (1)

P.-M. Robitaille, “On the validity of Kirchhoff’s law of thermal emission,” IEEE Trans. Plasma Sci. 31(6), 1263–1267 (2003).
[Crossref]

2001 (1)

W.-L. Qu, T.-M. Ko, R. H. Vora, and T.-S. Chung, “Anisotropic dielectric properties of polyimides consisting of various molar ratios of meta to para diamine with trifluoromethyl group,” Polym. Eng. Sci. 41(10), 1783–1793 (2001).
[Crossref]

1998 (2)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared refractive index and extinction coefficient of polyimide films,” Int. J. Thermophys. 19(3), 905–916 (1998).
[Crossref]

1997 (1)

G. Yu, H. Ishikawa, T. Egawa, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire,” J. J. Appl. Phys., Part 2 36(8A), L1029–L1031 (1997).

1995 (4)

R. H. Morf, “Exponentially convergent and numerically efficient solution of Maxwell’s equations for lamellar gratings,” J. Opt. Soc. Am. A 12(5), 1043–1056 (1995).
[Crossref]

C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, and J. A. Woollam, “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis,” J. Appl. Phys. 77(9), 4677–4687 (1995).
[Crossref]

A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34(22), 4755–4767 (1995).
[Crossref] [PubMed]

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, “InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,” J. Appl. Phys. 77(4), 1715–1724 (1995).
[Crossref]

1993 (1)

G. E. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1–2), 416–422 (1993).
[Crossref]

1988 (1)

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
[Crossref]

1980 (2)

E. Knott and K. Langseth, “Performance degradation of Jaumann absorbers due to curvature,” IEEE Trans. Antenn. Propag. 28(1), 137–139 (1980).
[Crossref]

D. E. Aspnes, “Approximate solution of ellipsometric equations for optically biaxial crystals,” J. Opt. Soc. Am. 70(10), 1275–1277 (1980).
[Crossref] [PubMed]

1975 (1)

1973 (1)

W. Emerson, “Electromagnetic wave absorbers and anechoic chambers through the years,” IEEE Trans. Antenn. Propag. 21(4), 484–490 (1973).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1966 (1)

R. G. Greenler, “Infrared study of adsorbed molecules on metal surfaces by reflection techniques,” J. Chem. Phys. 44(1), 310–315 (1966).
[Crossref]

1965 (1)

F. J. Kelly, “On Kirchhoff’s law and its generalized application to absorption and emission by cavities,” J. Res. Natl. Bur. Stand. Sec. 69B(3), 165–171 (1965).
[Crossref]

1959 (1)

Abelson, J. R.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Aspnes, D. E.

Atwater, H. A.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Aydin, K.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Baba, J. S.

Bakkers, E. P. A. M.

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

Bermel, P.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Boriskina, S. V.

S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical–thermal antennas for enhanced light focusing and local temperature control,” ACS Photonics 3(9), 1714–1722 (2016).
[Crossref]

Brar, V. W.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Braun, P. V.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Butun, S.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Cahill, D. G.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Cavalli, A.

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

Celanovic, I.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Celii, F. G.

C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, and J. A. Woollam, “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis,” J. Appl. Phys. 77(9), 4677–4687 (1995).
[Crossref]

Challener, W. A.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Chen, G.

S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical–thermal antennas for enhanced light focusing and local temperature control,” ACS Photonics 3(9), 1714–1722 (2016).
[Crossref]

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Choi, B.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Choi, M.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chung, T.-S.

W.-L. Qu, T.-M. Ko, R. H. Vora, and T.-S. Chung, “Anisotropic dielectric properties of polyimides consisting of various molar ratios of meta to para diamine with trifluoromethyl group,” Polym. Eng. Sci. 41(10), 1783–1793 (2001).
[Crossref]

Ciesielski, A.

A. Ciesielski, L. Skowronski, M. Trzcinski, E. Górecka, P. Trautman, and T. Szoplik, “Evidence of germanium segregation in gold thin films,” Surf. Sci. 674, 73–78 (2018).
[Crossref]

Clarke, D. R.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Cloete, J. H.

L. J. du Toit and J. H. Cloete, “Advances in the design of Jaumann absorbers,” IEEE AP-S/URSI International Symposium Digest, Dallas, TX, 1212- 1215 (1990).
[Crossref]

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

de Abajo, F. J. G.

A. Manjavacas, S. Thongrattanasiri, J.-J. Greffet, and F. J. G. de Abajo, “Graphene optical-to-thermal converter,” Appl. Phys. Lett. 105(21), 211102 (2014).
[Crossref]

De Sousa Meneses, D.

D. De Sousa Meneses, M. Malki, and P. Echegut, “Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy,” J. Non-Cryst. Solids 352(8), 769–776 (2006).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

du Toit, L. J.

L. J. du Toit and J. H. Cloete, “Advances in the design of Jaumann absorbers,” IEEE AP-S/URSI International Symposium Digest, Dallas, TX, 1212- 1215 (1990).
[Crossref]

Echegut, P.

D. De Sousa Meneses, M. Malki, and P. Echegut, “Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy,” J. Non-Cryst. Solids 352(8), 769–776 (2006).
[Crossref]

Egawa, T.

G. Yu, H. Ishikawa, T. Egawa, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire,” J. J. Appl. Phys., Part 2 36(8A), L1029–L1031 (1997).

Ellison, A. H.

Emerson, W.

W. Emerson, “Electromagnetic wave absorbers and anechoic chambers through the years,” IEEE Trans. Antenn. Propag. 21(4), 484–490 (1973).
[Crossref]

Erden, M. F.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Fan, S.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Fante, R. L.

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
[Crossref]

Francis, S. A.

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Gage, E. C.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Garnett, E. C.

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

Ghebrebrhan, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Goodson, K. E.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Górecka, E.

A. Ciesielski, L. Skowronski, M. Trzcinski, E. Górecka, P. Trautman, and T. Szoplik, “Evidence of germanium segregation in gold thin films,” Surf. Sci. 674, 73–78 (2018).
[Crossref]

Greenler, R. G.

R. G. Greenler, “Infrared study of adsorbed molecules on metal surfaces by reflection techniques,” J. Chem. Phys. 44(1), 310–315 (1966).
[Crossref]

Greffet, J.-J.

A. Manjavacas, S. Thongrattanasiri, J.-J. Greffet, and F. J. G. de Abajo, “Graphene optical-to-thermal converter,” Appl. Phys. Lett. 105(21), 211102 (2014).
[Crossref]

Gudat, W.

Hagemann, H.-J.

Hanss, J.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref] [PubMed]

Harradon, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Haverkort, J. E. M.

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, and J. A. Woollam, “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis,” J. Appl. Phys. 77(9), 4677–4687 (1995).
[Crossref]

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, “InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,” J. Appl. Phys. 77(4), 1715–1724 (1995).
[Crossref]

Hsia, Y.-T.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Hsu, W.-C.

S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical–thermal antennas for enhanced light focusing and local temperature control,” ACS Photonics 3(9), 1714–1722 (2016).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Ishikawa, H.

G. Yu, H. Ishikawa, T. Egawa, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire,” J. J. Appl. Phys., Part 2 36(8A), L1029–L1031 (1997).

Iwanaga, M.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Jang, M. S.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Jellison, G. E.

Jimbo, T.

G. Yu, H. Ishikawa, T. Egawa, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire,” J. J. Appl. Phys., Part 2 36(8A), L1029–L1031 (1997).

Joannopoulos, J. D.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, “InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,” J. Appl. Phys. 77(4), 1715–1724 (1995).
[Crossref]

C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, and J. A. Woollam, “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis,” J. Appl. Phys. 77(9), 4677–4687 (1995).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Ju, G.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Kao, Y.-C.

C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, and J. A. Woollam, “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis,” J. Appl. Phys. 77(9), 4677–4687 (1995).
[Crossref]

Kasaya, T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Keblinski, P.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Kelly, F. J.

F. J. Kelly, “On Kirchhoff’s law and its generalized application to absorption and emission by cavities,” J. Res. Natl. Bur. Stand. Sec. 69B(3), 165–171 (1965).
[Crossref]

Kim, L.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Kim, S.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

King, W. P.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Knott, E.

E. Knott and K. Langseth, “Performance degradation of Jaumann absorbers due to curvature,” IEEE Trans. Antenn. Propag. 28(1), 137–139 (1980).
[Crossref]

Ko, T.-M.

W.-L. Qu, T.-M. Ko, R. H. Vora, and T.-S. Chung, “Anisotropic dielectric properties of polyimides consisting of various molar ratios of meta to para diamine with trifluoromethyl group,” Polym. Eng. Sci. 41(10), 1783–1793 (2001).
[Crossref]

Kocer, H.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Kryder, M. H.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Kunz, C.

Langseth, K.

E. Knott and K. Langseth, “Performance degradation of Jaumann absorbers due to curvature,” IEEE Trans. Antenn. Propag. 28(1), 137–139 (1980).
[Crossref]

Lefever-Button, G.

Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared refractive index and extinction coefficient of polyimide films,” Int. J. Thermophys. 19(3), 905–916 (1998).
[Crossref]

Lewin, M.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref] [PubMed]

Li, P.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref] [PubMed]

Li, Z.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Lopez, J. J.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Mahan, G. D.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Majumdar, A.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Malki, M.

D. De Sousa Meneses, M. Malki, and P. Echegut, “Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy,” J. Non-Cryst. Solids 352(8), 769–776 (2006).
[Crossref]

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Manjavacas, A.

A. Manjavacas, S. Thongrattanasiri, J.-J. Greffet, and F. J. G. de Abajo, “Graphene optical-to-thermal converter,” Appl. Phys. Lett. 105(21), 211102 (2014).
[Crossref]

Mann, S. A.

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

Maris, H. J.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Maß, T. W. W.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref] [PubMed]

McCormack, M. T.

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
[Crossref]

McDaniel, T. W.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Michel, A.-K. U.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref] [PubMed]

Miyazaki, H. T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Morf, R. H.

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Oener, S. Z.

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Palacios, E.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

Phillpot, S. R.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Podolskiy, V. A.

B. M. Wells, C. M. Roberts, and V. A. Podolskiy, “Metamaterials-based Salisbury screens with reduced angular sensitivity,” Appl. Phys. Lett. 105(16), 161105 (2014).
[Crossref]

Pop, E.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Powell, F. R.

Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared refractive index and extinction coefficient of polyimide films,” Int. J. Thermophys. 19(3), 905–916 (1998).
[Crossref]

Qu, W.-L.

W.-L. Qu, T.-M. Ko, R. H. Vora, and T.-S. Chung, “Anisotropic dielectric properties of polyimides consisting of various molar ratios of meta to para diamine with trifluoromethyl group,” Polym. Eng. Sci. 41(10), 1783–1793 (2001).
[Crossref]

Rakic, A. D.

Raman, A.

L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

Roberts, C. M.

B. M. Wells, C. M. Roberts, and V. A. Podolskiy, “Metamaterials-based Salisbury screens with reduced angular sensitivity,” Appl. Phys. Lett. 105(16), 161105 (2014).
[Crossref]

Robitaille, P.-M.

P.-M. Robitaille, “On the validity of Kirchhoff’s law of thermal emission,” IEEE Trans. Plasma Sci. 31(6), 1263–1267 (2003).
[Crossref]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Rottmayer, R. E.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Sakoda, K.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Sherrott, M. C.

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Shi, L.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Skauli, T.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Skowronski, L.

A. Ciesielski, L. Skowronski, M. Trzcinski, E. Górecka, P. Trautman, and T. Szoplik, “Evidence of germanium segregation in gold thin films,” Surf. Sci. 674, 73–78 (2018).
[Crossref]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Snyder, P. G.

C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, and J. A. Woollam, “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis,” J. Appl. Phys. 77(9), 4677–4687 (1995).
[Crossref]

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, “InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,” J. Appl. Phys. 77(4), 1715–1724 (1995).
[Crossref]

Soga, T.

G. Yu, H. Ishikawa, T. Egawa, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire,” J. J. Appl. Phys., Part 2 36(8A), L1029–L1031 (1997).

Soljacic, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sugimoto, Y.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Szoplik, T.

A. Ciesielski, L. Skowronski, M. Trzcinski, E. Górecka, P. Trautman, and T. Szoplik, “Evidence of germanium segregation in gold thin films,” Surf. Sci. 674, 73–78 (2018).
[Crossref]

Taubner, T.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref] [PubMed]

Thongrattanasiri, S.

A. Manjavacas, S. Thongrattanasiri, J.-J. Greffet, and F. J. G. de Abajo, “Graphene optical-to-thermal converter,” Appl. Phys. Lett. 105(21), 211102 (2014).
[Crossref]

Tong, J. K.

S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical–thermal antennas for enhanced light focusing and local temperature control,” ACS Photonics 3(9), 1714–1722 (2016).
[Crossref]

Trautman, P.

A. Ciesielski, L. Skowronski, M. Trzcinski, E. Górecka, P. Trautman, and T. Szoplik, “Evidence of germanium segregation in gold thin films,” Surf. Sci. 674, 73–78 (2018).
[Crossref]

Trzcinski, M.

A. Ciesielski, L. Skowronski, M. Trzcinski, E. Górecka, P. Trautman, and T. Szoplik, “Evidence of germanium segregation in gold thin films,” Surf. Sci. 674, 73–78 (2018).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Umeno, M.

G. Yu, H. Ishikawa, T. Egawa, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire,” J. J. Appl. Phys., Part 2 36(8A), L1029–L1031 (1997).

Vora, R. H.

W.-L. Qu, T.-M. Ko, R. H. Vora, and T.-S. Chung, “Anisotropic dielectric properties of polyimides consisting of various molar ratios of meta to para diamine with trifluoromethyl group,” Polym. Eng. Sci. 41(10), 1783–1793 (2001).
[Crossref]

Wang, H.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Watanabe, J.

G. Yu, H. Ishikawa, T. Egawa, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire,” J. J. Appl. Phys., Part 2 36(8A), L1029–L1031 (1997).

Weinstein, L. A.

S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical–thermal antennas for enhanced light focusing and local temperature control,” ACS Photonics 3(9), 1714–1722 (2016).
[Crossref]

Wells, B. M.

B. M. Wells, C. M. Roberts, and V. A. Podolskiy, “Metamaterials-based Salisbury screens with reduced angular sensitivity,” Appl. Phys. Lett. 105(16), 161105 (2014).
[Crossref]

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, “InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,” J. Appl. Phys. 77(4), 1715–1724 (1995).
[Crossref]

C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, and J. A. Woollam, “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis,” J. Appl. Phys. 77(9), 4677–4687 (1995).
[Crossref]

Wuttig, M.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref] [PubMed]

Yang, X.

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref] [PubMed]

Yao, H.

C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, and J. A. Woollam, “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis,” J. Appl. Phys. 77(9), 4677–4687 (1995).
[Crossref]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Yeng, Y. X.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Yu, G.

G. Yu, H. Ishikawa, T. Egawa, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire,” J. J. Appl. Phys., Part 2 36(8A), L1029–L1031 (1997).

Yu, Z.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Zhang, G.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Zhang, Z. M.

Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared refractive index and extinction coefficient of polyimide films,” Int. J. Thermophys. 19(3), 905–916 (1998).
[Crossref]

Zhu, L.

L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

S. V. Boriskina, L. A. Weinstein, J. K. Tong, W.-C. Hsu, and G. Chen, “Hybrid optical–thermal antennas for enhanced light focusing and local temperature control,” ACS Photonics 3(9), 1714–1722 (2016).
[Crossref]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2(3), 326–333 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

B. M. Wells, C. M. Roberts, and V. A. Podolskiy, “Metamaterials-based Salisbury screens with reduced angular sensitivity,” Appl. Phys. Lett. 105(16), 161105 (2014).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

L. Zhu, A. Raman, and S. Fan, “Color-preserving daytime radiative cooling,” Appl. Phys. Lett. 103(22), 223902 (2013).
[Crossref]

A. Manjavacas, S. Thongrattanasiri, J.-J. Greffet, and F. J. G. de Abajo, “Graphene optical-to-thermal converter,” Appl. Phys. Lett. 105(21), 211102 (2014).
[Crossref]

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Appl. Phys. Rev. (1)

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
[Crossref]

E. Knott and K. Langseth, “Performance degradation of Jaumann absorbers due to curvature,” IEEE Trans. Antenn. Propag. 28(1), 137–139 (1980).
[Crossref]

W. Emerson, “Electromagnetic wave absorbers and anechoic chambers through the years,” IEEE Trans. Antenn. Propag. 21(4), 484–490 (1973).
[Crossref]

IEEE Trans. Plasma Sci. (1)

P.-M. Robitaille, “On the validity of Kirchhoff’s law of thermal emission,” IEEE Trans. Plasma Sci. 31(6), 1263–1267 (2003).
[Crossref]

Int. J. Thermophys. (1)

Z. M. Zhang, G. Lefever-Button, and F. R. Powell, “Infrared refractive index and extinction coefficient of polyimide films,” Int. J. Thermophys. 19(3), 905–916 (1998).
[Crossref]

J. Appl. Phys. (3)

C. M. Herzinger, P. G. Snyder, B. Johs, and J. A. Woollam, “InP optical constants between 0.75 and 5.0 eV determined by variable-angle spectroscopic ellipsometry,” J. Appl. Phys. 77(4), 1715–1724 (1995).
[Crossref]

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83(6), 3323–3336 (1998).
[Crossref]

C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, and J. A. Woollam, “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry and a multisample analysis,” J. Appl. Phys. 77(9), 4677–4687 (1995).
[Crossref]

J. Chem. Phys. (1)

R. G. Greenler, “Infrared study of adsorbed molecules on metal surfaces by reflection techniques,” J. Chem. Phys. 44(1), 310–315 (1966).
[Crossref]

J. J. Appl. Phys., Part 2 (1)

G. Yu, H. Ishikawa, T. Egawa, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire,” J. J. Appl. Phys., Part 2 36(8A), L1029–L1031 (1997).

J. Non-Cryst. Solids (1)

D. De Sousa Meneses, M. Malki, and P. Echegut, “Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy,” J. Non-Cryst. Solids 352(8), 769–776 (2006).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

J. Res. Natl. Bur. Stand. Sec. (1)

F. J. Kelly, “On Kirchhoff’s law and its generalized application to absorption and emission by cavities,” J. Res. Natl. Bur. Stand. Sec. 69B(3), 165–171 (1965).
[Crossref]

Nanoscale Res. Lett. (1)

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljacic, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Nat. Commun. (2)

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4(1), 2630 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

P. Li, X. Yang, T. W. W. Maß, J. Hanss, M. Lewin, A.-K. U. Michel, M. Wuttig, and T. Taubner, “Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material,” Nat. Mater. 15(8), 870–875 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

Nature (1)

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

M. S. Jang, V. W. Brar, M. C. Sherrott, J. J. Lopez, L. Kim, S. Kim, M. Choi, and H. A. Atwater, “Tunable large resonant absorption in a midinfrared graphene Salisbury screen,” Phys. Rev. B 90(16), 165409 (2014).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Polym. Eng. Sci. (1)

W.-L. Qu, T.-M. Ko, R. H. Vora, and T.-S. Chung, “Anisotropic dielectric properties of polyimides consisting of various molar ratios of meta to para diamine with trifluoromethyl group,” Polym. Eng. Sci. 41(10), 1783–1793 (2001).
[Crossref]

Proc. IEEE (1)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6044–6047 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5(1), 15137 (2015).
[Crossref] [PubMed]

Surf. Sci. (1)

A. Ciesielski, L. Skowronski, M. Trzcinski, E. Górecka, P. Trautman, and T. Szoplik, “Evidence of germanium segregation in gold thin films,” Surf. Sci. 674, 73–78 (2018).
[Crossref]

Thin Solid Films (1)

G. E. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1–2), 416–422 (1993).
[Crossref]

Other (25)

G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” in Handbook of Ellipsometry, J.G. Tompkins and E.A. Irene, eds. (William Andrew, 2005) pp 237 – 296.

Validity of Kirchoff’s law is generally accepted in the literature. However, its experimental evidence is under question (See for example ref. [31]).

E. D. Palik, Handbook of Optical Constants of Solids. Academic (1998).

H. Köppel, “Vibronic coupling effects in spectroscopy and non-adiabatic transitions in molecular photodynamics,” in Molecular Quantum Dynamics, F. Gatti. ed (Springer, 2014), pp. 147–180.‏

M. M. Finckenor and D. Dooling, “Multilayer insulation material guidelines,” NASA/TP-1999–209263 (1999).

“Nexolve Materials | Advanced Polymer Materials For High-Tech Applications,” [Online]. Available: http://www.nexolvematerials.com/ . [Accessed: 27-May-2018].

For spin coating, we used CP1 polyimide resin diluted in dyglyme (35% solution). After spin coating, we put the sample on the hot plate at approximately 100°C for one minute to vaporize the volatile gases. To our knowledge, this causes no relevant chemical reaction.

http://ee.sharif.edu/~khavasi/index_files/Page1077.htm [Accessed: 14-March-2018]

https://www.lp2n.institutoptique.fr/Membres-Services/Responsables-d-equipe/LALANNE-Philippe [Accessed: 14-March-2018]

P. Willis and C. H Hsieh, “Space applications of polymeric materials,” Society of Polymer Science Meeting- Kobunshi (1999).

H.-J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” DESY report SR-74/7 (1974). https://refractiveindex.info/download/data/1974/Hagemann%201974%20-%20DESY%20report%20SR-74-7.pdf [Accessed: 27-May-2018].

A. L. Wasserman, Thermal Physics (Cambridge University, 2012). Ch. 14, Eq. (14).39 (p. 218).

These measurements were done at the Northrop Grumman Corporation and we have no information on the approach they were obtained. Nevertheless, we speculate that these are reflection measurements.

A. Naqavi, S. P. Loke, M. D. Kelzenberg, D. M. Callahan, T. Tiwald, E. C. Warmann, P. Espinet-González, N. Vaidya, T. A. Roy, J.-S. Huang, T. G. Vinogradova, and H. A. Atwater, “n, k data and model parameters,” figshare (2018) [retrieved 5 July 2018], https://doi.org/10.6084/m9.figshare.6387395 .

We used different data sets for gold from https://refractiveindex.info . [Accessed: 20-May-2018], which in turn obtained data from Refs. [61–65].

L. J. du Toit and J. H. Cloete, “Advances in the design of Jaumann absorbers,” IEEE AP-S/URSI International Symposium Digest, Dallas, TX, 1212- 1215 (1990).
[Crossref]

We used Matlab optimization toolbox to optimize the multilayer thicknesses, and observed that there is more than one optimum set of layer thicknesses. However, as far as we calculated, the obtained emissivity values for the different optima were close to the values reported here.

The Brewster effect is commonly known as lack of the reflection for TM polarization of light at the interface between two dielectrics.

A planwave impinging on a planar multilayer may have two independent solutions: TE and TM. Since any solution for planewave reflection should be decomposable into these two solutions, and we assume in general both TE and TM may have the same probability of occurrence, so, unpolarized reflection can be obtained by averaging them.

“AZ Technology | Materials, Paint and Coatings: AZ-93 White Thermal Control, Electrically Conductive Paint / Coating (AZ’s Z-93P).” [Online]. Available: http://www.aztechnology.com/materials-coatings-az-93.html . [Accessed: 19-Dec-2016].

S. W. W, “Absorbent body for electromagnetic waves,” US2599944 A, (10-Jun-1952).

S. J. Orfanidis, Electromagnetic Waves and Antennas, [Online]. Available: http://www.ece.rutgers.edu/~orfanidi/ewa/ . [Accessed: 6-March-2018].

For a brief introduction on the primary works on this subject, the reader may read M. G. Hutchins, “Spectrally selective materials for efficient visible, color, solar and thermal radiation control,” in Solar thermal technologies for buildings: The state of the art, M. Santamouris. ed (Rotledge, 2014), pp. 37–38. ‏

J. Meseguer, I. Pérez-Grande, and A. Sanz-Andrés, Spacecraft Thermal Control, (Elsevier, 2012).

C. R. McInnes, Solar Sailing: Technology, Dynamics and Mission Applications, (Springer Science & Business Media, 2013).

Supplementary Material (1)

NameDescription
» Dataset 1       n,k data

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a): The emissivity (300°K) of the Salisbury screen versus the Cr and the polyimide layer thickness. (b): Spectral emissivity of the Salisbury screen as the Cr layer thickness changes, for dielectric thickness of 2.1µm. Note that the scale is different from (a). (c): Same as (a) except that the top Cr sheet is replaced by an Al sheet. (d): Magnitude of the real and imaginary part of the relative permittivity of Cr [31] (blue) and Al [32] (red). The real and imaginary part of the permittivity are indicated by the solid and dashed lines respectively. In (a) to (c) the top pink layer is the metallic sheet made of either Al or Cr, the yellow spacer is the CP1 layer and the bottom black layer is the back reflector.
Fig. 2
Fig. 2 The spectral emissivity that occurs in different layers in the (a): Salisbury screen with the thickness of ~2µm, (b): two-layer Jaumann absorber with the total thickness of ~4µm, and (c): three-layer Jaumann absorber with the total thickness of ~6µm. In all cases the emissivity of the layers is plotted cumulatively, in the same order as the layers are shown. The SiO2, Cr and polyimide layers are shown in blue, pink and yellow, respectively. The back reflector is indicated in black. The values are obtained from rigorous calculations of absorption. The total thickness of the structures are approximate values and can slightly change depending on the optimization, but with different optimizations, we consistently obtained values which were approximately similar.
Fig. 3
Fig. 3 (a): Directional emissivity for both TE- and TM-polarized emission for the three studied structures. TE, TM and unpolarized values are shown by the dashed, dotted and solid curves, respectively. Blue, red and yellow refer to the 1-layer, 2-layer and 3-layer structures. (b): Emissivity vs. areal mass for the three studied structures. The squares and the diamonds show the emissivity at normal angle (squares) and hemispherical (diamonds). The back reflector mass is excluded.
Fig. 4
Fig. 4 (a): The SEM micrograph of the fabricated Salisbury screen. (b): Infrared spectral absorption (inferred from reflection) of the Salisbury screen as obtained by FTIR (yellow) and ellipsometer (30° incidence, blue). The measurements were done with a Nicolet iS50 FTIR coupled to a Continuum microscope with a 100 μm spot size (c): The angle-dependent emissivity for the three fabricated multilayers. (d) The fabricated free-standing Salisbury screen installed on a frame for better demonstration. The flat central part is the Salisbury screen with a total thickness of around 2.1 µm. The surrounding parts meet the underneath frame, hence appear differently.
Fig. 5
Fig. 5 CP1 Uniaxial optical functions of CP1 polyimide. (a) and (b): ordinary n o (λ) and k o (λ). (c) and (d): extraordinary n e (λ) and k e (λ).
Fig. 6
Fig. 6 CP1 polyimide refractive index, n o (λ) and n e (λ), for 0.4 to 2.5 μm. k o (λ)= k e (λ)=0 in this range.
Fig. 7
Fig. 7 (a): penetration depth of Au from 0.3 to 40 µm. (b): Same as (a), zoomed in at wavelengths from 0.3 to 3µm.
Fig. 8
Fig. 8 Spectral emissivity of the Salisbury screen versus the emission angle and the wavelength for (a): TE-polarized emission, and (b): TM-polarized emission.
Fig. 9
Fig. 9 Infrared spectral emissivity of the fabricated structures [66]. (a) at 30 degrees, (b): 1-layer structure, (c): 2-layer structure, (d): 3-layer structure.
Fig. 10
Fig. 10 (a): measurement bandwidth (yellow region) can cover spectral range of the (300 K) blackbody partially. (b): the amount of total power contained within the measurement bandwidth.
Fig. 11
Fig. 11 The spectral emissivity (inferred from specular reflectance measurements at 30 degrees) of CP1 film with (a): Al back reflector and nothing on top, (b): Al back reflector and 2 nm Cr and 10 nm SiO2 on top, and (c) Cr back reflector and 2 nm Cr and 10 nm SiO2 on top. The emissivity of the free-standing foils is notably less than that of those fabricated on Si wafers because the thickness of the CP1 layer is not ideal for the free-standing foils.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϵ θ ¯ = P rad P rad,BB = dΩcosθ dλ I BB ( λ,T )ϵ( λ,Ω ) dΩcosθ dλ I BB ( λ,T )
ε( E )= ε 1 ( E )i ε 2 ( E )=1+ A 1 E 1 2 E 2 + n=1 k ( ε 1 n G i ε 2 n G )
ε 2 n G = A n ( e ( E E n σ ) 2 e ( E+ E n σ ) 2 ).
Iα 1 λ 5 1 e h/λkT  1 .