Abstract

Arrays of dielectric cylinders support two fundamental dipole active eigenmodes, which can be manipulated to elicit a variety of electromagnetic responses in all-dielectric metamaterials. Dissipation is a critical parameter in determining functionality; the present work varies material loss to explore the rich electromagnetic response of this class of metasurface. Four experimental cases are investigated which span electromagnetic response ranging from Huygens surfaces with transmissivity T = 94%, and phase ϕS21 = 235°, to metasurfaces which absorb 99.96% of incident energy. We find perfect absorption to be analogous to the driven damped harmonic oscillator, with critical damping occurring at resonance. With high phase contrast, transmission, and absorption all accessible from a single system, we present a uniquely diverse all-dielectric system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Degenerate critical coupling in all-dielectric metasurface absorbers

Xianshun Ming, Xinyu Liu, Liqun Sun, and Willie J. Padilla
Opt. Express 25(20) 24658-24669 (2017)

Experimental realization of a terahertz all-dielectric metasurface absorber

Xinyu Liu, Kebin Fan, Ilya V. Shadrivov, and Willie J. Padilla
Opt. Express 25(1) 191-201 (2017)

Dynamic transmission control based on all-dielectric Huygens metasurfaces

Austin Howes, Wenyi Wang, Ivan Kravchenko, and Jason Valentine
Optica 5(7) 787-792 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. a. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  3. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 1–4 (2008).
    [Crossref]
  4. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34, 3012–3014 (2009).
    [Crossref] [PubMed]
  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [Crossref] [PubMed]
  6. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mat. 2423 (2012).
  7. C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104201113 (2014).
    [Crossref]
  8. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 1–4 (2007).
    [Crossref]
  9. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature 11, 23–36 (2016).
  10. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Op. Exp. 25, 191 (2017).
    [Crossref]
  11. I. Staude, M. Decker, E. Rusak, D. N. Neshev, and I. Brener, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9, 4308–4315 (2015).
    [Crossref] [PubMed]
  12. P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
    [Crossref]
  13. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mat. Today 12, 60–69 (2009).
    [Crossref]
  14. E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance Properties of Optical All-Dielectric Metamaterials Using Two-Dimensional Multipole Expansion,” Phys. Rev. B 86, 245108 (2012).
    [Crossref]
  15. X. Ming, X. Liu, L. Sun, and W. J. Padilla, “Degenerate critical coupling in all-dielectric metasurface absorbers,” Opt. Exp. 25, 24658 (2017).
    [Crossref]
  16. B. Neuner, D. Korobkin, C. Fietz, D. Carole, G. Ferro, and G. Shvets, “Critically coupled surface phonon-polariton excitation in silicon carbide,” Opt. Lett. 34, 2667–2669 (2009).
    [Crossref] [PubMed]
  17. C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).
  18. K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4, 601 (2017).
    [Crossref]
  19. B. L. Anderson and R. L. Anderson, Fundamentals of Semiconductor Devices (McGraw-Hill College, 2004), 1st ed.
  20. M. van Exter and D. Grischkowsky, “Optical and Elelctronic Properties od Doped Silicon from 0.1 to 2 Thz,” Appl. Phys. Lett. 56, 1694–1696 (1990).
    [Crossref]
  21. C. R. Simovski, “Material parameters of metamaterials (a Review),” Opt. and Spect. 107, 726–753 (2009).
    [Crossref]
  22. D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phy. Rev. E 71, 036617 (2005).
    [Crossref]
  23. R. Simon, J. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (John Wiley & Sons, 1994), 3rd ed.

2017 (3)

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Op. Exp. 25, 191 (2017).
[Crossref]

X. Ming, X. Liu, L. Sun, and W. J. Padilla, “Degenerate critical coupling in all-dielectric metasurface absorbers,” Opt. Exp. 25, 24658 (2017).
[Crossref]

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4, 601 (2017).
[Crossref]

2016 (3)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature 11, 23–36 (2016).

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

2015 (1)

I. Staude, M. Decker, E. Rusak, D. N. Neshev, and I. Brener, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref] [PubMed]

2014 (1)

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104201113 (2014).
[Crossref]

2012 (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mat. 2423 (2012).

E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance Properties of Optical All-Dielectric Metamaterials Using Two-Dimensional Multipole Expansion,” Phys. Rev. B 86, 245108 (2012).
[Crossref]

2010 (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

2007 (1)

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 1–4 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. a. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

2005 (1)

D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phy. Rev. E 71, 036617 (2005).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

1990 (1)

M. van Exter and D. Grischkowsky, “Optical and Elelctronic Properties od Doped Silicon from 0.1 to 2 Thz,” Appl. Phys. Lett. 56, 1694–1696 (1990).
[Crossref]

Anderson, B. L.

B. L. Anderson and R. L. Anderson, Fundamentals of Semiconductor Devices (McGraw-Hill College, 2004), 1st ed.

Anderson, R. L.

B. L. Anderson and R. L. Anderson, Fundamentals of Semiconductor Devices (McGraw-Hill College, 2004), 1st ed.

Bhaskaran, M.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Bingham, C.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104201113 (2014).
[Crossref]

Brener, I.

I. Staude, M. Decker, E. Rusak, D. N. Neshev, and I. Brener, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 1–4 (2007).
[Crossref]

Brückl, H.

Carole, D.

Chremmos, I.

E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance Properties of Optical All-Dielectric Metamaterials Using Two-Dimensional Multipole Expansion,” Phys. Rev. B 86, 245108 (2012).
[Crossref]

Cummer, S. a.

D. Schurig, J. J. Mock, B. J. Justice, S. a. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Dai, N.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Decker, M.

I. Staude, M. Decker, E. Rusak, D. N. Neshev, and I. Brener, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref] [PubMed]

Demeo, D.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104201113 (2014).
[Crossref]

Fan, K.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Op. Exp. 25, 191 (2017).
[Crossref]

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4, 601 (2017).
[Crossref]

Ferro, G.

Fietz, C.

Fumeaux, C.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Grischkowsky, D.

M. van Exter and D. Grischkowsky, “Optical and Elelctronic Properties od Doped Silicon from 0.1 to 2 Thz,” Appl. Phys. Lett. 56, 1694–1696 (1990).
[Crossref]

Gutruf, P.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Hao, J.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

He, Q.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature 11, 23–36 (2016).

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature 11, 23–36 (2016).

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. a. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kallos, E.

E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance Properties of Optical All-Dielectric Metamaterials Using Two-Dimensional Multipole Expansion,” Phys. Rev. B 86, 245108 (2012).
[Crossref]

Korobkin, D.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

Latham, N. P.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104201113 (2014).
[Crossref]

Li, X.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mat. Today 12, 60–69 (2009).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Ming, X. Liu, L. Sun, and W. J. Padilla, “Degenerate critical coupling in all-dielectric metasurface absorbers,” Opt. Exp. 25, 24658 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Op. Exp. 25, 191 (2017).
[Crossref]

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4, 601 (2017).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mat. 2423 (2012).

Ma, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Maier, T.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Miao, Z.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Ming, X.

X. Ming, X. Liu, L. Sun, and W. J. Padilla, “Degenerate critical coupling in all-dielectric metasurface absorbers,” Opt. Exp. 25, 24658 (2017).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. a. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Neshev, D. N.

I. Staude, M. Decker, E. Rusak, D. N. Neshev, and I. Brener, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref] [PubMed]

Neuner, B.

Padilla, W.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104201113 (2014).
[Crossref]

Padilla, W. J.

X. Ming, X. Liu, L. Sun, and W. J. Padilla, “Degenerate critical coupling in all-dielectric metasurface absorbers,” Opt. Exp. 25, 24658 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Op. Exp. 25, 191 (2017).
[Crossref]

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4, 601 (2017).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mat. 2423 (2012).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. a. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Qiu, M.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Qu, C.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Rusak, E.

I. Staude, M. Decker, E. Rusak, D. N. Neshev, and I. Brener, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

Schuller, J. A.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 1–4 (2007).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. a. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Shadrivov, I. V.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Op. Exp. 25, 191 (2017).
[Crossref]

Shemelya, C.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104201113 (2014).
[Crossref]

Shvets, G.

Simon, R.

R. Simon, J. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (John Wiley & Sons, 1994), 3rd ed.

Simovski, C. R.

C. R. Simovski, “Material parameters of metamaterials (a Review),” Opt. and Spect. 107, 726–753 (2009).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. a. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phy. Rev. E 71, 036617 (2005).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phy. Rev. E 71, 036617 (2005).
[Crossref]

Sriram, S.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. a. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Staude, I.

I. Staude, M. Decker, E. Rusak, D. N. Neshev, and I. Brener, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref] [PubMed]

Suen, J. Y.

Sun, L.

X. Ming, X. Liu, L. Sun, and W. J. Padilla, “Degenerate critical coupling in all-dielectric metasurface absorbers,” Opt. Exp. 25, 24658 (2017).
[Crossref]

Sun, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Taubner, T.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 1–4 (2007).
[Crossref]

Van Duzer, T.

R. Simon, J. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (John Wiley & Sons, 1994), 3rd ed.

van Exter, M.

M. van Exter and D. Grischkowsky, “Optical and Elelctronic Properties od Doped Silicon from 0.1 to 2 Thz,” Appl. Phys. Lett. 56, 1694–1696 (1990).
[Crossref]

Vandervelde, T. E.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104201113 (2014).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phy. Rev. E 71, 036617 (2005).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mat. 2423 (2012).

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Whinnery, J.

R. Simon, J. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (John Wiley & Sons, 1994), 3rd ed.

Withayachumnankul, W.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Wu, X.

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104201113 (2014).
[Crossref]

Xiao, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Yannopapas, V.

E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance Properties of Optical All-Dielectric Metamaterials Using Two-Dimensional Multipole Expansion,” Phys. Rev. B 86, 245108 (2012).
[Crossref]

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mat. Today 12, 60–69 (2009).
[Crossref]

Zhang, Y.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mat. Today 12, 60–69 (2009).
[Crossref]

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mat. Today 12, 60–69 (2009).
[Crossref]

Zhou, L.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Zia, R.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 1–4 (2007).
[Crossref]

Zou, C.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

ACS Nano (2)

I. Staude, M. Decker, E. Rusak, D. N. Neshev, and I. Brener, “Active Tuning of All-Dielectric Metasurfaces,” ACS Nano 9, 4308–4315 (2015).
[Crossref] [PubMed]

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Adv. Mat. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mat. 2423 (2012).

Appl. Phys. Lett. (2)

C. Shemelya, D. Demeo, N. P. Latham, X. Wu, C. Bingham, W. Padilla, and T. E. Vandervelde, “Stable high temperature metamaterial emitters for thermophotovoltaic applications,” Appl. Phys. Lett. 104201113 (2014).
[Crossref]

M. van Exter and D. Grischkowsky, “Optical and Elelctronic Properties od Doped Silicon from 0.1 to 2 Thz,” Appl. Phys. Lett. 56, 1694–1696 (1990).
[Crossref]

Mat. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mat. Today 12, 60–69 (2009).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[Crossref] [PubMed]

Nature (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nature 11, 23–36 (2016).

Op. Exp. (1)

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Op. Exp. 25, 191 (2017).
[Crossref]

Opt. and Spect. (1)

C. R. Simovski, “Material parameters of metamaterials (a Review),” Opt. and Spect. 107, 726–753 (2009).
[Crossref]

Opt. Exp. (1)

X. Ming, X. Liu, L. Sun, and W. J. Padilla, “Degenerate critical coupling in all-dielectric metasurface absorbers,” Opt. Exp. 25, 24658 (2017).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phy. Rev. E (1)

D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phy. Rev. E 71, 036617 (2005).
[Crossref]

Phys. Rev. B (1)

E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance Properties of Optical All-Dielectric Metamaterials Using Two-Dimensional Multipole Expansion,” Phys. Rev. B 86, 245108 (2012).
[Crossref]

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 1–4 (2008).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 1–4 (2007).
[Crossref]

Proceedings of IEEE International Workshop on Electromagnetics (1)

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, Y. Zhang, and L. Zhou, “Tailor the functionalities of metasurfaces based on a complete phase diagram,” Proceedings of IEEE International Workshop on Electromagnetics,  235503, 1–6 (2016).

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. a. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Other (2)

B. L. Anderson and R. L. Anderson, Fundamentals of Semiconductor Devices (McGraw-Hill College, 2004), 1st ed.

R. Simon, J. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (John Wiley & Sons, 1994), 3rd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 All-dielectric metasurface. (a) Schematic of the metasurface with incident terahertz (THz) pulse. (b) Fabricated sample on 23µm PDMS substrate, with dimensions r = 60µ, h = 50µm, a = 172µm. (c) Simulated transmission (c) and absorption (d) for values of loss ranging from tan δ = 0.0001 to tan δ = 0.0582. The vertical line indicates an operating frequency of 1.004THz, where T=88.9% and A=88.6% are achieved. Arrows in (c) and (d) indicate how the transmission and absorption, respectively, evolve for increasing loss tangent
Fig. 2
Fig. 2 Scattering and loss. (a)–(d) Experimental (solid) and simulated (dashed) results for four cases of dielectric loss.
Fig. 3
Fig. 3 Effective material constants. Surface plots show frequency dependent material constants as a function of dielectric loss. (a) Real part of the complex impedance normalized to free space (b) imaginary part of the index of refraction, normalized to its maximum value (c) Absorption, experimental cases are shown as open circles (d) Material Q-factor calculated by Eq. (5). Dashed horizontal line indicates resonant frequency (1.02THz), dashed vertical line indicates peak absorption.
Fig. 4
Fig. 4 Effective material model. Four cases of plane wave propagation in linear homogeneous media are considered, corresponding the values of dielectric loss in silicon indicated in legend. Electric (a) and magnetic (b) field amplitude in a medium with the effective material constants of the DMS. The x-axis is normalized to cylinder height, which is indicated by the gray region. Notably critical damping occurs when tan δ = 0.0582 (red curve), with the E-field, and H-field decaying well before the cylinder height (z/h = 1). The 1/e point at critical damping is indicated by a vertical dashed line in (a) and (b). (c) The argument of the complex impedance of the metasurface, vertical line indicates critical damping. (d) Wave propagation in bulk silicon
Fig. 5
Fig. 5 Scattering at resonance. (a) Simulated absorption (red), reflection (blue), and transmission (black) of the HMS at 1.02THz. Regions suitable for a Huygens metasurface (HMS), and all-dielectric metasurface absorber (DMSA) are indicated in the plot. The cutoff for the DMSA is an absorption of 98%, and is indicated by the shaded area. (b) The ratio of the dissipative (Δ) and radiative (Γ) rates for the EH111 and HE111 modes in the DMS system. Absorption peaks at tan δ = 0.0582, where Δ = Γ.

Tables (1)

Tables Icon

Table 1 Doped Silicon Wafer Properties and Calculated Dielectric Constants

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r = J 1 , 1 λ 0 2 π ϵ 1 1 ,
h = λ g 2 ,
ω p 2 = n e 2 / ϵ 0 m ,
tan δ = ϵ 2 ϵ 1 = ω s ω p 2 / ω ϵ ( ω 2 + ω s 2 ) ω p 2 ,
Q T 1 = Q E 1 + Q M 1
Q E 1 = n 2 Z 1 n 1 Z 2 n 1 Z 1 + n 2 Z 2 , Q M 1 = n 2 Z 1 + n 1 Z 2 n 1 Z 1 n 2 Z 2 ,
E x = x ^ Re [ E 0 e n ˜ k 0 z ] , H y = y ^ Re [ E 0 Z ˜ e n ˜ k 0 z ] ,

Metrics