Abstract

A single-multi-single mode (SMS) fiber structure with spiral microgroove, fabricated by femtosecond laser inscription has been proposed and successfully employed for refractive index (RI) sensing. The multimode interference in the SMS structure is effectively affected by the external perturbation due to the microgroove, which goes deep into the core of the multimode fiber (MMF). Experimental results show that this femtosecond-induced spiral micro-structured SMS (FISM-SMS) fiber structure exhibits a linear response to eternal liquid refractive index in a large RI range of 1.3373–1.4345. The maximum sensitivity of the structure can reach to 2144 nm/RIU and can be further improved by increasing the depth of the spiral micro-grooves.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity SMS fiber structure based refractometer – analysis and experiment

Qiang Wu, Yuliya Semenova, Pengfei Wang, and Gerald Farrell
Opt. Express 19(9) 7937-7944 (2011)

Ultrahigh-sensitivity temperature fiber sensor based on multimode interference

Susana Silva, Edwin G. P. Pachon, Marcos A. R. Franco, Juliano G. Hayashi, F. Xavier Malcata, Orlando Frazão, Pedro Jorge, and Cristiano M. B. Cordeiro
Appl. Opt. 51(16) 3236-3242 (2012)

High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference

Pengfei Wang, Gilberto Brambilla, Ming Ding, Yuliya Semenova, Qiang Wu, and Gerald Farrell
Opt. Lett. 36(12) 2233-2235 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
    [Crossref] [PubMed]
  2. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
    [Crossref] [PubMed]
  3. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction,” J. Lightwave Technol. 16(9), 1606–1612 (1998).
    [Crossref]
  4. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
    [Crossref]
  5. F. Shen, K. Zhou, N. Gordon, L. Zhang, and X. Shu, “Compact eccentric long period grating with improved sensitivity in low refractive index region,” Opt. Express 25(14), 15729–15736 (2017).
    [Crossref] [PubMed]
  6. D. J. Feng, M. S. Zhang, G. Liu, X. L. Liu, and D. F. Jia, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
    [Crossref]
  7. A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, and K. Watanabe, “A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta2O5/Pd multi-layers film,” Opt. Express 22(15), 18556–18563 (2014).
    [Crossref] [PubMed]
  8. P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50(14), 2032–2036 (2011).
    [Crossref] [PubMed]
  9. M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
    [Crossref] [PubMed]
  10. Y. Zhang, A. Zhou, B. Qin, H. Deng, Z. Liu, J. Yang, and L. Yuan, “Refractive Index Sensing Characteristics of Single-Mode Fiber-Based Modal Interferometers,” J. Lightwave Technol. 32(9), 1734–1740 (2014).
    [Crossref]
  11. Y. Gong, T. Zhao, Y. J. Rao, and Y. Wu, “All-Fiber Curvature Sensor Based on Multimode Interference,” IEEE Photonics Technol. Lett. 23(11), 679–681 (2011).
    [Crossref]
  12. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32(21), 3074–3076 (2007).
    [Crossref] [PubMed]
  13. Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
    [Crossref]
  14. Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure,” Meas. Sci. Technol. 2(22), 025203 (2011).
    [Crossref]
  15. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photonics Technol. Lett. 15(8), 679–681 (2003).
    [Crossref]
  16. Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-High Sensitivity of Fiber Temperature Sensor Based on Leaky-Mode Bent SMS Structure,” IEEE Photonics Technol. Lett. 25(6), 560–563 (2013).
    [Crossref]
  17. P. Chen, X. Shu, F. Shen, and H. Cao, “Sensitive refractive index sensor based on an assembly-free fiber multi-mode interferometer fabricated by femtosecond laser,” Opt. Express 25(24), 29896–29905 (2017).
    [Crossref] [PubMed]
  18. S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
    [Crossref]
  19. Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-Sensitive Fiber-Optic Refractometer Based on a Core-Diameter-Mismatch Mach–Zehnder Interferometer,” IEEE Sens. J. 12(7), 2501–2505 (2012).
    [Crossref]
  20. C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped Optical Fiber for Refractive Index Sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
    [Crossref] [PubMed]
  21. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
    [Crossref] [PubMed]
  22. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [Crossref] [PubMed]
  23. J. M. Karanja, Y. Dai, X. Zhou, B. Liu, and M. Yang, “Micro-structured femtosecond laser assisted FBG hydrogen sensor,” Opt. Express 23(24), 31034–31042 (2015).
    [Crossref] [PubMed]
  24. X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
    [Crossref]
  25. J. Wu, Y. Miao, B. Song, K. Zhang, W. Lin, H. Zhang, B. Liu, and J. Yao, “Temperature-insensitive optical fiber refractometer based on multimode interference in two cascaded no-core square fibers,” Appl. Opt. 53(22), 5037–5041 (2014).
    [Crossref] [PubMed]
  26. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
    [Crossref] [PubMed]
  27. Y. Liu, G. Wu, R. Gao, and S. Qu, “High-quality Mach-Zehnder interferometer based on a microcavity in single-multi-single mode fiber structure for refractive index sensing,” Appl. Opt. 56(4), 847–853 (2017).
    [Crossref] [PubMed]
  28. N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
    [Crossref] [PubMed]
  29. K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 2468 (2016).
    [Crossref]
  30. K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (4)

2016 (3)

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 2468 (2016).
[Crossref]

2015 (2)

2014 (5)

2013 (1)

Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-High Sensitivity of Fiber Temperature Sensor Based on Leaky-Mode Bent SMS Structure,” IEEE Photonics Technol. Lett. 25(6), 560–563 (2013).
[Crossref]

2012 (2)

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
[Crossref]

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-Sensitive Fiber-Optic Refractometer Based on a Core-Diameter-Mismatch Mach–Zehnder Interferometer,” IEEE Sens. J. 12(7), 2501–2505 (2012).
[Crossref]

2011 (5)

2010 (2)

M. Han, F. Guo, and Y. Lu, “Optical fiber refractometer based on cladding-mode Bragg grating,” Opt. Lett. 35(3), 399–401 (2010).
[Crossref] [PubMed]

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped Optical Fiber for Refractive Index Sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (1)

2003 (2)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photonics Technol. Lett. 15(8), 679–681 (2003).
[Crossref]

1998 (1)

Araújo, F. M.

Auguste, J. L.

Badenes, G.

Bhatia, P.

Brambilla, G.

Bucholtz, F.

Caldas, P.

Cao, H.

Chen, C. H.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped Optical Fiber for Refractive Index Sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Chen, P.

Cui, Y.

Dai, Y.

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

J. M. Karanja, Y. Dai, X. Zhou, B. Liu, and M. Yang, “Micro-structured femtosecond laser assisted FBG hydrogen sensor,” Opt. Express 23(24), 31034–31042 (2015).
[Crossref] [PubMed]

Deng, H.

Ding, M.

Dinh, X. Q.

Farahi, F.

Farrell, G.

Feng, D. J.

D. J. Feng, M. S. Zhang, G. Liu, X. L. Liu, and D. F. Jia, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

Feng, Z.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-Sensitive Fiber-Optic Refractometer Based on a Core-Diameter-Mismatch Mach–Zehnder Interferometer,” IEEE Sens. J. 12(7), 2501–2505 (2012).
[Crossref]

Ferreira, L. A.

Frazão, O.

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
[Crossref]

O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32(21), 3074–3076 (2007).
[Crossref] [PubMed]

Gao, R.

Gong, Y.

Y. Gong, T. Zhao, Y. J. Rao, and Y. Wu, “All-Fiber Curvature Sensor Based on Multimode Interference,” IEEE Photonics Technol. Lett. 23(11), 679–681 (2011).
[Crossref]

Gordon, N.

Guo, F.

Gupta, B. D.

Han, M.

Hatta, A. M.

Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure,” Meas. Sci. Technol. 2(22), 025203 (2011).
[Crossref]

Hosoki, A.

Hu, M.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-Sensitive Fiber-Optic Refractometer Based on a Core-Diameter-Mismatch Mach–Zehnder Interferometer,” IEEE Sens. J. 12(7), 2501–2505 (2012).
[Crossref]

Humbert, G.

Igawa, H.

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Jha, R.

Jia, D. F.

D. J. Feng, M. S. Zhang, G. Liu, X. L. Liu, and D. F. Jia, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

Johnson, E. G.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photonics Technol. Lett. 15(8), 679–681 (2003).
[Crossref]

Karanja, J. M.

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

J. M. Karanja, Y. Dai, X. Zhou, B. Liu, and M. Yang, “Micro-structured femtosecond laser assisted FBG hydrogen sensor,” Opt. Express 23(24), 31034–31042 (2015).
[Crossref] [PubMed]

Kersey, A. D.

Li, K.

Lin, W.

Liu, B.

Liu, D.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

Liu, G.

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref] [PubMed]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 2468 (2016).
[Crossref]

D. J. Feng, M. S. Zhang, G. Liu, X. L. Liu, and D. F. Jia, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

Liu, L.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

Liu, X. L.

D. J. Feng, M. S. Zhang, G. Liu, X. L. Liu, and D. F. Jia, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

Liu, Y.

Liu, Z.

Lu, P.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

Lu, Y.

Malcata, F. X.

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
[Crossref]

Mehta, A.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photonics Technol. Lett. 15(8), 679–681 (2003).
[Crossref]

Miao, Y.

Mohammed, W.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photonics Technol. Lett. 15(8), 679–681 (2003).
[Crossref]

Monro, T. M.

Ni, W.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

Nishiyama, M.

Patrick, H. J.

Pruneri, V.

Qiao, X.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-Sensitive Fiber-Optic Refractometer Based on a Core-Diameter-Mismatch Mach–Zehnder Interferometer,” IEEE Sens. J. 12(7), 2501–2505 (2012).
[Crossref]

Qin, B.

Qu, S.

Quan, M.

Rao, Y. J.

Y. Gong, T. Zhao, Y. J. Rao, and Y. Wu, “All-Fiber Curvature Sensor Based on Multimode Interference,” IEEE Photonics Technol. Lett. 23(11), 679–681 (2011).
[Crossref]

Rong, Q.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-Sensitive Fiber-Optic Refractometer Based on a Core-Diameter-Mismatch Mach–Zehnder Interferometer,” IEEE Sens. J. 12(7), 2501–2505 (2012).
[Crossref]

Santos, J. L.

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
[Crossref]

O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32(21), 3074–3076 (2007).
[Crossref] [PubMed]

Seki, A.

Semenova, Y.

Shen, F.

Shu, X.

Shum, P. P.

Silva, S.

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
[Crossref]

Song, B.

Sun, H.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-Sensitive Fiber-Optic Refractometer Based on a Core-Diameter-Mismatch Mach–Zehnder Interferometer,” IEEE Sens. J. 12(7), 2501–2505 (2012).
[Crossref]

Sun, Q.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

Sun, Y.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

Tang, J. L.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped Optical Fiber for Refractive Index Sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Tian, J.

Tian, X.

Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-High Sensitivity of Fiber Temperature Sensor Based on Leaky-Mode Bent SMS Structure,” IEEE Photonics Technol. Lett. 25(6), 560–563 (2013).
[Crossref]

Tsao, T. C.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped Optical Fiber for Refractive Index Sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Viegas, J.

Villatoro, J.

Wang, P.

Wang, R.

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-Sensitive Fiber-Optic Refractometer Based on a Core-Diameter-Mismatch Mach–Zehnder Interferometer,” IEEE Sens. J. 12(7), 2501–2505 (2012).
[Crossref]

Wang, S.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

Warren-Smith, S. C.

Watanabe, K.

Wei, L.

Wu, G.

Wu, J.

Wu, Q.

Wu, W. T.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped Optical Fiber for Refractive Index Sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Wu, Y.

Y. Gong, T. Zhao, Y. J. Rao, and Y. Wu, “All-Fiber Curvature Sensor Based on Multimode Interference,” IEEE Photonics Technol. Lett. 23(11), 679–681 (2011).
[Crossref]

Wu, Z.

Xue, L.

Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-High Sensitivity of Fiber Temperature Sensor Based on Leaky-Mode Bent SMS Structure,” IEEE Photonics Technol. Lett. 25(6), 560–563 (2013).
[Crossref]

Yang, J.

Yang, L.

Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-High Sensitivity of Fiber Temperature Sensor Based on Leaky-Mode Bent SMS Structure,” IEEE Photonics Technol. Lett. 25(6), 560–563 (2013).
[Crossref]

Yang, M.

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

J. M. Karanja, Y. Dai, X. Zhou, B. Liu, and M. Yang, “Micro-structured femtosecond laser assisted FBG hydrogen sensor,” Opt. Express 23(24), 31034–31042 (2015).
[Crossref] [PubMed]

Yang, W.

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

Yao, J.

Yao, Y.

Yuan, L.

Zhang, H.

Zhang, K.

Zhang, L.

Zhang, M.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 2468 (2016).
[Crossref]

Zhang, M. S.

D. J. Feng, M. S. Zhang, G. Liu, X. L. Liu, and D. F. Jia, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

Zhang, N.

Zhang, N. M. Y.

Zhang, Q.

Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-High Sensitivity of Fiber Temperature Sensor Based on Leaky-Mode Bent SMS Structure,” IEEE Photonics Technol. Lett. 25(6), 560–563 (2013).
[Crossref]

Zhang, T.

K. Li, N. Zhang, N. M. Y. Zhang, G. Liu, T. Zhang, and L. Wei, “Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler,” Opt. Lett. 43(4), 679–682 (2018).
[Crossref] [PubMed]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 2468 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, A. Zhou, B. Qin, H. Deng, Z. Liu, J. Yang, and L. Yuan, “Refractive Index Sensing Characteristics of Single-Mode Fiber-Based Modal Interferometers,” J. Lightwave Technol. 32(9), 1734–1740 (2014).
[Crossref]

Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-High Sensitivity of Fiber Temperature Sensor Based on Leaky-Mode Bent SMS Structure,” IEEE Photonics Technol. Lett. 25(6), 560–563 (2013).
[Crossref]

Zhao, T.

Y. Gong, T. Zhao, Y. J. Rao, and Y. Wu, “All-Fiber Curvature Sensor Based on Multimode Interference,” IEEE Photonics Technol. Lett. 23(11), 679–681 (2011).
[Crossref]

Zhou, A.

Zhou, K.

Zhou, X.

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

J. M. Karanja, Y. Dai, X. Zhou, B. Liu, and M. Yang, “Micro-structured femtosecond laser assisted FBG hydrogen sensor,” Opt. Express 23(24), 31034–31042 (2015).
[Crossref] [PubMed]

Zhu, B.

Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-High Sensitivity of Fiber Temperature Sensor Based on Leaky-Mode Bent SMS Structure,” IEEE Photonics Technol. Lett. 25(6), 560–563 (2013).
[Crossref]

Zou, M.

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 2468 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. Gong, T. Zhao, Y. J. Rao, and Y. Wu, “All-Fiber Curvature Sensor Based on Multimode Interference,” IEEE Photonics Technol. Lett. 23(11), 679–681 (2011).
[Crossref]

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode Interference-Based Fiber-Optic Displacement Sensor,” IEEE Photonics Technol. Lett. 15(8), 679–681 (2003).
[Crossref]

Y. Zhang, X. Tian, L. Xue, Q. Zhang, L. Yang, and B. Zhu, “Super-High Sensitivity of Fiber Temperature Sensor Based on Leaky-Mode Bent SMS Structure,” IEEE Photonics Technol. Lett. 25(6), 560–563 (2013).
[Crossref]

IEEE Sens. J. (2)

D. J. Feng, M. S. Zhang, G. Liu, X. L. Liu, and D. F. Jia, “D-Shaped Plastic Optical Fiber Sensor for Testing Refractive Index,” IEEE Sens. J. 14(5), 1673–1676 (2014).
[Crossref]

Q. Rong, X. Qiao, R. Wang, H. Sun, M. Hu, and Z. Feng, “High-Sensitive Fiber-Optic Refractometer Based on a Core-Diameter-Mismatch Mach–Zehnder Interferometer,” IEEE Sens. J. 12(7), 2501–2505 (2012).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (2)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003).
[Crossref]

Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure,” Meas. Sci. Technol. 2(22), 025203 (2011).
[Crossref]

Opt. Commun. (1)

Y. Sun, D. Liu, P. Lu, Q. Sun, W. Yang, S. Wang, L. Liu, and W. Ni, “High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure,” Opt. Commun. 405, 416–420 (2017).
[Crossref]

Opt. Express (7)

P. Chen, X. Shu, F. Shen, and H. Cao, “Sensitive refractive index sensor based on an assembly-free fiber multi-mode interferometer fabricated by femtosecond laser,” Opt. Express 25(24), 29896–29905 (2017).
[Crossref] [PubMed]

F. Shen, K. Zhou, N. Gordon, L. Zhang, and X. Shu, “Compact eccentric long period grating with improved sensitivity in low refractive index region,” Opt. Express 25(14), 15729–15736 (2017).
[Crossref] [PubMed]

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, and K. Watanabe, “A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta2O5/Pd multi-layers film,” Opt. Express 22(15), 18556–18563 (2014).
[Crossref] [PubMed]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
[Crossref] [PubMed]

J. M. Karanja, Y. Dai, X. Zhou, B. Liu, and M. Yang, “Micro-structured femtosecond laser assisted FBG hydrogen sensor,” Opt. Express 23(24), 31034–31042 (2015).
[Crossref] [PubMed]

N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref] [PubMed]

Opt. Lett. (6)

Sens. Actuators B Chem. (2)

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, “A reflective optical fiber refractometer based on multimode interference,” Sens. Actuators B Chem. 161(1), 88–92 (2012).
[Crossref]

X. Zhou, Y. Dai, M. Zou, J. M. Karanja, and M. Yang, “FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser,” Sens. Actuators B Chem. 236, 392–398 (2016).
[Crossref]

Sensors (Basel) (1)

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped Optical Fiber for Refractive Index Sensing,” Sensors (Basel) 10(5), 4794–4804 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the femtosecond-induced spiral micro-structured SMS fiber structure.
Fig. 2
Fig. 2 Simulated optical field profiles (a) in the end of the MMF for the sensor without spiral microgroove; (b) in the end of the lead-out SMF for the sensor without spiral microgroove; (c) in the end of the MMF for the sensor with spiral microgroove; (d) in the end of the lead-out SMF for the sensor with spiral microgroove; (e) of light propagating along the multimode fiber.
Fig. 3
Fig. 3 SEM of the Femtosecond-induced spiral micro-structured SMS fiber structure.
Fig. 4
Fig. 4 Transmission spectrums of s-3 before and after laser ablation.
Fig. 5
Fig. 5 Schematic experimental setup for measuring the external RI.
Fig. 6
Fig. 6 Performance of sensors with pitch of 120 μm under different laser power.
Fig. 7
Fig. 7 Performance of sensors with different pitches (single spiral) under laser power of 20mw.
Fig. 8
Fig. 8 Performance of refractometer with processing parameters of pitch 60 μm and power 20mW—(a) in NaCl solutions; (b) in glycerin solutions.
Fig. 9
Fig. 9 Wavelength shift of the refractometer along with the temperature increasing from 30 °C to 60 °C.

Tables (1)

Tables Icon

Table 1 Parameters of tested samples and its performance in NaCl solutions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E( r,z )= m=1 M a m Ψ m (r)+ n=M N b a n Ψ n (r)
  L s =nl= L p w cosθ

Metrics