Abstract

A wide color gamut (WCG) display has great color rendering capability and offers the opportunity to achieve a pleasing and realistic appearance in terms of image quality. To take full advantage of the large display gamut, a new gamut extension algorithm (GEA) is proposed based on a new color appearance scale, vividness. The performance of the new GEA was investigated via a psychophysical experiment together with five commonly used GEAs. In addition, two different uniform color spaces (UCSs) were also studied including the CAM02-UCS color space and a space, Jzazbz, designed for high dynamic range (HDR) and WCG applications. The results showed that the newly proposed GEA, i.e. the vividness-extension (VE) algorithm, outperformed all the other GEAs and the Jzazbz space was a promising UCS for evaluating gamut extension.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Colour gamut mapping between small and large colour gamuts: Part I. gamut compression

Lihao Xu, Baiyue Zhao, and M. R. Luo
Opt. Express 26(9) 11481-11495 (2018)

Perceptually uniform color space for image signals including high dynamic range and wide gamut

Muhammad Safdar, Guihua Cui, Youn Jin Kim, and Ming Ronnier Luo
Opt. Express 25(13) 15131-15151 (2017)

CIE 2017 color fidelity index Rf: a better index to predict perceived color difference?

Sophie Jost, Coralie Cauwerts, and Pascale Avouac
J. Opt. Soc. Am. A 35(4) B202-B213 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Xu, B. Zhao, and M. R. Luo, “Color Gamut Mapping: PART I. Gamut Compression,” Opt. Express 26(9), 11481–11495 (2018).
    [Crossref] [PubMed]
  2. J. Morovic, Color Gamut Mapping (John Wiley & Sons, 2008).
  3. M. Sakurai, T. Nakatsue, Y. Shimpuku, R. L. Heckaman, and M. D. Fairchild, “Evaluation of Gamut-Expansion Algorithms for Wide-Gamut Display,” in SID Symposium Digest of Technical Paper (2009), pp. 1006–1009.
    [Crossref]
  4. J. Laird, R. Muijs, and J. Kuang, “Development and evaluation of gamut extension algorithms,” Color Res. Appl. 34(6), 443–451 (2010).
    [Crossref]
  5. G. Ward, H. Yoo, A. Soudi, T. Akhavan, G. Ward, H. Yoo, A. Soudi, and T. Akhavan, “Exploiting Wide-gamut Displays,” in Proceedings of Color Imaging Conference (2016), pp. 163–167.
  6. G. Song, “Skin Color Region Protect Algorithm for Color Gamut Extension,” J. Inf. Comput. Sci. 11(6), 1909–1916 (2014).
    [Crossref]
  7. Y. Li, G. Song, and H. Li, “A multilevel gamut extension method for Wide Gamut Displays,” in Proceedings of Electric Information and Control Engineering (2011), pp. 1035–1038.
  8. S. Nakauchi, S. Hatanaka, and S. Usui, “Color gamut mapping based on a perceptual image difference measure,” Color Res. Appl. 24(4), 280–291 (2010).
    [Crossref]
  9. S. W. Zamir, J. Vazquezcorral, and M. Bertalmío, “Gamut extension for cinema: psychophysical evaluation of the state of the art and a new algorithm,” in proceedings of Human Vision and Electronic Imaging (2015), p. 93940U.
  10. Commission Internationale de l’Éclairage (CIE), “Recommendations on Uniform Color Spaces, Color Difference Equations, Psychometrics Color Terms,” in Supplement No. 2 of CIE Publication No. 15 (1971).
  11. S. W. Zamir, J. Vazquez-Corral, and M. Bertalmio, “Gamut Mapping in Cinematography Through Perceptually-Based Contrast Modification,” IEEE J. Sel. Top. Signal Process. 8(3), 490–503 (2014).
    [Crossref]
  12. M. Bertalmío, V. Caselles, E. Provenzi, and A. Rizzi, “Perceptual color correction through variational techniques,” IEEE Trans. Image Process. 16(4), 1058–1072 (2007).
    [Crossref] [PubMed]
  13. P. Zolliker and K. Simon, “Retaining Local Image Information in Gamut Mapping Algorithms,” IEEE Trans. Image Process. 16(3), 664–672 (2007).
    [Crossref] [PubMed]
  14. M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance. Part I. Lutchi color appearance data,” Color Res. Appl. 16(3), 166–180 (2010).
    [Crossref]
  15. R. S. Berns, “Extending CIELAB: Vividness,Vab*Dab*Tab*,” Color Res. Appl. 39(4), 322–330 (2014).
    [Crossref]
  16. Y. J. Cho, L. C. Ou, and R. Luo, “A Cross-Cultural Comparison of Saturation, Vividness, Blackness and Whiteness Scales,” Color Res. Appl. 42(2), 203–215 (2016).
    [Crossref]
  17. Y. J. Cho, L. C. Ou, G. Cui, and R. Luo, “New Color Appearance Scales for Describing Saturation, Vividness, Blackness, and Whiteness,” Color Res. Appl. 42(5), 552–563 (2017).
    [Crossref]
  18. Commission Internationale de l’Éclairage (CIE), “Guidelines for the Evaluation of Gamut Mapping Algorithms,” in CIE Publication No.156 (2003).
  19. Society of Motion Picture and Television Engineers (SMPTE), “Digital Cinema Quality - Reference Projector and Environment,” in SMPTE RP 431–2 (2011).
  20. International Telecommunication Union (ITU), “Parameter values for ultra-high definition television systems for production and international programme exchange,” in ITU-R Recommendation BT.2020 (2012).
  21. International Telecommunication Union (ITU), “Image parameter values for high dynamic range television for use in production and international programme exchange,” in ITU-R Recommendation BT. 2100 (2017).
  22. International Electrotechnical Commission (IEC), “Multimedia Systems and Equipment-Color Measurement and Management-Part 2-1: Color Management-Default RGB Color Space-sRGB,” in IEC 61966–4 (1999).
  23. R. S. Berns, “Methods for Characterizing CRT Displays,” Displays 16(4), 173–182 (1996).
    [Crossref]
  24. M. R. Luo, G. Cui, and C. Li, “Uniform Color Spaces Based on CIECAM02 Color Appearance Model,” Color Res. Appl. 31(4), 320–330 (2006).
    [Crossref]
  25. M. Safdar, G. Cui, Y. J. Kim, and M. R. Luo, “Perceptually Uniform Color Space for Image Signals Including High Dynamic Range and Wide Gamut,” Opt. Express 25(13), 15131–15151 (2017).
    [Crossref] [PubMed]
  26. N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” in Color and Imaging Conference (2002), pp. 23–27.
  27. C. J. Bartleson, “Memory colors of familiar objects,” J. Opt. Soc. Am. 50(1), 73–77 (1960).
    [Crossref] [PubMed]
  28. K. McLaren, “An Introduction to Instrumental Shade Passing and Sorting and a Review of Recent Developments,” Color. Technol. 92(9), 317–326 (2010).
  29. L. L. Thurstone, “A Law of Comparative Judgment,” Psychol. Rev. 34(4), 273–286 (1927).
    [Crossref]

2018 (1)

2017 (2)

M. Safdar, G. Cui, Y. J. Kim, and M. R. Luo, “Perceptually Uniform Color Space for Image Signals Including High Dynamic Range and Wide Gamut,” Opt. Express 25(13), 15131–15151 (2017).
[Crossref] [PubMed]

Y. J. Cho, L. C. Ou, G. Cui, and R. Luo, “New Color Appearance Scales for Describing Saturation, Vividness, Blackness, and Whiteness,” Color Res. Appl. 42(5), 552–563 (2017).
[Crossref]

2016 (1)

Y. J. Cho, L. C. Ou, and R. Luo, “A Cross-Cultural Comparison of Saturation, Vividness, Blackness and Whiteness Scales,” Color Res. Appl. 42(2), 203–215 (2016).
[Crossref]

2014 (3)

R. S. Berns, “Extending CIELAB: Vividness,Vab*Dab*Tab*,” Color Res. Appl. 39(4), 322–330 (2014).
[Crossref]

G. Song, “Skin Color Region Protect Algorithm for Color Gamut Extension,” J. Inf. Comput. Sci. 11(6), 1909–1916 (2014).
[Crossref]

S. W. Zamir, J. Vazquez-Corral, and M. Bertalmio, “Gamut Mapping in Cinematography Through Perceptually-Based Contrast Modification,” IEEE J. Sel. Top. Signal Process. 8(3), 490–503 (2014).
[Crossref]

2010 (4)

S. Nakauchi, S. Hatanaka, and S. Usui, “Color gamut mapping based on a perceptual image difference measure,” Color Res. Appl. 24(4), 280–291 (2010).
[Crossref]

J. Laird, R. Muijs, and J. Kuang, “Development and evaluation of gamut extension algorithms,” Color Res. Appl. 34(6), 443–451 (2010).
[Crossref]

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance. Part I. Lutchi color appearance data,” Color Res. Appl. 16(3), 166–180 (2010).
[Crossref]

K. McLaren, “An Introduction to Instrumental Shade Passing and Sorting and a Review of Recent Developments,” Color. Technol. 92(9), 317–326 (2010).

2007 (2)

M. Bertalmío, V. Caselles, E. Provenzi, and A. Rizzi, “Perceptual color correction through variational techniques,” IEEE Trans. Image Process. 16(4), 1058–1072 (2007).
[Crossref] [PubMed]

P. Zolliker and K. Simon, “Retaining Local Image Information in Gamut Mapping Algorithms,” IEEE Trans. Image Process. 16(3), 664–672 (2007).
[Crossref] [PubMed]

2006 (1)

M. R. Luo, G. Cui, and C. Li, “Uniform Color Spaces Based on CIECAM02 Color Appearance Model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

1996 (1)

R. S. Berns, “Methods for Characterizing CRT Displays,” Displays 16(4), 173–182 (1996).
[Crossref]

1960 (1)

1927 (1)

L. L. Thurstone, “A Law of Comparative Judgment,” Psychol. Rev. 34(4), 273–286 (1927).
[Crossref]

Akhavan, T.

G. Ward, H. Yoo, A. Soudi, T. Akhavan, G. Ward, H. Yoo, A. Soudi, and T. Akhavan, “Exploiting Wide-gamut Displays,” in Proceedings of Color Imaging Conference (2016), pp. 163–167.

G. Ward, H. Yoo, A. Soudi, T. Akhavan, G. Ward, H. Yoo, A. Soudi, and T. Akhavan, “Exploiting Wide-gamut Displays,” in Proceedings of Color Imaging Conference (2016), pp. 163–167.

Bartleson, C. J.

Berns, R. S.

R. S. Berns, “Extending CIELAB: Vividness,Vab*Dab*Tab*,” Color Res. Appl. 39(4), 322–330 (2014).
[Crossref]

R. S. Berns, “Methods for Characterizing CRT Displays,” Displays 16(4), 173–182 (1996).
[Crossref]

Bertalmio, M.

S. W. Zamir, J. Vazquez-Corral, and M. Bertalmio, “Gamut Mapping in Cinematography Through Perceptually-Based Contrast Modification,” IEEE J. Sel. Top. Signal Process. 8(3), 490–503 (2014).
[Crossref]

Bertalmío, M.

M. Bertalmío, V. Caselles, E. Provenzi, and A. Rizzi, “Perceptual color correction through variational techniques,” IEEE Trans. Image Process. 16(4), 1058–1072 (2007).
[Crossref] [PubMed]

Caselles, V.

M. Bertalmío, V. Caselles, E. Provenzi, and A. Rizzi, “Perceptual color correction through variational techniques,” IEEE Trans. Image Process. 16(4), 1058–1072 (2007).
[Crossref] [PubMed]

Cho, Y. J.

Y. J. Cho, L. C. Ou, G. Cui, and R. Luo, “New Color Appearance Scales for Describing Saturation, Vividness, Blackness, and Whiteness,” Color Res. Appl. 42(5), 552–563 (2017).
[Crossref]

Y. J. Cho, L. C. Ou, and R. Luo, “A Cross-Cultural Comparison of Saturation, Vividness, Blackness and Whiteness Scales,” Color Res. Appl. 42(2), 203–215 (2016).
[Crossref]

Clarke, A. A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance. Part I. Lutchi color appearance data,” Color Res. Appl. 16(3), 166–180 (2010).
[Crossref]

Cui, G.

Y. J. Cho, L. C. Ou, G. Cui, and R. Luo, “New Color Appearance Scales for Describing Saturation, Vividness, Blackness, and Whiteness,” Color Res. Appl. 42(5), 552–563 (2017).
[Crossref]

M. Safdar, G. Cui, Y. J. Kim, and M. R. Luo, “Perceptually Uniform Color Space for Image Signals Including High Dynamic Range and Wide Gamut,” Opt. Express 25(13), 15131–15151 (2017).
[Crossref] [PubMed]

M. R. Luo, G. Cui, and C. Li, “Uniform Color Spaces Based on CIECAM02 Color Appearance Model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

Fairchild, M. D.

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” in Color and Imaging Conference (2002), pp. 23–27.

M. Sakurai, T. Nakatsue, Y. Shimpuku, R. L. Heckaman, and M. D. Fairchild, “Evaluation of Gamut-Expansion Algorithms for Wide-Gamut Display,” in SID Symposium Digest of Technical Paper (2009), pp. 1006–1009.
[Crossref]

Hatanaka, S.

S. Nakauchi, S. Hatanaka, and S. Usui, “Color gamut mapping based on a perceptual image difference measure,” Color Res. Appl. 24(4), 280–291 (2010).
[Crossref]

Heckaman, R. L.

M. Sakurai, T. Nakatsue, Y. Shimpuku, R. L. Heckaman, and M. D. Fairchild, “Evaluation of Gamut-Expansion Algorithms for Wide-Gamut Display,” in SID Symposium Digest of Technical Paper (2009), pp. 1006–1009.
[Crossref]

Hunt, R. W. G.

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” in Color and Imaging Conference (2002), pp. 23–27.

Kim, Y. J.

Kuang, J.

J. Laird, R. Muijs, and J. Kuang, “Development and evaluation of gamut extension algorithms,” Color Res. Appl. 34(6), 443–451 (2010).
[Crossref]

Laird, J.

J. Laird, R. Muijs, and J. Kuang, “Development and evaluation of gamut extension algorithms,” Color Res. Appl. 34(6), 443–451 (2010).
[Crossref]

Li, C.

M. R. Luo, G. Cui, and C. Li, “Uniform Color Spaces Based on CIECAM02 Color Appearance Model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” in Color and Imaging Conference (2002), pp. 23–27.

Luo, M. R.

L. Xu, B. Zhao, and M. R. Luo, “Color Gamut Mapping: PART I. Gamut Compression,” Opt. Express 26(9), 11481–11495 (2018).
[Crossref] [PubMed]

M. Safdar, G. Cui, Y. J. Kim, and M. R. Luo, “Perceptually Uniform Color Space for Image Signals Including High Dynamic Range and Wide Gamut,” Opt. Express 25(13), 15131–15151 (2017).
[Crossref] [PubMed]

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance. Part I. Lutchi color appearance data,” Color Res. Appl. 16(3), 166–180 (2010).
[Crossref]

M. R. Luo, G. Cui, and C. Li, “Uniform Color Spaces Based on CIECAM02 Color Appearance Model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” in Color and Imaging Conference (2002), pp. 23–27.

Luo, R.

Y. J. Cho, L. C. Ou, G. Cui, and R. Luo, “New Color Appearance Scales for Describing Saturation, Vividness, Blackness, and Whiteness,” Color Res. Appl. 42(5), 552–563 (2017).
[Crossref]

Y. J. Cho, L. C. Ou, and R. Luo, “A Cross-Cultural Comparison of Saturation, Vividness, Blackness and Whiteness Scales,” Color Res. Appl. 42(2), 203–215 (2016).
[Crossref]

McLaren, K.

K. McLaren, “An Introduction to Instrumental Shade Passing and Sorting and a Review of Recent Developments,” Color. Technol. 92(9), 317–326 (2010).

Moroney, N.

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” in Color and Imaging Conference (2002), pp. 23–27.

Muijs, R.

J. Laird, R. Muijs, and J. Kuang, “Development and evaluation of gamut extension algorithms,” Color Res. Appl. 34(6), 443–451 (2010).
[Crossref]

Nakatsue, T.

M. Sakurai, T. Nakatsue, Y. Shimpuku, R. L. Heckaman, and M. D. Fairchild, “Evaluation of Gamut-Expansion Algorithms for Wide-Gamut Display,” in SID Symposium Digest of Technical Paper (2009), pp. 1006–1009.
[Crossref]

Nakauchi, S.

S. Nakauchi, S. Hatanaka, and S. Usui, “Color gamut mapping based on a perceptual image difference measure,” Color Res. Appl. 24(4), 280–291 (2010).
[Crossref]

Newman, T.

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” in Color and Imaging Conference (2002), pp. 23–27.

Ou, L. C.

Y. J. Cho, L. C. Ou, G. Cui, and R. Luo, “New Color Appearance Scales for Describing Saturation, Vividness, Blackness, and Whiteness,” Color Res. Appl. 42(5), 552–563 (2017).
[Crossref]

Y. J. Cho, L. C. Ou, and R. Luo, “A Cross-Cultural Comparison of Saturation, Vividness, Blackness and Whiteness Scales,” Color Res. Appl. 42(2), 203–215 (2016).
[Crossref]

Provenzi, E.

M. Bertalmío, V. Caselles, E. Provenzi, and A. Rizzi, “Perceptual color correction through variational techniques,” IEEE Trans. Image Process. 16(4), 1058–1072 (2007).
[Crossref] [PubMed]

Rhodes, P. A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance. Part I. Lutchi color appearance data,” Color Res. Appl. 16(3), 166–180 (2010).
[Crossref]

Rizzi, A.

M. Bertalmío, V. Caselles, E. Provenzi, and A. Rizzi, “Perceptual color correction through variational techniques,” IEEE Trans. Image Process. 16(4), 1058–1072 (2007).
[Crossref] [PubMed]

Safdar, M.

Sakurai, M.

M. Sakurai, T. Nakatsue, Y. Shimpuku, R. L. Heckaman, and M. D. Fairchild, “Evaluation of Gamut-Expansion Algorithms for Wide-Gamut Display,” in SID Symposium Digest of Technical Paper (2009), pp. 1006–1009.
[Crossref]

Schappo, A.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance. Part I. Lutchi color appearance data,” Color Res. Appl. 16(3), 166–180 (2010).
[Crossref]

Scrivener, S. A. R.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance. Part I. Lutchi color appearance data,” Color Res. Appl. 16(3), 166–180 (2010).
[Crossref]

Shimpuku, Y.

M. Sakurai, T. Nakatsue, Y. Shimpuku, R. L. Heckaman, and M. D. Fairchild, “Evaluation of Gamut-Expansion Algorithms for Wide-Gamut Display,” in SID Symposium Digest of Technical Paper (2009), pp. 1006–1009.
[Crossref]

Simon, K.

P. Zolliker and K. Simon, “Retaining Local Image Information in Gamut Mapping Algorithms,” IEEE Trans. Image Process. 16(3), 664–672 (2007).
[Crossref] [PubMed]

Song, G.

G. Song, “Skin Color Region Protect Algorithm for Color Gamut Extension,” J. Inf. Comput. Sci. 11(6), 1909–1916 (2014).
[Crossref]

Soudi, A.

G. Ward, H. Yoo, A. Soudi, T. Akhavan, G. Ward, H. Yoo, A. Soudi, and T. Akhavan, “Exploiting Wide-gamut Displays,” in Proceedings of Color Imaging Conference (2016), pp. 163–167.

G. Ward, H. Yoo, A. Soudi, T. Akhavan, G. Ward, H. Yoo, A. Soudi, and T. Akhavan, “Exploiting Wide-gamut Displays,” in Proceedings of Color Imaging Conference (2016), pp. 163–167.

Tait, C. J.

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance. Part I. Lutchi color appearance data,” Color Res. Appl. 16(3), 166–180 (2010).
[Crossref]

Thurstone, L. L.

L. L. Thurstone, “A Law of Comparative Judgment,” Psychol. Rev. 34(4), 273–286 (1927).
[Crossref]

Usui, S.

S. Nakauchi, S. Hatanaka, and S. Usui, “Color gamut mapping based on a perceptual image difference measure,” Color Res. Appl. 24(4), 280–291 (2010).
[Crossref]

Vazquez-Corral, J.

S. W. Zamir, J. Vazquez-Corral, and M. Bertalmio, “Gamut Mapping in Cinematography Through Perceptually-Based Contrast Modification,” IEEE J. Sel. Top. Signal Process. 8(3), 490–503 (2014).
[Crossref]

Ward, G.

G. Ward, H. Yoo, A. Soudi, T. Akhavan, G. Ward, H. Yoo, A. Soudi, and T. Akhavan, “Exploiting Wide-gamut Displays,” in Proceedings of Color Imaging Conference (2016), pp. 163–167.

G. Ward, H. Yoo, A. Soudi, T. Akhavan, G. Ward, H. Yoo, A. Soudi, and T. Akhavan, “Exploiting Wide-gamut Displays,” in Proceedings of Color Imaging Conference (2016), pp. 163–167.

Xu, L.

Yoo, H.

G. Ward, H. Yoo, A. Soudi, T. Akhavan, G. Ward, H. Yoo, A. Soudi, and T. Akhavan, “Exploiting Wide-gamut Displays,” in Proceedings of Color Imaging Conference (2016), pp. 163–167.

G. Ward, H. Yoo, A. Soudi, T. Akhavan, G. Ward, H. Yoo, A. Soudi, and T. Akhavan, “Exploiting Wide-gamut Displays,” in Proceedings of Color Imaging Conference (2016), pp. 163–167.

Zamir, S. W.

S. W. Zamir, J. Vazquez-Corral, and M. Bertalmio, “Gamut Mapping in Cinematography Through Perceptually-Based Contrast Modification,” IEEE J. Sel. Top. Signal Process. 8(3), 490–503 (2014).
[Crossref]

Zhao, B.

Zolliker, P.

P. Zolliker and K. Simon, “Retaining Local Image Information in Gamut Mapping Algorithms,” IEEE Trans. Image Process. 16(3), 664–672 (2007).
[Crossref] [PubMed]

Color Res. Appl. (7)

J. Laird, R. Muijs, and J. Kuang, “Development and evaluation of gamut extension algorithms,” Color Res. Appl. 34(6), 443–451 (2010).
[Crossref]

S. Nakauchi, S. Hatanaka, and S. Usui, “Color gamut mapping based on a perceptual image difference measure,” Color Res. Appl. 24(4), 280–291 (2010).
[Crossref]

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying color appearance. Part I. Lutchi color appearance data,” Color Res. Appl. 16(3), 166–180 (2010).
[Crossref]

R. S. Berns, “Extending CIELAB: Vividness,Vab*Dab*Tab*,” Color Res. Appl. 39(4), 322–330 (2014).
[Crossref]

Y. J. Cho, L. C. Ou, and R. Luo, “A Cross-Cultural Comparison of Saturation, Vividness, Blackness and Whiteness Scales,” Color Res. Appl. 42(2), 203–215 (2016).
[Crossref]

Y. J. Cho, L. C. Ou, G. Cui, and R. Luo, “New Color Appearance Scales for Describing Saturation, Vividness, Blackness, and Whiteness,” Color Res. Appl. 42(5), 552–563 (2017).
[Crossref]

M. R. Luo, G. Cui, and C. Li, “Uniform Color Spaces Based on CIECAM02 Color Appearance Model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

Color. Technol. (1)

K. McLaren, “An Introduction to Instrumental Shade Passing and Sorting and a Review of Recent Developments,” Color. Technol. 92(9), 317–326 (2010).

Displays (1)

R. S. Berns, “Methods for Characterizing CRT Displays,” Displays 16(4), 173–182 (1996).
[Crossref]

IEEE J. Sel. Top. Signal Process. (1)

S. W. Zamir, J. Vazquez-Corral, and M. Bertalmio, “Gamut Mapping in Cinematography Through Perceptually-Based Contrast Modification,” IEEE J. Sel. Top. Signal Process. 8(3), 490–503 (2014).
[Crossref]

IEEE Trans. Image Process. (2)

M. Bertalmío, V. Caselles, E. Provenzi, and A. Rizzi, “Perceptual color correction through variational techniques,” IEEE Trans. Image Process. 16(4), 1058–1072 (2007).
[Crossref] [PubMed]

P. Zolliker and K. Simon, “Retaining Local Image Information in Gamut Mapping Algorithms,” IEEE Trans. Image Process. 16(3), 664–672 (2007).
[Crossref] [PubMed]

J. Inf. Comput. Sci. (1)

G. Song, “Skin Color Region Protect Algorithm for Color Gamut Extension,” J. Inf. Comput. Sci. 11(6), 1909–1916 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Psychol. Rev. (1)

L. L. Thurstone, “A Law of Comparative Judgment,” Psychol. Rev. 34(4), 273–286 (1927).
[Crossref]

Other (12)

N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, “The CIECAM02 Color Appearance Model,” in Color and Imaging Conference (2002), pp. 23–27.

J. Morovic, Color Gamut Mapping (John Wiley & Sons, 2008).

M. Sakurai, T. Nakatsue, Y. Shimpuku, R. L. Heckaman, and M. D. Fairchild, “Evaluation of Gamut-Expansion Algorithms for Wide-Gamut Display,” in SID Symposium Digest of Technical Paper (2009), pp. 1006–1009.
[Crossref]

G. Ward, H. Yoo, A. Soudi, T. Akhavan, G. Ward, H. Yoo, A. Soudi, and T. Akhavan, “Exploiting Wide-gamut Displays,” in Proceedings of Color Imaging Conference (2016), pp. 163–167.

Y. Li, G. Song, and H. Li, “A multilevel gamut extension method for Wide Gamut Displays,” in Proceedings of Electric Information and Control Engineering (2011), pp. 1035–1038.

S. W. Zamir, J. Vazquezcorral, and M. Bertalmío, “Gamut extension for cinema: psychophysical evaluation of the state of the art and a new algorithm,” in proceedings of Human Vision and Electronic Imaging (2015), p. 93940U.

Commission Internationale de l’Éclairage (CIE), “Recommendations on Uniform Color Spaces, Color Difference Equations, Psychometrics Color Terms,” in Supplement No. 2 of CIE Publication No. 15 (1971).

Commission Internationale de l’Éclairage (CIE), “Guidelines for the Evaluation of Gamut Mapping Algorithms,” in CIE Publication No.156 (2003).

Society of Motion Picture and Television Engineers (SMPTE), “Digital Cinema Quality - Reference Projector and Environment,” in SMPTE RP 431–2 (2011).

International Telecommunication Union (ITU), “Parameter values for ultra-high definition television systems for production and international programme exchange,” in ITU-R Recommendation BT.2020 (2012).

International Telecommunication Union (ITU), “Image parameter values for high dynamic range television for use in production and international programme exchange,” in ITU-R Recommendation BT. 2100 (2017).

International Electrotechnical Commission (IEC), “Multimedia Systems and Equipment-Color Measurement and Management-Part 2-1: Color Management-Default RGB Color Space-sRGB,” in IEC 61966–4 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Illustration of vividness direction. The points in the vectors away from black were said to have different vividness values.
Fig. 2
Fig. 2 Mapping towards the lightness axis. P is the source color and P is the mapped color after Step 1. P b and P b ' are the intersection of line EP with the source and the newly constructed gamuts, respectively. E is the mapping center on the lightness axis that has the same lightness value as point P.
Fig. 3
Fig. 3 Illustration of vividness extension. The source color P is mapped to P along the vividness direction. E is the focal point (black) in the destination gamut. P l is the intersection of E P with the lower source boundary. P h is the intersection of E P with the higher source boundary. P hh is the intersection of E P with the higher destination boundary.
Fig. 4
Fig. 4 Illustration of chroma extension. E is the mapping center on the lightness axis that has the same lightness value as P . P l is the intersection of E P with the source gamut after Step 2 and P d is the intersection of E P with the destination boundary. P out is the final output.
Fig. 5
Fig. 5 The comparison of the sRGB, DCI-P3 and the display gamuts in the CIE 1976 u'v' diagram.
Fig. 6
Fig. 6 Different hue planes for the source gamut (display gamut) and the destination gamut (sRGB), as well as a vertical view of both gamuts.
Fig. 7
Fig. 7 The seven test images: (1) Building, (2) Lover, (3) Fruit, (4) Bay, (5) Garden (6) Spring, and (7) Animation. Image 7(1) was repeated.
Fig. 8
Fig. 8 The experimental setup.
Fig. 9
Fig. 9 The overall result of GEA experiment: z-score is plotted for each GEA and for each UCS.
Fig. 10
Fig. 10 The performance of each GEA and UCS combination for each individual image. The results are scaled such that SDS (same driving signal) has a value of 0 and, hence, results for that algorithm are not shown.
Fig. 11
Fig. 11 Halos found in areas adjacent to the roof. Left is the original image and right is the reproduction processed with the Zamir et al. algorithm.
Fig. 12
Fig. 12 Image dependency for different GEAs and UCSs.

Tables (2)

Tables Icon

Table 1 The % Wrong Decisions representing the intra-observer and inter-observer variability.

Tables Icon

Table 2 The ranking of GEA and UCS performance based on 7 images (1 = best, 9 = worst, C = CAM02-UCS, J = Jzazbz)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E P ' ¯ ={ EP ¯ ; EP ¯ 0.6× E P b ¯ 0.6× E P b ' ¯ + EP ¯ 0.6× E P b ' ¯ E P b ¯ 0.6× E P b ' ¯ ×0.4× E P b ' ¯ ; EP ¯ >0.6× E P b ¯
E P ¯ = E P hh ¯ ×( E P ¯ E P h ¯ k×v×μ)
v= E P b ¯ E P w ¯ ,k= P P h ¯ P l P h ¯ andμ=1 C P C CUSP
E P out ¯ ={ E P ¯ ; E P ¯ 0.6× E P l ¯ 0.6× E P l ¯ + E P ¯ 0.6× E P l ¯ 0.4× E P l ¯ ×( E P d ¯ 0.6× E P l ¯ ); E P ¯ >0.6× E P l ¯
CI=A±1.96 σ N =A± 1.96 N * 2

Metrics