Abstract

We demonstrate a novel and compact FBG interrogation system for multiplexed static strain sensing with a free running mode-locked fiber laser. Multiplexed FBG array in cascading are interrogated by coherent dual-comb pulses generated from a single fiber laser. Dual-comb spectroscopy is achieved with the fiber laser to precisely detect the strain-induced spectral shifts of the FBG sensors. Multi-point strain measurements are performed to characterize the proposed system, where a large dynamic range of 520 με with 0.5 με resolution is achieved.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy

Naoya Kuse, Akira Ozawa, and Yohei Kobayashi
Opt. Express 21(9) 11141-11149 (2013)

Picometer-resolution dual-comb spectroscopy with a free-running fiber laser

Xin Zhao, Guoqing Hu, Bofeng Zhao, Cui Li, Yingling Pan, Ya Liu, Takeshi Yasui, and Zheng Zheng
Opt. Express 24(19) 21833-21845 (2016)

Dual-comb spectroscopy with a single free-running thulium-doped fiber laser

Ruoyu Liao, Youjian Song, Wu Liu, Haosen Shi, Lu Chai, and Minglie Hu
Opt. Express 26(8) 11046-11054 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
    [Crossref]
  2. L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
    [Crossref]
  3. J. Guo, S. Xue, Q. Zhao, and C. Yang, “Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating,” Opt. Express 22(16), 19573–19580 (2014).
    [Crossref] [PubMed]
  4. J. Guo and C. Yang, “Highly stabilized phase-shifted fiber Bragg grating sensing system for ultrasonic detection,” IEEE Photonics Technol. Lett. 27(8), 848–851 (2015).
    [Crossref]
  5. J. Leng and A. Asundim, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuator A-Phys. 103(3), 330–340 (2003).
    [Crossref]
  6. K. T. Lau, L. Yuan, L. M. Zhou, J. Wu, and C. H. Woo, “Strain monitoring in FRP laminates and concrete beams using FBG sensors,” Compos. Struct. 51(1), 9–20 (2001).
    [Crossref]
  7. T. J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, and G. Coppotelli, “Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring,” Smart Mater. Struct. 22(7), 075027 (2013).
    [Crossref]
  8. M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring-Present status and applications,” Sens. Actuator A-Phys. 147(1), 150–164 (2008).
    [Crossref]
  9. H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
    [Crossref] [PubMed]
  10. Q. Liu, T. Tokunaga, and Z. He, “Realization of nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers,” Opt. Express 19(21), 20214–20223 (2011).
    [Crossref] [PubMed]
  11. N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21(9), 11141–11149 (2013).
    [Crossref] [PubMed]
  12. S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
    [Crossref] [PubMed]
  13. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 3(1), 175–205 (2010).
    [Crossref] [PubMed]
  14. M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
    [Crossref] [PubMed]
  15. S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
    [Crossref] [PubMed]
  16. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
    [Crossref] [PubMed]
  17. K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett. 33(1), 64–66 (2008).
    [Crossref] [PubMed]
  18. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  19. S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
    [Crossref]
  20. C. Zeng, X. Liu, and L. Yun, “Bidirectional fiber soliton laser mode-locked by single-wall carbon nanotubes,” Opt. Express 21(16), 18937–18942 (2013).
    [Crossref] [PubMed]
  21. Y. Zhao, C. Yu, and Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36(1), 39–42 (2004).
    [Crossref]
  22. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. hys. B 65(2), 277– 294 (1997).
  23. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
    [Crossref]

2017 (1)

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (3)

2014 (1)

2013 (3)

2011 (3)

Q. Liu, T. Tokunaga, and Z. He, “Realization of nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers,” Opt. Express 19(21), 20214–20223 (2011).
[Crossref] [PubMed]

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
[Crossref] [PubMed]

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

2010 (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 3(1), 175–205 (2010).
[Crossref] [PubMed]

2008 (2)

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring-Present status and applications,” Sens. Actuator A-Phys. 147(1), 150–164 (2008).
[Crossref]

K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett. 33(1), 64–66 (2008).
[Crossref] [PubMed]

2006 (1)

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

2004 (1)

Y. Zhao, C. Yu, and Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36(1), 39–42 (2004).
[Crossref]

2003 (1)

J. Leng and A. Asundim, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuator A-Phys. 103(3), 330–340 (2003).
[Crossref]

2001 (1)

K. T. Lau, L. Yuan, L. M. Zhou, J. Wu, and C. H. Woo, “Strain monitoring in FRP laminates and concrete beams using FBG sensors,” Compos. Struct. 51(1), 9–20 (2001).
[Crossref]

1997 (2)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. hys. B 65(2), 277– 294 (1997).

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Achuthan, A.

T. J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, and G. Coppotelli, “Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring,” Smart Mater. Struct. 22(7), 075027 (2013).
[Crossref]

Adler, F.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 3(1), 175–205 (2010).
[Crossref] [PubMed]

Arsenault, T. J.

T. J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, and G. Coppotelli, “Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring,” Smart Mater. Struct. 22(7), 075027 (2013).
[Crossref]

Asundim, A.

J. Leng and A. Asundim, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuator A-Phys. 103(3), 330–340 (2003).
[Crossref]

Bhattacharya, D. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring-Present status and applications,” Sens. Actuator A-Phys. 147(1), 150–164 (2008).
[Crossref]

Bi, W.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Chakraborty, A. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring-Present status and applications,” Sens. Actuator A-Phys. 147(1), 150–164 (2008).
[Crossref]

Chang, M. T.

Chen, Y. F.

Coddington, I.

Coppotelli, G.

T. J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, and G. Coppotelli, “Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring,” Smart Mater. Struct. 22(7), 075027 (2013).
[Crossref]

Cossel, K. C.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 3(1), 175–205 (2010).
[Crossref] [PubMed]

Dasgupta, K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring-Present status and applications,” Sens. Actuator A-Phys. 147(1), 150–164 (2008).
[Crossref]

Dong, B.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Dong, X.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Gangopadhyay, T. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring-Present status and applications,” Sens. Actuator A-Phys. 147(1), 150–164 (2008).
[Crossref]

Golling, M.

Gong, J.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Grappasonni, C.

T. J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, and G. Coppotelli, “Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring,” Smart Mater. Struct. 22(7), 075027 (2013).
[Crossref]

Guo, H.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
[Crossref] [PubMed]

Guo, J.

J. Guo and C. Yang, “Highly stabilized phase-shifted fiber Bragg grating sensing system for ultrasonic detection,” IEEE Photonics Technol. Lett. 27(8), 848–851 (2015).
[Crossref]

J. Guo, S. Xue, Q. Zhao, and C. Yang, “Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating,” Opt. Express 22(16), 19573–19580 (2014).
[Crossref] [PubMed]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. hys. B 65(2), 277– 294 (1997).

He, Z.

Hu, G.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. hys. B 65(2), 277– 294 (1997).

Jin, L.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. hys. B 65(2), 277– 294 (1997).

Kai, G.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Keller, U.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

Kieu, K.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett. 33(1), 64–66 (2008).
[Crossref] [PubMed]

Klenner, A.

Kobayashi, Y.

Kuse, N.

Lau, K. T.

K. T. Lau, L. Yuan, L. M. Zhou, J. Wu, and C. H. Woo, “Strain monitoring in FRP laminates and concrete beams using FBG sensors,” Compos. Struct. 51(1), 9–20 (2001).
[Crossref]

Leng, J.

J. Leng and A. Asundim, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuator A-Phys. 103(3), 330–340 (2003).
[Crossref]

Li, C.

Liang, H. C.

Liao, Y.

Y. Zhao, C. Yu, and Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36(1), 39–42 (2004).
[Crossref]

Link, S. M.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

Liu, B.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Liu, Q.

Liu, X.

Liu, Y.

Maas, D. J. H. C.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Majumder, M.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring-Present status and applications,” Sens. Actuator A-Phys. 147(1), 150–164 (2008).
[Crossref]

Mangold, M.

Mansuripur, M.

Marzocca, P.

T. J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, and G. Coppotelli, “Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring,” Smart Mater. Struct. 22(7), 075027 (2013).
[Crossref]

Mehravar, S.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Mrad, N.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
[Crossref] [PubMed]

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. hys. B 65(2), 277– 294 (1997).

Newbury, N.

Norwood, R. A.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Ozawa, A.

Pan, Y.

Peyghambarian, N.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Su, K. W.

Swann, W.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. hys. B 65(2), 277– 294 (1997).

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 3(1), 175–205 (2010).
[Crossref] [PubMed]

Tilma, B. W.

Tokunaga, T.

Tu, Q.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Waldburger, D.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Wang, A.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Wang, D. Y.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Wang, Y.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Woo, C. H.

K. T. Lau, L. Yuan, L. M. Zhou, J. Wu, and C. H. Woo, “Strain monitoring in FRP laminates and concrete beams using FBG sensors,” Compos. Struct. 51(1), 9–20 (2001).
[Crossref]

Wu, J.

K. T. Lau, L. Yuan, L. M. Zhou, J. Wu, and C. H. Woo, “Strain monitoring in FRP laminates and concrete beams using FBG sensors,” Compos. Struct. 51(1), 9–20 (2001).
[Crossref]

Xiao, G.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
[Crossref] [PubMed]

Xue, S.

Yang, C.

J. Guo and C. Yang, “Highly stabilized phase-shifted fiber Bragg grating sensing system for ultrasonic detection,” IEEE Photonics Technol. Lett. 27(8), 848–851 (2015).
[Crossref]

J. Guo, S. Xue, Q. Zhao, and C. Yang, “Ultrasonic imaging of seismic physical models using a phase-shifted fiber Bragg grating,” Opt. Express 22(16), 19573–19580 (2014).
[Crossref] [PubMed]

Yao, J.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
[Crossref] [PubMed]

Yasui, T.

Ye, J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 3(1), 175–205 (2010).
[Crossref] [PubMed]

Yu, C.

Y. Zhao, C. Yu, and Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36(1), 39–42 (2004).
[Crossref]

Yuan, L.

K. T. Lau, L. Yuan, L. M. Zhou, J. Wu, and C. H. Woo, “Strain monitoring in FRP laminates and concrete beams using FBG sensors,” Compos. Struct. 51(1), 9–20 (2001).
[Crossref]

Yun, L.

Zaugg, C. A.

Zeng, C.

Zhang, H.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Zhang, W.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Zhao, B.

Zhao, J.

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Zhao, Q.

Zhao, X.

Zhao, Y.

Y. Zhao, C. Yu, and Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36(1), 39–42 (2004).
[Crossref]

Zheng, Z.

Zhou, L. M.

K. T. Lau, L. Yuan, L. M. Zhou, J. Wu, and C. H. Woo, “Strain monitoring in FRP laminates and concrete beams using FBG sensors,” Compos. Struct. 51(1), 9–20 (2001).
[Crossref]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 3(1), 175–205 (2010).
[Crossref] [PubMed]

Appl. hys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. hys. B 65(2), 277– 294 (1997).

Appl. Phys. Lett. (1)

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Compos. Struct. (1)

K. T. Lau, L. Yuan, L. M. Zhou, J. Wu, and C. H. Woo, “Strain monitoring in FRP laminates and concrete beams using FBG sensors,” Compos. Struct. 51(1), 9–20 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. Guo and C. Yang, “Highly stabilized phase-shifted fiber Bragg grating sensing system for ultrasonic detection,” IEEE Photonics Technol. Lett. 27(8), 848–851 (2015).
[Crossref]

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

L. Jin, W. Zhang, H. Zhang, B. Liu, J. Zhao, Q. Tu, G. Kai, and X. Dong, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Opt. Express (7)

Opt. Laser Technol. (1)

Y. Zhao, C. Yu, and Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36(1), 39–42 (2004).
[Crossref]

Opt. Lett. (1)

Optica (1)

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Science (1)

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Sens. Actuator A-Phys. (2)

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring-Present status and applications,” Sens. Actuator A-Phys. 147(1), 150–164 (2008).
[Crossref]

J. Leng and A. Asundim, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuator A-Phys. 103(3), 330–340 (2003).
[Crossref]

Sensors (Basel) (1)

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(4), 3687–3705 (2011).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

T. J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, and G. Coppotelli, “Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring,” Smart Mater. Struct. 22(7), 075027 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup. EDF: Er-doped Fiber; WDM: wavelength division multiplexer; SMF: single-mode fiber; PC: polarization controller; SWNT: single-wall carbon nanotubes; PVA, polyvinyl alcohol; PD, photodetector; CW, clockwise; CCW, counter-clockwise.
Fig. 2
Fig. 2 Interrogation of FBG sensor based on dual-comb spectroscopy. (a) Dual-comb spectroscopy in time-domain. (b) Linear mapping of FBG spectrum from optical to RF domain. (c) Time-domain interferogram.
Fig. 3
Fig. 3 (a) Mode-locked pulse trains from the CW and CCW outputs of fiber laser. (b) Optical spectra of the CW and CCW pulses. The inset shows the long-term spectral drift of the fiber laser (CW output). (c) RF spectrum of the CW and CCW combs. The pair of strong frequency peaks, which give the repetition rates of the CW and CCW pulses.
Fig. 4
Fig. 4 (a) Long-term drift of the repetition rates of the CCW and CW pulses. (b) The difference in the repetition rates over time.
Fig. 5
Fig. 5 (a) Temporal interferogram detected by interfering the CW and CCW combs together. (b) Spectrum of the laser combs in RF domain by taking Fourier transform of the temporal interferogram. The spectra were obtained from 10-times averaged shots.
Fig. 6
Fig. 6 (a) Dual-comb based interrogation of multiplexed FBG array. (b) Temporal interferogram detected after reflection from the multiplexed FBG array (10-times averaged). (c) Reflection spectrum of the FBGs in RF domain.
Fig. 7
Fig. 7 (a) Reflection spectra of the FBG sensor array versus the applied strains. The spectra were obtained by taking Fourier transform of the 10-times averaged time-domain interferograms. (b) Frequency shifts of the sensing FBGs after subtracting the peak frequency of the referenced FBG1. (c) Frequency fluctuations of peak reading for FBG3 when no strain was applied.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ λ B =Kε