Abstract

The ability to control thermal radiation is of fundamental importance for a wide range of applications. Nanophotonic structures, where at least one of the structural features are at a wavelength or sub-wavelength scale, can have thermal radiation properties that are drastically different from conventional thermal emitters, and offer exciting opportunities for energy applications. Here we review recent developments of nanophotonic control of thermal radiation, and highlight some exciting energy application opportunities, such as daytime radiative cooling, thermal textile, and thermophotovoltaic systems that are enabled by nanophotonic structures.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Control of radiative processes for energy conversion and harvesting

Peter Bermel, Svetlana V. Boriskina, Zongfu Yu, and Karl Joulain
Opt. Express 23(24) A1533-A1540 (2015)

Realization of narrowband thermal emission with optical nanostructures

Takuya Inoue, Menaka De Zoysa, Takashi Asano, and Susumu Noda
Optica 2(1) 27-35 (2015)

Self-adaptive radiative cooling based on phase change materials

Masashi Ono, Kaifeng Chen, Wei Li, and Shanhui Fan
Opt. Express 26(18) A777-A787 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Howell, R. Siegel, and M. Pinar Mengüc, Thermal Radiation Heat Transfer (CRC Press, 2011).
  2. M. F. Modest, Radiative Heat Transfer (Elsevier, 2013).
  3. C. Kittel and H. Kroemer, Thermal Physics (W.H. Freeman and Company, 1980).
  4. C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
    [Crossref]
  5. S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
    [Crossref]
  6. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref] [PubMed]
  7. B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 71904 (2005).
    [Crossref]
  8. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  9. Z. M. Zhang, Nano/microscale Heat Transfer (McGraw-Hill, 2007).
  10. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  11. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  12. O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
    [Crossref] [PubMed]
  13. P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
    [Crossref] [PubMed]
  14. S. Fan, “Thermal Photonics and Energy Applications,” Joule 1(2), 264–273 (2017).
    [Crossref]
  15. S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
    [Crossref]
  16. X. Liu, L. Wang, and Z. M. Zhang, “Near-field thermal radiation: Recent progress and outlook,” Nanoscale Microscale Thermophys. Eng. 19(2), 98–126 (2015).
    [Crossref]
  17. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
    [Crossref]
  18. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
    [Crossref]
  19. Y. Guo and S. Fan, “Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance,” Opt. Express 24(26), 29896–29907 (2016).
    [Crossref] [PubMed]
  20. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “High-Q mid-infrared thermal emitters operating with high power-utilization efficiency,” Opt. Express 24(13), 15101–15109 (2016).
    [Crossref] [PubMed]
  21. B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
    [Crossref] [PubMed]
  22. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
    [Crossref]
  23. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
    [Crossref]
  24. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
    [Crossref]
  25. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref] [PubMed]
  26. S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
    [Crossref]
  27. S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
    [Crossref] [PubMed]
  28. P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
    [Crossref] [PubMed]
  29. L. Zhu, S. Sandhu, C. Otey, S. Fan, M. B. Sinclair, and T. S. Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).
    [Crossref]
  30. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  31. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  32. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  33. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
    [Crossref] [PubMed]
  34. C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [Crossref] [PubMed]
  35. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  36. J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
    [Crossref]
  37. Y. Liu, J. Qiu, J. Zhao, and L. Liu, “General design method of ultra-broadband perfect absorbers based on magnetic polaritons,” Opt. Express 25(20), A980–A989 (2017).
    [Crossref] [PubMed]
  38. Q. H. Pan, J. R. Hong, S. D. Xu, Y. Shuai, and H. P. Tan, “Theoretical Analysis of a Hyperbolic Metamaterial for Harvesting Visible and Infrared Light,” Heat Transf. Eng.1–8 (2018).
  39. X. Wu and C. Fu, “Ultra-Broadband Perfect Absorption with Stacked Asymmetric Hyperbolic Metamaterial Slabs,” Nanoscale Microscale Thermophys. Eng. 22, 1–10 (2018).
  40. B. Zhao and Z. M. Zhang, “Perfect Absorption With Trapezoidal Gratings Made of Natural Hyperbolic Materials,” Nanoscale Microscale Thermophys. Eng. 21(3), 123–133 (2017).
    [Crossref]
  41. M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
    [Crossref]
  42. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
    [Crossref] [PubMed]
  43. K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
    [Crossref] [PubMed]
  44. V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
    [Crossref]
  45. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
    [Crossref]
  46. Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
    [Crossref] [PubMed]
  47. C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).
    [Crossref] [PubMed]
  48. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
    [Crossref]
  49. S. Ingvarsson, L. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
    [Crossref] [PubMed]
  50. D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 74, (2006).
    [Crossref]
  51. H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
    [Crossref]
  52. J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90, 89–91 (2007).
  53. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
    [Crossref] [PubMed]
  54. N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: Spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105(13), 136402 (2010).
    [Crossref] [PubMed]
  55. N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons,” Appl. Phys. Lett. 86(19), 191102 (2005).
    [Crossref]
  56. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
    [Crossref] [PubMed]
  57. N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
    [Crossref] [PubMed]
  58. N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38(21), 4358–4361 (2013).
    [Crossref] [PubMed]
  59. K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19(23), 23475–23482 (2011).
    [Crossref] [PubMed]
  60. I. Yulevich, E. Maguid, N. Shitrit, D. Veksler, V. Kleiner, and E. Hasman, “Optical Mode Control by Geometric Phase in Quasicrystal Metasurface,” Phys. Rev. Lett. 115(20), 205501 (2015).
    [Crossref] [PubMed]
  61. D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
    [Crossref]
  62. S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18(5), 4829–4837 (2010).
    [Crossref] [PubMed]
  63. J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull ’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
    [Crossref]
  64. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
    [Crossref] [PubMed]
  65. M. Laroche, R. Carminati, and J.-J. Greffet, “Coherent Thermal Antenna Using a Photonic Crystal Slab,” Phys. Rev. Lett. 96(12), 123903 (2006).
    [Crossref] [PubMed]
  66. Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343(6178), 1499–1501 (2014).
    [Crossref] [PubMed]
  67. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
    [Crossref]
  68. H. Chalabi, A. Alù, and M. L. Brongersma, “Focused thermal emission from a nanostructured SiC surface,” Phys. Rev. B 94(9), 094307 (2016).
    [Crossref]
  69. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  70. S. Inampudi, J. Cheng, M. M. Salary, and H. Mosallaei, “Unidirectional thermal radiation from a SiC metasurface,” J. Opt. Soc. Am. B 35(1), 39 (2018).
    [Crossref]
  71. T. Trupke, P. Würfel, and M. A. Green, “Comment on “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation” [Appl. Phys. Lett. 83, 380 (2003)],” Appl. Phys. Lett. 84(11), 1997–1998 (2004).
    [Crossref]
  72. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal Radiation from Photonic Crystals: A Direct Calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
    [Crossref] [PubMed]
  73. Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
    [Crossref] [PubMed]
  74. C. Simovski, S. Maslovski, I. Nefedov, S. Kosulnikov, P. Belov, and S. Tretyakov, “Hyperlens makes thermal emission strongly super-Planckian,” Photonics Nanostructures 13, 31–41 (2015).
  75. L. Zhu and S. Fan, “Near-complete violation of detailed balance in thermal radiation,” Phys. Rev. B 90(22), 220301 (2014).
    [Crossref]
  76. P. T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys. 51(7), R1–R20 (1980).
    [Crossref]
  77. M. A. Green, “Time-Asymmetric Photovoltaics,” Nano Lett. 12(11), 5985–5988 (2012).
    [Crossref] [PubMed]
  78. H. Ries, “Complete and reversible absorption of radiation,” Appl. Phys. B 32(3), 153–156 (1983).
    [Crossref]
  79. W. C. Snyder, Z. Wan, and X. Li, “Thermodynamic constraints on reflectance reciprocity and Kirchhoff’s law,” Appl. Opt. 37(16), 3464–3470 (1998).
    [Crossref] [PubMed]
  80. D. A. B. Miller, L. Zhu, and S. Fan, “Universal modal radiation laws for all thermal emitters,” Proc. Natl. Acad. Sci. U.S.A. 114(17), 4336–4341 (2017).
    [Crossref] [PubMed]
  81. V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
    [Crossref] [PubMed]
  82. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
    [Crossref] [PubMed]
  83. Z. J. Coppens and J. G. Valentine, “Spatial and Temporal Modulation of Thermal Emission,” Adv. Mater. 29(39), 1701275 (2017).
    [Crossref] [PubMed]
  84. X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430 (2017).
    [Crossref]
  85. M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).
  86. K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
    [Crossref]
  87. X. Liu and W. J. Padilla, “Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials,” Adv. Opt. Mater. 1(8), 559–562 (2013).
    [Crossref]
  88. C. Xu, G. T. Stiubianu, and A. A. Gorodetsky, “Adaptive infrared-reflecting systems inspired by cephalopods,” Science 359(6383), 1495–1500 (2018).
    [Crossref] [PubMed]
  89. Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
    [Crossref]
  90. X. Liu and W. J. Padilla, “Thermochromic Infrared Metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
    [Crossref] [PubMed]
  91. D. M. Bierman, A. Lenert, M. A. Kats, Y. Zhou, S. Zhang, M. De La Ossa, S. Ramanathan, F. Capasso, and E. N. Wang, “Radiative thermal runaway due to negative differential thermal emission across a solid-solid phase transition,” http://arxiv.org/abs/1801.00376 (2017).
  92. P. J. Roney, A. Shahsafi, Z. Zhang, Y. Zhou, Y. Xiao, C. Wan, R. Wambold, J. Salman, S. Ramanathan, M. Kats, and M. Kats, “Zero-Differential Thermal Emission Using Thermochromic Samarium Nickelate,” in Conference on Lasers and Electro-Optics (OSA, 2017), paper FM4G.2.
    [Crossref]
  93. S.-H. Wu, M. Chen, M. T. Barako, V. Jankovic, P. W. C. Hon, L. A. Sweatlock, and M. L. Povinelli, “Thermal homeostasis using microstructured phase-change materials,” Optica 4(11), 1390 (2017).
    [Crossref]
  94. P. Wurfel, “The chemical potential of radiation,” J. Phys. C Solid State Phys. 15(18), 3967–3985 (1982).
    [Crossref]
  95. H. Ries and A. J. McEvoy, “Chemical potential and temperature of light,” J. Photochem. Photobiol. Chem. 59(1), 11–18 (1991).
    [Crossref]
  96. F. Herrmann and P. Würfel, “Light with nonzero chemical potential,” Am. J. Phys. 73(8), 717–721 (2005).
    [Crossref]
  97. J. Tauc, “The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from ap-n junction,” Czech. J. Phys. 7(3), 275–276 (1957).
    [Crossref]
  98. P. Berdahl, “Radiant refrigeration by semiconductor diodes,” J. Appl. Phys. 58(3), 1369–1374 (1985).
    [Crossref]
  99. P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically Pumped Light-Emitting Diodes Operating Above Unity Efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
    [Crossref] [PubMed]
  100. P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103(18), 183513 (2013).
    [Crossref]
  101. K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
    [Crossref]
  102. J. Piprek and Z.-M. Li, “Electroluminescent cooling mechanism in InGaN/GaN light-emitting diodes,” Opt. Quantum Electron. 48(10), 472 (2016).
    [Crossref]
  103. J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law,” Phys. Rev. X 8(2), 021008 (2018).
    [Crossref]
  104. C. Khandekar, A. Pick, S. G. Johnson, and A. W. Rodriguez, “Radiative heat transfer in nonlinear Kerr media,” Phys. Rev. B 91(11), 115406 (2015).
    [Crossref]
  105. C. Khandekar, Z. Lin, and A. W. Rodriguez, “Thermal radiation from optically driven Kerr (χ (3)) photonic cavities,” Appl. Phys. Lett. 106(15), 151109 (2015).
    [Crossref]
  106. H. Soo and M. Krüger, “Fluctuational electrodynamics for nonlinear media,” EPL 115(4), 41002 (2016).
    [Crossref]
  107. C. Khandekar and A. W. Rodriguez, “Near-field thermal upconversion and energy transfer through a Kerr medium,” Opt. Express 25(19), 23164–23180 (2017).
    [Crossref] [PubMed]
  108. N.-P. Harder and M. A. Green, “Thermophotonics,” Semicond. Sci. Technol. 18(5), S270–S278 (2003).
    [Crossref]
  109. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
    [Crossref]
  110. C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  111. A. R. Gentle and G. B. Smith, “Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
    [Crossref] [PubMed]
  112. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref] [PubMed]
  113. M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
    [Crossref]
  114. J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
    [Crossref]
  115. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref] [PubMed]
  116. N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
    [Crossref] [PubMed]
  117. A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
    [Crossref] [PubMed]
  118. Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
    [Crossref] [PubMed]
  119. E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
    [Crossref]
  120. H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
    [Crossref]
  121. W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
    [Crossref]
  122. L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
    [Crossref] [PubMed]
  123. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
    [Crossref]
  124. O. Dupré, R. Vaillon, and M. A. Green, “Thermal Issues in Photovoltaics and Existing Solutions,” Therm. Behav. Photovolt. Devices 1–28 (2017).
    [Crossref]
  125. E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy 83(5), 614–624 (2009).
    [Crossref]
  126. D. H. Otth and R. G. Ross, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” in 29th Annual Technical Meeting of the Institute of Environmental Sciences (1983), pp. 121–126.
  127. J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
    [Crossref]
  128. P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett. 15(1), 365–371 (2015).
    [Crossref] [PubMed]
  129. P. B. Catrysse, A. Y. Song, and S. Fan, “Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme,” ACS Photonics 3(12), 2420–2426 (2016).
    [Crossref]
  130. A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
    [Crossref] [PubMed]
  131. L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
    [Crossref] [PubMed]
  132. P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
    [Crossref] [PubMed]
  133. S. Jafar-Zanjani, M. M. Salary, and H. Mosallaei, “Metafabrics for Thermoregulation and Energy-Harvesting Applications,” ACS Photonics 4(4), 915–927 (2017).
    [Crossref]
  134. T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
    [Crossref] [PubMed]
  135. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  136. R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
    [Crossref]
  137. S. Fan, “Photovoltaics: An alternative ‘Sun’ for solar cells,” Nat. Nanotechnol. 9(2), 92–93 (2014).
    [Crossref] [PubMed]
  138. N.-P. Harder and P. Wrfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
    [Crossref]
  139. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
    [Crossref] [PubMed]
  140. J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘Thermal Well’ Emitters and Absorbers for High-Efficiency Thermophotovoltaics,” Sci. Rep. 5(1), 10661 (2015).
    [Crossref] [PubMed]
  141. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
    [Crossref] [PubMed]
  142. P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
    [Crossref] [PubMed]
  143. J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
    [Crossref]
  144. S. Xu, Y. Shuai, J. Zhang, X. Huang, and H. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
    [Crossref]
  145. Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
    [Crossref]
  146. D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
    [Crossref]
  147. V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
    [Crossref]
  148. W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
    [Crossref] [PubMed]
  149. A. Datas and A. Martí, “Thermophotovoltaic energy in space applications: Review and future potential,” Sol. Energy Mater. Sol. Cells 161, 285–296 (2017).
    [Crossref]
  150. W. R. Chan, V. Stelmakh, M. Ghebrebrhan, M. Soljačić, J. D. Joannopoulos, and I. Čelanović, “Enabling efficient heat-to-electricity generation at the mesoscale,” Energy Environ. Sci. 10(6), 1367–1371 (2017).
    [Crossref]
  151. V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
    [Crossref]
  152. B. Heeg, J.-B. Wang, S. R. Johnson, B. D. Buckner, and Y.-H. Zhang, “Thermally assisted electroluminescence: a viable means to generate electricity from solar or waste heat?” Proc. SPIE 6461, 64610K (2007).
    [Crossref]
  153. R. D. Matteo, “Method of and apparatus for improved thermophotonic generation of electricity,” US Pat. US20090188549 A1 (2009).
  154. J. Xue, Y. Zhao, S.-H. Oh, W. F. Herrington, J. S. Speck, S. P. DenBaars, S. Nakamura, and R. J. Ram, “Thermally enhanced blue light-emitting diode,” Appl. Phys. Lett. 107(12), 121109 (2015).
    [Crossref]
  155. J. Oksanen and J. Tulkki, “Thermophotonics: LEDs feed on waste heat,” Nat. Photonics 9(12), 782–784 (2015).
    [Crossref]
  156. K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
    [Crossref]
  157. J. Oksanen and J. Tulkki, “Thermophotonic heat pump—a theoretical model and numerical simulations,” J. Appl. Phys. 107(9), 093106 (2010).
    [Crossref]
  158. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
    [Crossref]
  159. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
    [Crossref]
  160. J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
    [Crossref] [PubMed]
  161. P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
    [Crossref]
  162. U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
    [Crossref] [PubMed]
  163. T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
    [Crossref] [PubMed]
  164. P. Santhanam and S. Fan, “Thermal-to-electrical energy conversion by diodes under negative illumination,” Phys. Rev. B 93(16), 161410 (2016).
    [Crossref]
  165. S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic Limits of Energy Harvesting from Outgoing Thermal Radiation,” Proc. Natl. Acad. Sci. U.S.A. 115(16), E3609–E3615 (2018).
    [Crossref] [PubMed]
  166. J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
    [Crossref] [PubMed]
  167. W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2017).
    [Crossref]
  168. S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
    [Crossref]

2018 (5)

X. Wu and C. Fu, “Ultra-Broadband Perfect Absorption with Stacked Asymmetric Hyperbolic Metamaterial Slabs,” Nanoscale Microscale Thermophys. Eng. 22, 1–10 (2018).

S. Inampudi, J. Cheng, M. M. Salary, and H. Mosallaei, “Unidirectional thermal radiation from a SiC metasurface,” J. Opt. Soc. Am. B 35(1), 39 (2018).
[Crossref]

C. Xu, G. T. Stiubianu, and A. A. Gorodetsky, “Adaptive infrared-reflecting systems inspired by cephalopods,” Science 359(6383), 1495–1500 (2018).
[Crossref] [PubMed]

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law,” Phys. Rev. X 8(2), 021008 (2018).
[Crossref]

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic Limits of Energy Harvesting from Outgoing Thermal Radiation,” Proc. Natl. Acad. Sci. U.S.A. 115(16), E3609–E3615 (2018).
[Crossref] [PubMed]

2017 (28)

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2017).
[Crossref]

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

C. Khandekar and A. W. Rodriguez, “Near-field thermal upconversion and energy transfer through a Kerr medium,” Opt. Express 25(19), 23164–23180 (2017).
[Crossref] [PubMed]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

S.-H. Wu, M. Chen, M. T. Barako, V. Jankovic, P. W. C. Hon, L. A. Sweatlock, and M. L. Povinelli, “Thermal homeostasis using microstructured phase-change materials,” Optica 4(11), 1390 (2017).
[Crossref]

D. A. B. Miller, L. Zhu, and S. Fan, “Universal modal radiation laws for all thermal emitters,” Proc. Natl. Acad. Sci. U.S.A. 114(17), 4336–4341 (2017).
[Crossref] [PubMed]

Z. J. Coppens and J. G. Valentine, “Spatial and Temporal Modulation of Thermal Emission,” Adv. Mater. 29(39), 1701275 (2017).
[Crossref] [PubMed]

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430 (2017).
[Crossref]

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
[Crossref] [PubMed]

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

S. Jafar-Zanjani, M. M. Salary, and H. Mosallaei, “Metafabrics for Thermoregulation and Energy-Harvesting Applications,” ACS Photonics 4(4), 915–927 (2017).
[Crossref]

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

S. Xu, Y. Shuai, J. Zhang, X. Huang, and H. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

A. Datas and A. Martí, “Thermophotovoltaic energy in space applications: Review and future potential,” Sol. Energy Mater. Sol. Cells 161, 285–296 (2017).
[Crossref]

W. R. Chan, V. Stelmakh, M. Ghebrebrhan, M. Soljačić, J. D. Joannopoulos, and I. Čelanović, “Enabling efficient heat-to-electricity generation at the mesoscale,” Energy Environ. Sci. 10(6), 1367–1371 (2017).
[Crossref]

B. Zhao and Z. M. Zhang, “Perfect Absorption With Trapezoidal Gratings Made of Natural Hyperbolic Materials,” Nanoscale Microscale Thermophys. Eng. 21(3), 123–133 (2017).
[Crossref]

S. Fan, “Thermal Photonics and Energy Applications,” Joule 1(2), 264–273 (2017).
[Crossref]

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

Y. Liu, J. Qiu, J. Zhao, and L. Liu, “General design method of ultra-broadband perfect absorbers based on magnetic polaritons,” Opt. Express 25(20), A980–A989 (2017).
[Crossref] [PubMed]

2016 (16)

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Y. Guo and S. Fan, “Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance,” Opt. Express 24(26), 29896–29907 (2016).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “High-Q mid-infrared thermal emitters operating with high power-utilization efficiency,” Opt. Express 24(13), 15101–15109 (2016).
[Crossref] [PubMed]

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

H. Chalabi, A. Alù, and M. L. Brongersma, “Focused thermal emission from a nanostructured SiC surface,” Phys. Rev. B 94(9), 094307 (2016).
[Crossref]

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull ’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
[Crossref]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

P. B. Catrysse, A. Y. Song, and S. Fan, “Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme,” ACS Photonics 3(12), 2420–2426 (2016).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

X. Liu and W. J. Padilla, “Thermochromic Infrared Metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

H. Soo and M. Krüger, “Fluctuational electrodynamics for nonlinear media,” EPL 115(4), 41002 (2016).
[Crossref]

J. Piprek and Z.-M. Li, “Electroluminescent cooling mechanism in InGaN/GaN light-emitting diodes,” Opt. Quantum Electron. 48(10), 472 (2016).
[Crossref]

P. Santhanam and S. Fan, “Thermal-to-electrical energy conversion by diodes under negative illumination,” Phys. Rev. B 93(16), 161410 (2016).
[Crossref]

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

2015 (22)

J. Xue, Y. Zhao, S.-H. Oh, W. F. Herrington, J. S. Speck, S. P. DenBaars, S. Nakamura, and R. J. Ram, “Thermally enhanced blue light-emitting diode,” Appl. Phys. Lett. 107(12), 121109 (2015).
[Crossref]

J. Oksanen and J. Tulkki, “Thermophotonics: LEDs feed on waste heat,” Nat. Photonics 9(12), 782–784 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

C. Khandekar, A. Pick, S. G. Johnson, and A. W. Rodriguez, “Radiative heat transfer in nonlinear Kerr media,” Phys. Rev. B 91(11), 115406 (2015).
[Crossref]

C. Khandekar, Z. Lin, and A. W. Rodriguez, “Thermal radiation from optically driven Kerr (χ (3)) photonic cavities,” Appl. Phys. Lett. 106(15), 151109 (2015).
[Crossref]

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett. 15(1), 365–371 (2015).
[Crossref] [PubMed]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘Thermal Well’ Emitters and Absorbers for High-Efficiency Thermophotovoltaics,” Sci. Rep. 5(1), 10661 (2015).
[Crossref] [PubMed]

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
[Crossref]

I. Yulevich, E. Maguid, N. Shitrit, D. Veksler, V. Kleiner, and E. Hasman, “Optical Mode Control by Geometric Phase in Quasicrystal Metasurface,” Phys. Rev. Lett. 115(20), 205501 (2015).
[Crossref] [PubMed]

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

C. Simovski, S. Maslovski, I. Nefedov, S. Kosulnikov, P. Belov, and S. Tretyakov, “Hyperlens makes thermal emission strongly super-Planckian,” Photonics Nanostructures 13, 31–41 (2015).

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

X. Liu, L. Wang, and Z. M. Zhang, “Near-field thermal radiation: Recent progress and outlook,” Nanoscale Microscale Thermophys. Eng. 19(2), 98–126 (2015).
[Crossref]

2014 (16)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

L. Zhu and S. Fan, “Near-complete violation of detailed balance in thermal radiation,” Phys. Rev. B 90(22), 220301 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

S. Fan, “Photovoltaics: An alternative ‘Sun’ for solar cells,” Nat. Nanotechnol. 9(2), 92–93 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

2013 (16)

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

X. Liu and W. J. Padilla, “Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials,” Adv. Opt. Mater. 1(8), 559–562 (2013).
[Crossref]

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103(18), 183513 (2013).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref] [PubMed]

N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38(21), 4358–4361 (2013).
[Crossref] [PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
[Crossref] [PubMed]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. B. Sinclair, and T. S. Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

2012 (8)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically Pumped Light-Emitting Diodes Operating Above Unity Efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
[Crossref] [PubMed]

M. A. Green, “Time-Asymmetric Photovoltaics,” Nano Lett. 12(11), 5985–5988 (2012).
[Crossref] [PubMed]

2011 (5)

K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19(23), 23475–23482 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

2010 (5)

J. Oksanen and J. Tulkki, “Thermophotonic heat pump—a theoretical model and numerical simulations,” J. Appl. Phys. 107(9), 093106 (2010).
[Crossref]

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: Spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105(13), 136402 (2010).
[Crossref] [PubMed]

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18(5), 4829–4837 (2010).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

2009 (4)

E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy 83(5), 614–624 (2009).
[Crossref]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

2008 (1)

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

2007 (5)

J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90, 89–91 (2007).

S. Ingvarsson, L. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
[Crossref] [PubMed]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

B. Heeg, J.-B. Wang, S. R. Johnson, B. D. Buckner, and Y.-H. Zhang, “Thermally assisted electroluminescence: a viable means to generate electricity from solar or waste heat?” Proc. SPIE 6461, 64610K (2007).
[Crossref]

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

2006 (1)

M. Laroche, R. Carminati, and J.-J. Greffet, “Coherent Thermal Antenna Using a Photonic Crystal Slab,” Phys. Rev. Lett. 96(12), 123903 (2006).
[Crossref] [PubMed]

2005 (5)

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons,” Appl. Phys. Lett. 86(19), 191102 (2005).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 71904 (2005).
[Crossref]

F. Herrmann and P. Würfel, “Light with nonzero chemical potential,” Am. J. Phys. 73(8), 717–721 (2005).
[Crossref]

2004 (2)

T. Trupke, P. Würfel, and M. A. Green, “Comment on “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation” [Appl. Phys. Lett. 83, 380 (2003)],” Appl. Phys. Lett. 84(11), 1997–1998 (2004).
[Crossref]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal Radiation from Photonic Crystals: A Direct Calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

2003 (2)

N.-P. Harder and M. A. Green, “Thermophotonics,” Semicond. Sci. Technol. 18(5), S270–S278 (2003).
[Crossref]

N.-P. Harder and P. Wrfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

2002 (2)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

2001 (1)

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

2000 (1)

S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

1999 (1)

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

1998 (1)

1991 (1)

H. Ries and A. J. McEvoy, “Chemical potential and temperature of light,” J. Photochem. Photobiol. Chem. 59(1), 11–18 (1991).
[Crossref]

1985 (1)

P. Berdahl, “Radiant refrigeration by semiconductor diodes,” J. Appl. Phys. 58(3), 1369–1374 (1985).
[Crossref]

1983 (1)

H. Ries, “Complete and reversible absorption of radiation,” Appl. Phys. B 32(3), 153–156 (1983).
[Crossref]

1982 (1)

P. Wurfel, “The chemical potential of radiation,” J. Phys. C Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

1981 (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

1980 (1)

P. T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys. 51(7), R1–R20 (1980).
[Crossref]

1979 (1)

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[Crossref]

1975 (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

1957 (1)

J. Tauc, “The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from ap-n junction,” Czech. J. Phys. 7(3), 275–276 (1957).
[Crossref]

Abbas, M. N.

Abelson, J. R.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Aimone, P. R.

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Alù, A.

H. Chalabi, A. Alù, and M. L. Brongersma, “Focused thermal emission from a nanostructured SiC surface,” Phys. Rev. B 94(9), 094307 (2016).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

Araghchini, M.

Arju, N.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Arnold, C.

Arpin, K. A.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “High-Q mid-infrared thermal emitters operating with high power-utilization efficiency,” Opt. Express 24(13), 15101–15109 (2016).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Atwater, H. A.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Atwater, J. H.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Au, Y.-Y.

Avouris, P.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Bao, H.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Barako, M. T.

Bardou, N.

Basu, S.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

Belov, P.

C. Simovski, S. Maslovski, I. Nefedov, S. Kosulnikov, P. Belov, and S. Tretyakov, “Hyperlens makes thermal emission strongly super-Planckian,” Photonics Nanostructures 13, 31–41 (2015).

Benisty, H.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Berdahl, P.

P. Berdahl, “Radiant refrigeration by semiconductor diodes,” J. Appl. Phys. 58(3), 1369–1374 (1985).
[Crossref]

Bermel, P.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Bernard, G. D.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Bhatia, B.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Biener, G.

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons,” Appl. Phys. Lett. 86(19), 191102 (2005).
[Crossref]

Bierman, D. M.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Biswas, R.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Boltasseva, A.

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Boriskina, S. V.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘Thermal Well’ Emitters and Absorbers for High-Efficiency Thermophotovoltaics,” Sci. Rep. 5(1), 10661 (2015).
[Crossref] [PubMed]

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Bossard, J. A.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Bouchon, P.

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law,” Phys. Rev. X 8(2), 021008 (2018).
[Crossref]

Boutami, S.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Brar, V. W.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Braun, P. V.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Brener, I.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Briggs, D. P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

H. Chalabi, A. Alù, and M. L. Brongersma, “Focused thermal emission from a nanostructured SiC surface,” Phys. Rev. B 94(9), 094307 (2016).
[Crossref]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Brucoli, G.

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law,” Phys. Rev. X 8(2), 021008 (2018).
[Crossref]

Buckner, B. D.

B. Heeg, J.-B. Wang, S. R. Johnson, B. D. Buckner, and Y.-H. Zhang, “Thermally assisted electroluminescence: a viable means to generate electricity from solar or waste heat?” Proc. SPIE 6461, 64610K (2007).
[Crossref]

Buddhiraju, S.

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic Limits of Energy Harvesting from Outgoing Thermal Radiation,” Proc. Natl. Acad. Sci. U.S.A. 115(16), E3609–E3615 (2018).
[Crossref] [PubMed]

Bur, J.

S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

Cai, L.

A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
[Crossref] [PubMed]

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Caldwell, J. D.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Camino, F.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Capasso, F.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Carminati, R.

M. Laroche, R. Carminati, and J.-J. Greffet, “Coherent Thermal Antenna Using a Photonic Crystal Slab,” Phys. Rev. Lett. 96(12), 123903 (2006).
[Crossref] [PubMed]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Catrysse, P. B.

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

P. B. Catrysse, A. Y. Song, and S. Fan, “Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme,” ACS Photonics 3(12), 2420–2426 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Celanovic, I.

W. R. Chan, V. Stelmakh, M. Ghebrebrhan, M. Soljačić, J. D. Joannopoulos, and I. Čelanović, “Enabling efficient heat-to-electricity generation at the mesoscale,” Energy Environ. Sci. 10(6), 1367–1371 (2017).
[Crossref]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Chalabi, H.

H. Chalabi, A. Alù, and M. L. Brongersma, “Focused thermal emission from a nanostructured SiC surface,” Phys. Rev. B 94(9), 094307 (2016).
[Crossref]

Chan, C. T.

J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90, 89–91 (2007).

Chan, W.

Chan, W. R.

W. R. Chan, V. Stelmakh, M. Ghebrebrhan, M. Soljačić, J. D. Joannopoulos, and I. Čelanović, “Enabling efficient heat-to-electricity generation at the mesoscale,” Energy Environ. Sci. 10(6), 1367–1371 (2017).
[Crossref]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Chang, Y.-C.

Chaves, A.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Chen, C.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

Chen, G.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘Thermal Well’ Emitters and Absorbers for High-Efficiency Thermophotovoltaics,” Sci. Rep. 5(1), 10661 (2015).
[Crossref] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal Radiation from Photonic Crystals: A Direct Calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Chen, J.

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

Chen, K.

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

Chen, L.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Chen, M.

Chen, S.

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Chen, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

Cheng, C.-W.

Cheng, J.

Cheng, Z.-Y.

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Chiu, C.-W.

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Choi, K. K.

S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

Choi, M.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Chow, E.

S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

Cloud, A. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Collin, S.

Cooper, T. A.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

Coppens, Z. J.

Z. J. Coppens and J. G. Valentine, “Spatial and Temporal Modulation of Thermal Emission,” Adv. Mater. 29(39), 1701275 (2017).
[Crossref] [PubMed]

Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Cornelius, C. M.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

Cortes, C. L.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Costantini, D.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Coutrot, A.-L.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Cui, Y.

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
[Crossref] [PubMed]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett. 15(1), 365–371 (2015).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Dahan, N.

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: Spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105(13), 136402 (2010).
[Crossref] [PubMed]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons,” Appl. Phys. Lett. 86(19), 191102 (2005).
[Crossref]

Dai, J.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Datas, A.

A. Datas and A. Martí, “Thermophotovoltaic energy in space applications: Review and future potential,” Sol. Energy Mater. Sol. Cells 161, 285–296 (2017).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “High-Q mid-infrared thermal emitters operating with high power-utilization efficiency,” Opt. Express 24(13), 15101–15109 (2016).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

DenBaars, S. P.

J. Xue, Y. Zhao, S.-H. Oh, W. F. Herrington, J. S. Speck, S. P. DenBaars, S. Nakamura, and R. J. Ram, “Thermally enhanced blue light-emitting diode,” Appl. Phys. Lett. 107(12), 121109 (2015).
[Crossref]

Dewalt, C. J.

Ding, J.-C.

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Dowling, J. P.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

Du, K.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Du, K.-K.

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Dyachenko, P. N.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Eich, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

El-Kady, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Esashi, M.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

Fan, J. A.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Fan, S.

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic Limits of Energy Harvesting from Outgoing Thermal Radiation,” Proc. Natl. Acad. Sci. U.S.A. 115(16), E3609–E3615 (2018).
[Crossref] [PubMed]

D. A. B. Miller, L. Zhu, and S. Fan, “Universal modal radiation laws for all thermal emitters,” Proc. Natl. Acad. Sci. U.S.A. 114(17), 4336–4341 (2017).
[Crossref] [PubMed]

S. Fan, “Thermal Photonics and Energy Applications,” Joule 1(2), 264–273 (2017).
[Crossref]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

P. B. Catrysse, A. Y. Song, and S. Fan, “Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme,” ACS Photonics 3(12), 2420–2426 (2016).
[Crossref]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

P. Santhanam and S. Fan, “Thermal-to-electrical energy conversion by diodes under negative illumination,” Phys. Rev. B 93(16), 161410 (2016).
[Crossref]

Y. Guo and S. Fan, “Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance,” Opt. Express 24(26), 29896–29907 (2016).
[Crossref] [PubMed]

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

S. Fan, “Photovoltaics: An alternative ‘Sun’ for solar cells,” Nat. Nanotechnol. 9(2), 92–93 (2014).
[Crossref] [PubMed]

L. Zhu and S. Fan, “Near-complete violation of detailed balance in thermal radiation,” Phys. Rev. B 90(22), 220301 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. B. Sinclair, and T. S. Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).
[Crossref]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

Fang, N. X.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Fang, X.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Fleming, J. G.

S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

Frischwasser, K.

K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19(23), 23475–23482 (2011).
[Crossref] [PubMed]

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: Spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105(13), 136402 (2010).
[Crossref] [PubMed]

Fu, C.

X. Wu and C. Fu, “Ultra-Broadband Perfect Absorption with Stacked Asymmetric Hyperbolic Metamaterial Slabs,” Nanoscale Microscale Thermophys. Eng. 22, 1–10 (2018).

Fu, C. J.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 71904 (2005).
[Crossref]

Fu, K.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

Fujimura, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gan, Q.

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

Gao, T.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

Geil, R. D.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Gentle, A. R.

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Ghebrebrhan, M.

W. R. Chan, V. Stelmakh, M. Ghebrebrhan, M. Soljačić, J. D. Joannopoulos, and I. Čelanović, “Enabling efficient heat-to-electricity generation at the mesoscale,” Energy Environ. Sci. 10(6), 1367–1371 (2017).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Girolami, G. S.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Goldberg, A.

S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

Goldstein, E. A.

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

Gong, W.

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Gorodetski, Y.

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: Spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105(13), 136402 (2010).
[Crossref] [PubMed]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

Gorodetsky, A. A.

C. Xu, G. T. Stiubianu, and A. A. Gorodetsky, “Adaptive infrared-reflecting systems inspired by cephalopods,” Science 359(6383), 1495–1500 (2018).
[Crossref] [PubMed]

Govorov, A. O.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Granqvist, C. G.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Gray, D. J.

P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically Pumped Light-Emitting Diodes Operating Above Unity Efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, “Time-Asymmetric Photovoltaics,” Nano Lett. 12(11), 5985–5988 (2012).
[Crossref] [PubMed]

T. Trupke, P. Würfel, and M. A. Green, “Comment on “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation” [Appl. Phys. Lett. 83, 380 (2003)],” Appl. Phys. Lett. 84(11), 1997–1998 (2004).
[Crossref]

N.-P. Harder and M. A. Green, “Thermophotonics,” Semicond. Sci. Technol. 18(5), S270–S278 (2003).
[Crossref]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Greffet, J.-J.

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law,” Phys. Rev. X 8(2), 021008 (2018).
[Crossref]

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Coherent Thermal Antenna Using a Photonic Crystal Slab,” Phys. Rev. Lett. 96(12), 123903 (2006).
[Crossref] [PubMed]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Gu, M.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Guan, J.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guinea, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Guler, U.

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Guo, L. J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Guo, Y.

Hamam, R.

Hamann, H. F.

Han, S. E.

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull ’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18(5), 4829–4837 (2010).
[Crossref] [PubMed]

Harder, N.-P.

N.-P. Harder and M. A. Green, “Thermophotonics,” Semicond. Sci. Technol. 18(5), S270–S278 (2003).
[Crossref]

N.-P. Harder and P. Wrfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Hasman, E.

I. Yulevich, E. Maguid, N. Shitrit, D. Veksler, V. Kleiner, and E. Hasman, “Optical Mode Control by Geometric Phase in Quasicrystal Metasurface,” Phys. Rev. Lett. 115(20), 205501 (2015).
[Crossref] [PubMed]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref] [PubMed]

N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38(21), 4358–4361 (2013).
[Crossref] [PubMed]

K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19(23), 23475–23482 (2011).
[Crossref] [PubMed]

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: Spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105(13), 136402 (2010).
[Crossref] [PubMed]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons,” Appl. Phys. Lett. 86(19), 191102 (2005).
[Crossref]

Hatade, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Heeg, B.

B. Heeg, J.-B. Wang, S. R. Johnson, B. D. Buckner, and Y.-H. Zhang, “Thermally assisted electroluminescence: a viable means to generate electricity from solar or waste heat?” Proc. SPIE 6461, 64610K (2007).
[Crossref]

Heinz, T. F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Henzie, J.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

Herrington, W. F.

J. Xue, Y. Zhao, S.-H. Oh, W. F. Herrington, J. S. Speck, S. P. DenBaars, S. Nakamura, and R. J. Ram, “Thermally enhanced blue light-emitting diode,” Appl. Phys. Lett. 107(12), 121109 (2015).
[Crossref]

Herrmann, F.

F. Herrmann and P. Würfel, “Light with nonzero chemical potential,” Am. J. Phys. 73(8), 717–721 (2005).
[Crossref]

Hitz, E. M.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

Hjortsberg, A.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Hon, P. W. C.

Hong, J. R.

Q. H. Pan, J. R. Hong, S. D. Xu, Y. Shuai, and H. P. Tan, “Theoretical Analysis of a Hyperbolic Metamaterial for Harvesting Visible and Infrared Light,” Heat Transf. Eng.1–8 (2018).

Hossain, M. M.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Hsu, P. C.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Hsu, P.-C.

A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
[Crossref] [PubMed]

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett. 15(1), 365–371 (2015).
[Crossref] [PubMed]

Hsu, W.-C.

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘Thermal Well’ Emitters and Absorbers for High-Efficiency Thermophotovoltaics,” Sci. Rep. 5(1), 10661 (2015).
[Crossref] [PubMed]

Hu, L.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

Huang, D.

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103(18), 183513 (2013).
[Crossref]

Huang, X.

S. Xu, Y. Shuai, J. Zhang, X. Huang, and H. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Huang, Y.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘Thermal Well’ Emitters and Absorbers for High-Efficiency Thermophotovoltaics,” Sci. Rep. 5(1), 10661 (2015).
[Crossref] [PubMed]

Hugonin, J.-P.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Ikeda, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Ilic, O.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

Inampudi, S.

Ingvarsson, S.

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “High-Q mid-infrared thermal emitters operating with high power-utilization efficiency,” Opt. Express 24(13), 15101–15109 (2016).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Inoue, Y.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Jacob, Z.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Jafar-Zanjani, S.

S. Jafar-Zanjani, M. M. Salary, and H. Mosallaei, “Metafabrics for Thermoregulation and Energy-Harvesting Applications,” ACS Photonics 4(4), 915–927 (2017).
[Crossref]

Jang, M. S.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Jankovic, V.

Jensen, J. S.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

Jensen, K. F.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Jia, B.

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Joannopoulos, J. D.

W. R. Chan, V. Stelmakh, M. Ghebrebrhan, M. Soljačić, J. D. Joannopoulos, and I. Čelanović, “Enabling efficient heat-to-electricity generation at the mesoscale,” Energy Environ. Sci. 10(6), 1367–1371 (2017).
[Crossref]

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal Radiation from Photonic Crystals: A Direct Calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Johnson, S. G.

C. Khandekar, A. Pick, S. G. Johnson, and A. W. Rodriguez, “Radiative heat transfer in nonlinear Kerr media,” Phys. Rev. B 91(11), 115406 (2015).
[Crossref]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Johnson, S. R.

B. Heeg, J.-B. Wang, S. R. Johnson, B. D. Buckner, and Y.-H. Zhang, “Thermally assisted electroluminescence: a viable means to generate electricity from solar or waste heat?” Proc. SPIE 6461, 64610K (2007).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Jurado, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kalanyan, B.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Kanakugi, T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Kaplan, A. F.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Kasaya, T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Kashiwa, T.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

Kassakian, J.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Khandekar, C.

C. Khandekar and A. W. Rodriguez, “Near-field thermal upconversion and energy transfer through a Kerr medium,” Opt. Express 25(19), 23164–23180 (2017).
[Crossref] [PubMed]

C. Khandekar, A. Pick, S. G. Johnson, and A. W. Rodriguez, “Radiative heat transfer in nonlinear Kerr media,” Phys. Rev. B 91(11), 115406 (2015).
[Crossref]

C. Khandekar, Z. Lin, and A. W. Rodriguez, “Thermal radiation from optically driven Kerr (χ (3)) photonic cavities,” Appl. Phys. Lett. 106(15), 151109 (2015).
[Crossref]

Kildishev, A.

Kildishev, A. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kim, L.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Kim, S.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Kinsey, N.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Kitagawa, S.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Klein, L.

Kleiner, V.

I. Yulevich, E. Maguid, N. Shitrit, D. Veksler, V. Kleiner, and E. Hasman, “Optical Mode Control by Geometric Phase in Quasicrystal Metasurface,” Phys. Rev. Lett. 115(20), 205501 (2015).
[Crossref] [PubMed]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref] [PubMed]

N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38(21), 4358–4361 (2013).
[Crossref] [PubMed]

K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19(23), 23475–23482 (2011).
[Crossref] [PubMed]

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: Spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105(13), 136402 (2010).
[Crossref] [PubMed]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons,” Appl. Phys. Lett. 86(19), 191102 (2005).
[Crossref]

Ko, C.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Koppens, F.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Kosten, E. D.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Kosulnikov, S.

C. Simovski, S. Maslovski, I. Nefedov, S. Kosulnikov, P. Belov, and S. Tretyakov, “Hyperlens makes thermal emission strongly super-Planckian,” Photonics Nanostructures 13, 31–41 (2015).

Kou, J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kravchencko, I. I.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Kravchenko, I. I.

Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
[Crossref]

Krekeler, T.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Krüger, M.

H. Soo and M. Krüger, “Fluctuational electrodynamics for nonlinear media,” EPL 115(4), 41002 (2016).
[Crossref]

Kumar, A.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Lacey, J. A.

Lagutchev, A.

Lai, K.-T.

Landsberg, P. T.

P. T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys. 51(7), R1–R20 (1980).
[Crossref]

Lang, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Laroche, M.

Lee, B. J.

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 71904 (2005).
[Crossref]

Lee, H. R.

P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett. 15(1), 365–371 (2015).
[Crossref] [PubMed]

Lee, J. C. W.

J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90, 89–91 (2007).

Lee, M. H.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

Lefebvre, A.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Lenert, A.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Li, P.

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Li, Q.

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Li, W.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2017).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Li, X.

Li, Y.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

Li, Z.-M.

J. Piprek and Z.-M. Li, “Electroluminescent cooling mechanism in InGaN/GaN light-emitting diodes,” Opt. Quantum Electron. 48(10), 472 (2016).
[Crossref]

Liew, K. K.

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Lin, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Lin, S.-Y.

S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

Lin, Z.

C. Khandekar, Z. Lin, and A. W. Rodriguez, “Thermal radiation from optically driven Kerr (χ (3)) photonic cavities,” Appl. Phys. Lett. 106(15), 151109 (2015).
[Crossref]

Liu, B.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Liu, C.

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett. 15(1), 365–371 (2015).
[Crossref] [PubMed]

Liu, J.

Liu, K.

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

Liu, L.

Y. Liu, J. Qiu, J. Zhao, and L. Liu, “General design method of ultra-broadband perfect absorbers based on magnetic polaritons,” Opt. Express 25(20), A980–A989 (2017).
[Crossref] [PubMed]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Liu, X.

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430 (2017).
[Crossref]

X. Liu and W. J. Padilla, “Thermochromic Infrared Metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett. 15(1), 365–371 (2015).
[Crossref] [PubMed]

X. Liu, L. Wang, and Z. M. Zhang, “Near-field thermal radiation: Recent progress and outlook,” Nanoscale Microscale Thermophys. Eng. 19(2), 98–126 (2015).
[Crossref]

X. Liu and W. J. Padilla, “Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials,” Adv. Opt. Mater. 1(8), 559–562 (2013).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Liu, Y.

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

Y. Liu, J. Qiu, J. Zhao, and L. Liu, “General design method of ultra-broadband perfect absorbers based on magnetic polaritons,” Opt. Express 25(20), A980–A989 (2017).
[Crossref] [PubMed]

Loomis, J.

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Losego, M. D.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Low, T.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Lu, J.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Lu, Y.

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Luk, T. S.

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. B. Sinclair, and T. S. Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).
[Crossref]

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal Radiation from Photonic Crystals: A Direct Calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Lyu, Y.-B.

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Maayani, S.

Maguid, E.

I. Yulevich, E. Maguid, N. Shitrit, D. Veksler, V. Kleiner, and E. Hasman, “Optical Mode Control by Geometric Phase in Quasicrystal Metasurface,” Phys. Rev. Lett. 115(20), 205501 (2015).
[Crossref] [PubMed]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref] [PubMed]

Mahan, G.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Majumdar, A.

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

Malis, O.

Mallek, J.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Marquier, F.

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law,” Phys. Rev. X 8(2), 021008 (2018).
[Crossref]

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005).
[Crossref] [PubMed]

Martí, A.

A. Datas and A. Martí, “Thermophotovoltaic energy in space applications: Review and future potential,” Sol. Energy Mater. Sol. Cells 161, 285–296 (2017).
[Crossref]

Martin-Moreno, L.

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

Marton, C. H.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Maruyama, S.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

Maslovski, S.

C. Simovski, S. Maslovski, I. Nefedov, S. Kosulnikov, P. Belov, and S. Tretyakov, “Hyperlens makes thermal emission strongly super-Planckian,” Photonics Nanostructures 13, 31–41 (2015).

C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).
[Crossref] [PubMed]

Matveev, B. A.

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103(18), 183513 (2013).
[Crossref]

Mayer, T. S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

McEvoy, A. J.

H. Ries and A. J. McEvoy, “Chemical potential and temperature of light,” J. Photochem. Photobiol. Chem. 59(1), 11–18 (1991).
[Crossref]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Meroueh, L.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, L. Zhu, and S. Fan, “Universal modal radiation laws for all thermal emitters,” Proc. Natl. Acad. Sci. U.S.A. 114(17), 4336–4341 (2017).
[Crossref] [PubMed]

Minnich, A. J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Moitra, P.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Moldovan-Doyen, I.

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Molesky, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Mosallaei, H.

S. Inampudi, J. Cheng, M. M. Salary, and H. Mosallaei, “Unidirectional thermal radiation from a SiC metasurface,” J. Opt. Soc. Am. B 35(1), 39 (2018).
[Crossref]

S. Jafar-Zanjani, M. M. Salary, and H. Mosallaei, “Metafabrics for Thermoregulation and Energy-Harvesting Applications,” ACS Photonics 4(4), 915–927 (2017).
[Crossref]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Nagpal, P.

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull ’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

Naik, G. V.

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Nakamura, S.

J. Xue, Y. Zhao, S.-H. Oh, W. F. Herrington, J. S. Speck, S. P. DenBaars, S. Nakamura, and R. J. Ram, “Thermally enhanced blue light-emitting diode,” Appl. Phys. Lett. 107(12), 121109 (2015).
[Crossref]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Narayanaswamy, A.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal Radiation from Photonic Crystals: A Direct Calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

Ndao, S.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Ndukaife, J. C.

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

Nefedov, I.

C. Simovski, S. Maslovski, I. Nefedov, S. Kosulnikov, P. Belov, and S. Tretyakov, “Hyperlens makes thermal emission strongly super-Planckian,” Photonics Nanostructures 13, 31–41 (2015).

C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).
[Crossref] [PubMed]

Ni, G.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

Ni, Y.

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Ning, H.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Niv, A.

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons,” Appl. Phys. Lett. 86(19), 191102 (2005).
[Crossref]

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “High-Q mid-infrared thermal emitters operating with high power-utilization efficiency,” Opt. Express 24(13), 15101–15109 (2016).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Norris, D. J.

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull ’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18(5), 4829–4837 (2010).
[Crossref] [PubMed]

Odom, T. W.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

Oh, S.-H.

J. Xue, Y. Zhao, S.-H. Oh, W. F. Herrington, J. S. Speck, S. P. DenBaars, S. Nakamura, and R. J. Ram, “Thermally enhanced blue light-emitting diode,” Appl. Phys. Lett. 107(12), 121109 (2015).
[Crossref]

Okada, M.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Oksanen, J.

J. Oksanen and J. Tulkki, “Thermophotonics: LEDs feed on waste heat,” Nat. Photonics 9(12), 782–784 (2015).
[Crossref]

J. Oksanen and J. Tulkki, “Thermophotonic heat pump—a theoretical model and numerical simulations,” J. Appl. Phys. 107(9), 093106 (2010).
[Crossref]

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Otey, C.

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. B. Sinclair, and T. S. Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).
[Crossref]

Otth, D. H.

D. H. Otth and R. G. Ross, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” in 29th Annual Technical Meeting of the Institute of Environmental Sciences (1983), pp. 121–126.

Ozeri, D.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430 (2017).
[Crossref]

X. Liu and W. J. Padilla, “Thermochromic Infrared Metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

X. Liu and W. J. Padilla, “Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials,” Adv. Opt. Mater. 1(8), 559–562 (2013).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Palyvos, J. A.

E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy 83(5), 614–624 (2009).
[Crossref]

Pan, Q. H.

Q. H. Pan, J. R. Hong, S. D. Xu, Y. Shuai, and H. P. Tan, “Theoretical Analysis of a Hyperbolic Metamaterial for Harvesting Visible and Infrared Light,” Heat Transf. Eng.1–8 (2018).

Park, J. H.

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull ’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

Parsons, G. N.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Parsons, J.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Pelouard, J.-L.

Peng, Y.

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

Petrov, A. Y.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Pick, A.

C. Khandekar, A. Pick, S. G. Johnson, and A. W. Rodriguez, “Radiative heat transfer in nonlinear Kerr media,” Phys. Rev. B 91(11), 115406 (2015).
[Crossref]

Pilawa-Podgurski, R. C. N.

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

Piprek, J.

J. Piprek and Z.-M. Li, “Electroluminescent cooling mechanism in InGaN/GaN light-emitting diodes,” Opt. Quantum Electron. 48(10), 472 (2016).
[Crossref]

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Polman, A.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Povinelli, M. L.

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Puscasu, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Qiu, J.

Qiu, M.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

Qu, Y.

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Ram, R. J.

J. Xue, Y. Zhao, S.-H. Oh, W. F. Herrington, J. S. Speck, S. P. DenBaars, S. Nakamura, and R. J. Ram, “Thermally enhanced blue light-emitting diode,” Appl. Phys. Lett. 107(12), 121109 (2015).
[Crossref]

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103(18), 183513 (2013).
[Crossref]

P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically Pumped Light-Emitting Diodes Operating Above Unity Efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
[Crossref] [PubMed]

Raman, A.

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

Raman, A. P.

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Ramanathan, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Remennyi, M. A.

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103(18), 183513 (2013).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

Ries, H.

H. Ries and A. J. McEvoy, “Chemical potential and temperature of light,” J. Photochem. Photobiol. Chem. 59(1), 11–18 (1991).
[Crossref]

H. Ries, “Complete and reversible absorption of radiation,” Appl. Phys. B 32(3), 153–156 (1983).
[Crossref]

Rinnerbauer, V.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Ritter, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Rodriguez, A. W.

C. Khandekar and A. W. Rodriguez, “Near-field thermal upconversion and energy transfer through a Kerr medium,” Opt. Express 25(19), 23164–23180 (2017).
[Crossref] [PubMed]

C. Khandekar, A. Pick, S. G. Johnson, and A. W. Rodriguez, “Radiative heat transfer in nonlinear Kerr media,” Phys. Rev. B 91(11), 115406 (2015).
[Crossref]

C. Khandekar, Z. Lin, and A. W. Rodriguez, “Thermal radiation from optically driven Kerr (χ (3)) photonic cavities,” Appl. Phys. Lett. 106(15), 151109 (2015).
[Crossref]

Ross, R. G.

D. H. Otth and R. G. Ross, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” in 29th Annual Technical Meeting of the Institute of Environmental Sciences (1983), pp. 121–126.

Ruan, X.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Salary, M. M.

S. Inampudi, J. Cheng, M. M. Salary, and H. Mosallaei, “Unidirectional thermal radiation from a SiC metasurface,” J. Opt. Soc. Am. B 35(1), 39 (2018).
[Crossref]

S. Jafar-Zanjani, M. M. Salary, and H. Mosallaei, “Metafabrics for Thermoregulation and Energy-Harvesting Applications,” ACS Photonics 4(4), 915–927 (2017).
[Crossref]

Sandhu, S.

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. B. Sinclair, and T. S. Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).
[Crossref]

Santhanam, P.

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic Limits of Energy Harvesting from Outgoing Thermal Radiation,” Proc. Natl. Acad. Sci. U.S.A. 115(16), E3609–E3615 (2018).
[Crossref] [PubMed]

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

P. Santhanam and S. Fan, “Thermal-to-electrical energy conversion by diodes under negative illumination,” Phys. Rev. B 93(16), 161410 (2016).
[Crossref]

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103(18), 183513 (2013).
[Crossref]

P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically Pumped Light-Emitting Diodes Operating Above Unity Efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Senkevich, J. J.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Sergeant, N. P.

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, and V. M. Shalaev, “Quasi-coherent thermal emitter based on refractory plasmonic materials,” Opt. Mater. Express 5(12), 2721 (2015).
[Crossref]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

Shen, S.

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Shen, Y.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

Sherrott, M. C.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Shi, N. N.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Shi, Y.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

Shih, M.-H.

Shitrit, N.

I. Yulevich, E. Maguid, N. Shitrit, D. Veksler, V. Kleiner, and E. Hasman, “Optical Mode Control by Geometric Phase in Quasicrystal Metasurface,” Phys. Rev. Lett. 115(20), 205501 (2015).
[Crossref] [PubMed]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref] [PubMed]

N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38(21), 4358–4361 (2013).
[Crossref] [PubMed]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Shuai, Y.

S. Xu, Y. Shuai, J. Zhang, X. Huang, and H. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

Q. H. Pan, J. R. Hong, S. D. Xu, Y. Shuai, and H. P. Tan, “Theoretical Analysis of a Hyperbolic Metamaterial for Harvesting Visible and Infrared Light,” Heat Transf. Eng.1–8 (2018).

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Sigmund, O.

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

Silvestrini, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Simovski, C.

C. Simovski, S. Maslovski, I. Nefedov, S. Kosulnikov, P. Belov, and S. Tretyakov, “Hyperlens makes thermal emission strongly super-Planckian,” Photonics Nanostructures 13, 31–41 (2015).

C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).
[Crossref] [PubMed]

Sinclair, M. B.

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. B. Sinclair, and T. S. Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).
[Crossref]

Skauli, T.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

Skoplaki, E.

E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy 83(5), 614–624 (2009).
[Crossref]

Slovick, B. A.

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

Smith, G. B.

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

Snyder, W. C.

Soljacic, M.

W. R. Chan, V. Stelmakh, M. Ghebrebrhan, M. Soljačić, J. D. Joannopoulos, and I. Čelanović, “Enabling efficient heat-to-electricity generation at the mesoscale,” Energy Environ. Sci. 10(6), 1367–1371 (2017).
[Crossref]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Song, A. Y.

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

P. B. Catrysse, A. Y. Song, and S. Fan, “Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme,” ACS Photonics 3(12), 2420–2426 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Song, J.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

Soo, H.

H. Soo and M. Krüger, “Fluctuational electrodynamics for nonlinear media,” EPL 115(4), 41002 (2016).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Speck, J. S.

J. Xue, Y. Zhao, S.-H. Oh, W. F. Herrington, J. S. Speck, S. P. DenBaars, S. Nakamura, and R. J. Ram, “Thermally enhanced blue light-emitting diode,” Appl. Phys. Lett. 107(12), 121109 (2015).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Stelmakh, V.

W. R. Chan, V. Stelmakh, M. Ghebrebrhan, M. Soljačić, J. D. Joannopoulos, and I. Čelanović, “Enabling efficient heat-to-electricity generation at the mesoscale,” Energy Environ. Sci. 10(6), 1367–1371 (2017).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Stiubianu, G. T.

C. Xu, G. T. Stiubianu, and A. A. Gorodetsky, “Adaptive infrared-reflecting systems inspired by cephalopods,” Science 359(6383), 1495–1500 (2018).
[Crossref] [PubMed]

Störmer, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

Swanson, R. M.

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[Crossref]

Sweatlock, L. A.

S.-H. Wu, M. Chen, M. T. Barako, V. Jankovic, P. W. C. Hon, L. A. Sweatlock, and M. L. Povinelli, “Thermal homeostasis using microstructured phase-change materials,” Optica 4(11), 1390 (2017).
[Crossref]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

Sze, J.

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Tan, H.

S. Xu, Y. Shuai, J. Zhang, X. Huang, and H. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

Tan, H. P.

Q. H. Pan, J. R. Hong, S. D. Xu, Y. Shuai, and H. P. Tan, “Theoretical Analysis of a Hyperbolic Metamaterial for Harvesting Visible and Infrared Light,” Heat Transf. Eng.1–8 (2018).

Taubner, T.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Tauc, J.

J. Tauc, “The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from ap-n junction,” Czech. J. Phys. 7(3), 275–276 (1957).
[Crossref]

Tong, J. K.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘Thermal Well’ Emitters and Absorbers for High-Efficiency Thermophotovoltaics,” Sci. Rep. 5(1), 10661 (2015).
[Crossref] [PubMed]

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Tonge, G.

P. T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys. 51(7), R1–R20 (1980).
[Crossref]

Tretyakov, S.

C. Simovski, S. Maslovski, I. Nefedov, S. Kosulnikov, P. Belov, and S. Tretyakov, “Hyperlens makes thermal emission strongly super-Planckian,” Photonics Nanostructures 13, 31–41 (2015).

C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).
[Crossref] [PubMed]

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Trupke, T.

T. Trupke, P. Würfel, and M. A. Green, “Comment on “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation” [Appl. Phys. Lett. 83, 380 (2003)],” Appl. Phys. Lett. 84(11), 1997–1998 (2004).
[Crossref]

Tsai, C. C.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Tsurimaki, Y.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

Tulkki, J.

J. Oksanen and J. Tulkki, “Thermophotonics: LEDs feed on waste heat,” Nat. Photonics 9(12), 782–784 (2015).
[Crossref]

J. Oksanen and J. Tulkki, “Thermophotonic heat pump—a theoretical model and numerical simulations,” J. Appl. Phys. 107(9), 093106 (2010).
[Crossref]

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Valentine, J. G.

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2017).
[Crossref]

Z. J. Coppens and J. G. Valentine, “Spatial and Temporal Modulation of Thermal Emission,” Adv. Mater. 29(39), 1701275 (2017).
[Crossref] [PubMed]

Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
[Crossref]

Veksler, D.

I. Yulevich, E. Maguid, N. Shitrit, D. Veksler, V. Kleiner, and E. Hasman, “Optical Mode Control by Geometric Phase in Quasicrystal Metasurface,” Phys. Rev. Lett. 115(20), 205501 (2015).
[Crossref] [PubMed]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref] [PubMed]

N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38(21), 4358–4361 (2013).
[Crossref] [PubMed]

Wan, Z.

Wang, B.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Wang, E. N.

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, H.

A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
[Crossref] [PubMed]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
[Crossref] [PubMed]

Wang, J.

A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
[Crossref] [PubMed]

Wang, J.-B.

B. Heeg, J.-B. Wang, S. R. Johnson, B. D. Buckner, and Y.-H. Zhang, “Thermally assisted electroluminescence: a viable means to generate electricity from solar or waste heat?” Proc. SPIE 6461, 64610K (2007).
[Crossref]

Wang, K. X.

Wang, L.

X. Liu, L. Wang, and Z. M. Zhang, “Near-field thermal radiation: Recent progress and outlook,” Nanoscale Microscale Thermophys. Eng. 19(2), 98–126 (2015).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
[Crossref] [PubMed]

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Wehner, R.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

Welch, A. J.

P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett. 15(1), 365–371 (2015).
[Crossref] [PubMed]

Werner, D. H.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Wrfel, P.

N.-P. Harder and P. Wrfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Wu, C.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Wu, C.-L.

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

Wu, P.

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

Wu, S.-H.

Wu, X.

X. Wu and C. Fu, “Ultra-Broadband Perfect Absorption with Stacked Asymmetric Hyperbolic Metamaterial Slabs,” Nanoscale Microscale Thermophys. Eng. 22, 1–10 (2018).

Wurfel, P.

P. Wurfel, “The chemical potential of radiation,” J. Phys. C Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

Würfel, P.

F. Herrmann and P. Würfel, “Light with nonzero chemical potential,” Am. J. Phys. 73(8), 717–721 (2005).
[Crossref]

T. Trupke, P. Würfel, and M. A. Green, “Comment on “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation” [Appl. Phys. Lett. 83, 380 (2003)],” Appl. Phys. Lett. 84(11), 1997–1998 (2004).
[Crossref]

Xiao, T. P.

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

Xie, H.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

Xie, J.

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Xie, X.

P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett. 15(1), 365–371 (2015).
[Crossref] [PubMed]

Xu, C.

C. Xu, G. T. Stiubianu, and A. A. Gorodetsky, “Adaptive infrared-reflecting systems inspired by cephalopods,” Science 359(6383), 1495–1500 (2018).
[Crossref] [PubMed]

Xu, J.

A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Xu, S.

S. Xu, Y. Shuai, J. Zhang, X. Huang, and H. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

Xu, S. D.

Q. H. Pan, J. R. Hong, S. D. Xu, Y. Shuai, and H. P. Tan, “Theoretical Analysis of a Hyperbolic Metamaterial for Harvesting Visible and Infrared Light,” Heat Transf. Eng.1–8 (2018).

Xu, Y.

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

Xue, J.

J. Xue, Y. Zhao, S.-H. Oh, W. F. Herrington, J. S. Speck, S. P. DenBaars, S. Nakamura, and R. J. Ram, “Thermally enhanced blue light-emitting diode,” Appl. Phys. Lett. 107(12), 121109 (2015).
[Crossref]

Yablonovitch, E.

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

Yamamoto, K.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

Yan, C.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Yang, A.

A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
[Crossref] [PubMed]

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

Yang, B.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yang, Z.

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

Ye, D.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

Yeng, Y. X.

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

Yi, S.

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yu, B.

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

Yu, N.

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, Z.

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

Yugami, H.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

Yulevich, I.

I. Yulevich, E. Maguid, N. Shitrit, D. Veksler, V. Kleiner, and E. Hasman, “Optical Mode Control by Geometric Phase in Quasicrystal Metasurface,” Phys. Rev. Lett. 115(20), 205501 (2015).
[Crossref] [PubMed]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref] [PubMed]

K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19(23), 23475–23482 (2011).
[Crossref] [PubMed]

Yun, S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Zeng, L.

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

Zhai, S.

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhang, G.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

Zhang, J.

S. Xu, Y. Shuai, J. Zhang, X. Huang, and H. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

Zhang, R.

A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
[Crossref] [PubMed]

Zhang, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

Zhang, Y.-H.

B. Heeg, J.-B. Wang, S. R. Johnson, B. D. Buckner, and Y.-H. Zhang, “Thermally assisted electroluminescence: a viable means to generate electricity from solar or waste heat?” Proc. SPIE 6461, 64610K (2007).
[Crossref]

Zhang, Z.

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Perfect Absorption With Trapezoidal Gratings Made of Natural Hyperbolic Materials,” Nanoscale Microscale Thermophys. Eng. 21(3), 123–133 (2017).
[Crossref]

X. Liu, L. Wang, and Z. M. Zhang, “Near-field thermal radiation: Recent progress and outlook,” Nanoscale Microscale Thermophys. Eng. 19(2), 98–126 (2015).
[Crossref]

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 71904 (2005).
[Crossref]

Zhao, B.

B. Zhao and Z. M. Zhang, “Perfect Absorption With Trapezoidal Gratings Made of Natural Hyperbolic Materials,” Nanoscale Microscale Thermophys. Eng. 21(3), 123–133 (2017).
[Crossref]

Zhao, C. Y.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhao, J.

Zhao, T.

P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett. 15(1), 365–371 (2015).
[Crossref] [PubMed]

Zhao, Y.

J. Xue, Y. Zhao, S.-H. Oh, W. F. Herrington, J. S. Speck, S. P. DenBaars, S. Nakamura, and R. J. Ram, “Thermally enhanced blue light-emitting diode,” Appl. Phys. Lett. 107(12), 121109 (2015).
[Crossref]

Zhou, C.

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

Zhou, G.

A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Zhou, M.

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

Zhu, L.

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

D. A. B. Miller, L. Zhu, and S. Fan, “Universal modal radiation laws for all thermal emitters,” Proc. Natl. Acad. Sci. U.S.A. 114(17), 4336–4341 (2017).
[Crossref] [PubMed]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

L. Zhu and S. Fan, “Near-complete violation of detailed balance in thermal radiation,” Phys. Rev. B 90(22), 220301 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32 (2014).
[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. B. Sinclair, and T. S. Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).
[Crossref]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

ACS Nano (2)

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E. M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, and L. Hu, “Three-Dimensional Printed Thermal Regulation Textiles,” ACS Nano 11(11), 11513–11520 (2017).
[Crossref] [PubMed]

ACS Photonics (8)

S. Jafar-Zanjani, M. M. Salary, and H. Mosallaei, “Metafabrics for Thermoregulation and Energy-Harvesting Applications,” ACS Photonics 4(4), 915–927 (2017).
[Crossref]

P. B. Catrysse, A. Y. Song, and S. Fan, “Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme,” ACS Photonics 3(12), 2420–2426 (2016).
[Crossref]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime Radiative Cooling Using Near-Black Infrared Emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

W. Li, Y. Shi, K. Chen, L. Zhu, and S. Fan, “A Comprehensive Photonic Approach for Solar Cell Cooling,” ACS Photonics 4(4), 774–782 (2017).
[Crossref]

J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, “Infrared-Transparent Visible-Opaque Fabrics for Wearable Personal Thermal Management,” ACS Photonics 2(6), 769–778 (2015).
[Crossref]

P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-Scale All-Dielectric Metamaterial Perfect Reflectors,” ACS Photonics 2(6), 692–698 (2015).
[Crossref]

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

J. H. Park, S. E. Han, P. Nagpal, and D. J. Norris, “Observation of Thermal Beaming from Tungsten and Molybdenum Bull ’s Eyes,” ACS Photonics 3(3), 494–500 (2016).
[Crossref]

Adv Sci (Weinh) (1)

A. R. Gentle and G. B. Smith, “A Subambient Open Roof Surface under the Mid-Summer Sun,” Adv Sci (Weinh) 2(9), 1500119 (2015).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, J. J. Senkevich, J. D. Joannopoulos, E. N. Wang, M. Soljačić, and I. Celanovic, “Metallic Photonic Crystal Absorber-Emitter for Efficient Spectral Control in High-Temperature Solar Thermophotovoltaics,” Adv. Energy Mater. 4(12), 1400334 (2014).
[Crossref]

Adv. Mater. (4)

Z. J. Coppens and J. G. Valentine, “Spatial and Temporal Modulation of Thermal Emission,” Adv. Mater. 29(39), 1701275 (2017).
[Crossref] [PubMed]

X. Liu and W. J. Padilla, “Thermochromic Infrared Metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: Broadband Metamaterial Absorber,” Adv. Mater. 26(47), 7959–7965 (2014).
[Crossref] [PubMed]

P. Li, B. Liu, Y. Ni, K. K. Liew, J. Sze, S. Chen, and S. Shen, “Large-Scale Nanophotonic Solar Selective Absorbers for High-Efficiency Solar Thermal Energy Conversion,” Adv. Mater. 27(31), 4585–4591 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

M. M. Hossain, B. Jia, and M. Gu, “A Metamaterial Emitter for Highly Efficient Radiative Cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Adv. Opt. Mater. 4(5), 671–676 (2016).
[Crossref]

X. Liu and W. J. Padilla, “Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials,” Adv. Opt. Mater. 1(8), 559–562 (2013).
[Crossref]

Adv. Opt. Photonics (1)

S. V. Boriskina, T. A. Cooper, L. Zeng, G. Ni, J. K. Tong, Y. Tsurimaki, Y. Huang, L. Meroueh, G. Mahan, and G. Chen, “Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities,” Adv. Opt. Photonics 9(4), 775 (2017).
[Crossref]

Am. J. Phys. (1)

F. Herrmann and P. Würfel, “Light with nonzero chemical potential,” Am. J. Phys. 73(8), 717–721 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

H. Ries, “Complete and reversible absorption of radiation,” Appl. Phys. B 32(3), 153–156 (1983).
[Crossref]

Appl. Phys. Lett. (14)

T. Trupke, P. Würfel, and M. A. Green, “Comment on “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation” [Appl. Phys. Lett. 83, 380 (2003)],” Appl. Phys. Lett. 84(11), 1997–1998 (2004).
[Crossref]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[Crossref]

J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90, 89–91 (2007).

N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons,” Appl. Phys. Lett. 86(19), 191102 (2005).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

L. Zhu, S. Sandhu, C. Otey, S. Fan, M. B. Sinclair, and T. S. Luk, “Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes,” Appl. Phys. Lett. 102(10), 103104 (2013).
[Crossref]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393–1395 (2001).
[Crossref]

B. J. Lee, C. J. Fu, and Z. M. Zhang, “Coherent thermal emission from one-dimensional photonic crystals,” Appl. Phys. Lett. 87(7), 71904 (2005).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

C. Khandekar, Z. Lin, and A. W. Rodriguez, “Thermal radiation from optically driven Kerr (χ (3)) photonic cavities,” Appl. Phys. Lett. 106(15), 151109 (2015).
[Crossref]

P. Santhanam, D. Huang, R. J. Ram, M. A. Remennyi, and B. A. Matveev, “Room temperature thermo-electric pumping in mid-infrared light-emitting diodes,” Appl. Phys. Lett. 103(18), 183513 (2013).
[Crossref]

J. Xue, Y. Zhao, S.-H. Oh, W. F. Herrington, J. S. Speck, S. P. DenBaars, S. Nakamura, and R. J. Ram, “Thermally enhanced blue light-emitting diode,” Appl. Phys. Lett. 107(12), 121109 (2015).
[Crossref]

V. Stelmakh, V. Rinnerbauer, R. D. Geil, P. R. Aimone, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication,” Appl. Phys. Lett. 103(12), 123903 (2013).
[Crossref]

Czech. J. Phys. (1)

J. Tauc, “The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from ap-n junction,” Czech. J. Phys. 7(3), 275–276 (1957).
[Crossref]

Energy Environ. Sci. (2)

W. R. Chan, V. Stelmakh, M. Ghebrebrhan, M. Soljačić, J. D. Joannopoulos, and I. Čelanović, “Enabling efficient heat-to-electricity generation at the mesoscale,” Energy Environ. Sci. 10(6), 1367–1371 (2017).
[Crossref]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Recent developments in high-temperature photonic crystals for energy conversion,” Energy Environ. Sci. 5(10), 8815 (2012).
[Crossref]

EPL (1)

H. Soo and M. Krüger, “Fluctuational electrodynamics for nonlinear media,” EPL 115(4), 41002 (2016).
[Crossref]

Int. J. Energy Res. (1)

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

J. Appl. Phys. (6)

P. T. Landsberg and G. Tonge, “Thermodynamic energy conversion efficiencies,” J. Appl. Phys. 51(7), R1–R20 (1980).
[Crossref]

P. Berdahl, “Radiant refrigeration by semiconductor diodes,” J. Appl. Phys. 58(3), 1369–1374 (1985).
[Crossref]

K. Chen, T. P. Xiao, P. Santhanam, E. Yablonovitch, and S. Fan, “High-performance near-field electroluminescent refrigeration device consisting of a GaAs light emitting diode and a Si photovoltaic cell,” J. Appl. Phys. 122(14), 143104 (2017).
[Crossref]

J. Oksanen and J. Tulkki, “Thermophotonic heat pump—a theoretical model and numerical simulations,” J. Appl. Phys. 107(9), 093106 (2010).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. Chem. (1)

H. Ries and A. J. McEvoy, “Chemical potential and temperature of light,” J. Photochem. Photobiol. Chem. 59(1), 11–18 (1991).
[Crossref]

J. Phys. C Solid State Phys. (1)

P. Wurfel, “The chemical potential of radiation,” J. Phys. C Solid State Phys. 15(18), 3967–3985 (1982).
[Crossref]

Joule (1)

S. Fan, “Thermal Photonics and Energy Applications,” Joule 1(2), 264–273 (2017).
[Crossref]

Laser Photonics Rev. (2)

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

Light Sci. Appl. (2)

K.-K. Du, Q. Li, Y.-B. Lyu, J.-C. Ding, Y. Lu, Z.-Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref]

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Nano Lett. (8)

M. A. Green, “Time-Asymmetric Photovoltaics,” Nano Lett. 12(11), 5985–5988 (2012).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

B. Liu, W. Gong, B. Yu, P. Li, and S. Shen, “Perfect Thermal Emission by Nanoscale Transmission Line Resonators,” Nano Lett. 17(2), 666–672 (2017).
[Crossref] [PubMed]

A. R. Gentle and G. B. Smith, “Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref] [PubMed]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref] [PubMed]

P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, “Personal Thermal Management by Metallic Nanowire-Coated Textile,” Nano Lett. 15(1), 365–371 (2015).
[Crossref] [PubMed]

A. Yang, L. Cai, R. Zhang, J. Wang, P.-C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, “Thermal Management in Nanofiber-Based Face Mask,” Nano Lett. 17(6), 3506–3510 (2017).
[Crossref] [PubMed]

Nanophotonics (1)

W. Li and J. G. Valentine, “Harvesting the loss: surface plasmon-based hot electron photodetection,” Nanophotonics 6(1), 177–191 (2017).
[Crossref]

Nanoscale Microscale Thermophys. Eng. (3)

X. Wu and C. Fu, “Ultra-Broadband Perfect Absorption with Stacked Asymmetric Hyperbolic Metamaterial Slabs,” Nanoscale Microscale Thermophys. Eng. 22, 1–10 (2018).

B. Zhao and Z. M. Zhang, “Perfect Absorption With Trapezoidal Gratings Made of Natural Hyperbolic Materials,” Nanoscale Microscale Thermophys. Eng. 21(3), 123–133 (2017).
[Crossref]

X. Liu, L. Wang, and Z. M. Zhang, “Near-field thermal radiation: Recent progress and outlook,” Nanoscale Microscale Thermophys. Eng. 19(2), 98–126 (2015).
[Crossref]

Nat. Commun. (9)

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7, 11809 (2016).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4, 1730 (2013).
[Crossref] [PubMed]

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, and P. V. Braun, “Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification,” Nat. Commun. 4, 2630 (2013).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6(1), 7032 (2015).
[Crossref] [PubMed]

L. Cai, A. Y. Song, P. Wu, P.-C. Hsu, Y. Peng, J. Chen, C. Liu, P. B. Catrysse, Y. Liu, A. Yang, C. Zhou, C. Zhou, S. Fan, and Y. Cui, “Warming up human body by nanoporous metallized polyethylene textile,” Nat. Commun. 8(1), 496 (2017).
[Crossref] [PubMed]

Z. Chen, L. Zhu, A. Raman, and S. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle,” Nat. Commun. 7, 13729 (2016).
[Crossref] [PubMed]

Nat. Energy (2)

E. A. Goldstein, A. P. Raman, and S. Fan, “Sub-ambient non-evaporative fluid cooling with the sky,” Nat. Energy 2(9), 17143 (2017).
[Crossref]

D. M. Bierman, A. Lenert, W. R. Chan, B. Bhatia, I. Celanović, M. Soljačić, and E. N. Wang, “Enhanced photovoltaic energy conversion using thermally based spectral shaping,” Nat. Energy 1(6), 16068 (2016).
[Crossref]

Nat. Mater. (3)

T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, and F. Koppens, “Polaritons in layered two-dimensional materials,” Nat. Mater. 16(2), 182–194 (2017).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (4)

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

S. Fan, “Photovoltaics: An alternative ‘Sun’ for solar cells,” Nat. Nanotechnol. 9(2), 92–93 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

J. Oksanen and J. Tulkki, “Thermophotonics: LEDs feed on waste heat,” Nat. Photonics 9(12), 782–784 (2015).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[Crossref]

Nature (2)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Express (14)

S. Ingvarsson, L. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
[Crossref] [PubMed]

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18(5), 4829–4837 (2010).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3Suppl 3), A314–A334 (2010).
[Crossref] [PubMed]

K. Frischwasser, I. Yulevich, V. Kleiner, and E. Hasman, “Rashba-like spin degeneracy breaking in coupled thermal antenna lattices,” Opt. Express 19(23), 23475–23482 (2011).
[Crossref] [PubMed]

C.-W. Cheng, M. N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

S. Molesky, C. J. Dewalt, and Z. Jacob, “High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics,” Opt. Express 21(S1Suppl 1), A96–A110 (2013).
[Crossref] [PubMed]

C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21(12), 14988–15013 (2013).
[Crossref] [PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “High-Q mid-infrared thermal emitters operating with high power-utilization efficiency,” Opt. Express 24(13), 15101–15109 (2016).
[Crossref] [PubMed]

Y. Guo and S. Fan, “Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance,” Opt. Express 24(26), 29896–29907 (2016).
[Crossref] [PubMed]

C. Khandekar and A. W. Rodriguez, “Near-field thermal upconversion and energy transfer through a Kerr medium,” Opt. Express 25(19), 23164–23180 (2017).
[Crossref] [PubMed]

Y. Liu, J. Qiu, J. Zhao, and L. Liu, “General design method of ultra-broadband perfect absorbers based on magnetic polaritons,” Opt. Express 25(20), A980–A989 (2017).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

J. Piprek and Z.-M. Li, “Electroluminescent cooling mechanism in InGaN/GaN light-emitting diodes,” Opt. Quantum Electron. 48(10), 472 (2016).
[Crossref]

Optica (3)

Photonics Nanostructures (1)

C. Simovski, S. Maslovski, I. Nefedov, S. Kosulnikov, P. Belov, and S. Tretyakov, “Hyperlens makes thermal emission strongly super-Planckian,” Photonics Nanostructures 13, 31–41 (2015).

Phys. Rev. A (1)

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

Phys. Rev. Appl. (1)

D. Costantini, A. Lefebvre, A.-L. Coutrot, I. Moldovan-Doyen, J.-P. Hugonin, S. Boutami, F. Marquier, H. Benisty, and J.-J. Greffet, “Plasmonic Metasurface for Directional and Frequency-Selective Thermal Emission,” Phys. Rev. Appl. 4(1), 14023 (2015).
[Crossref]

Phys. Rev. B (9)

L. Zhu and S. Fan, “Near-complete violation of detailed balance in thermal radiation,” Phys. Rev. B 90(22), 220301 (2014).
[Crossref]

H. Chalabi, A. Alù, and M. L. Brongersma, “Focused thermal emission from a nanostructured SiC surface,” Phys. Rev. B 94(9), 094307 (2016).
[Crossref]

S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[Crossref]

N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves,” Phys. Rev. B 76(4), 045427 (2007).
[Crossref]

M. Zhou, S. Yi, T. S. Luk, Q. Gan, S. Fan, and Z. Yu, “Analog of superradiant emission in thermal emitters,” Phys. Rev. B 92(2), 024302 (2015).
[Crossref]

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

P. Santhanam and S. Fan, “Thermal-to-electrical energy conversion by diodes under negative illumination,” Phys. Rev. B 93(16), 161410 (2016).
[Crossref]

C. Khandekar, A. Pick, S. G. Johnson, and A. W. Rodriguez, “Radiative heat transfer in nonlinear Kerr media,” Phys. Rev. B 91(11), 115406 (2015).
[Crossref]

Phys. Rev. Lett. (6)

P. Santhanam, D. J. Gray, and R. J. Ram, “Thermoelectrically Pumped Light-Emitting Diodes Operating Above Unity Efficiency,” Phys. Rev. Lett. 108(9), 097403 (2012).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

M. Laroche, R. Carminati, and J.-J. Greffet, “Coherent Thermal Antenna Using a Photonic Crystal Slab,” Phys. Rev. Lett. 96(12), 123903 (2006).
[Crossref] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal Radiation from Photonic Crystals: A Direct Calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[Crossref] [PubMed]

I. Yulevich, E. Maguid, N. Shitrit, D. Veksler, V. Kleiner, and E. Hasman, “Optical Mode Control by Geometric Phase in Quasicrystal Metasurface,” Phys. Rev. Lett. 115(20), 205501 (2015).
[Crossref] [PubMed]

N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric Doppler effect: Spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105(13), 136402 (2010).
[Crossref] [PubMed]

Phys. Rev. X (2)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2014).

J.-J. Greffet, P. Bouchon, G. Brucoli, and F. Marquier, “Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law,” Phys. Rev. X 8(2), 021008 (2018).
[Crossref]

Proc. IEEE (1)

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (5)

W. R. Chan, P. Bermel, R. C. N. Pilawa-Podgurski, C. H. Marton, K. F. Jensen, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, “Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics,” Proc. Natl. Acad. Sci. U.S.A. 110(14), 5309–5314 (2013).
[Crossref] [PubMed]

L. Zhu, A. P. Raman, and S. Fan, “Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody,” Proc. Natl. Acad. Sci. U.S.A. 112(40), 12282–12287 (2015).
[Crossref] [PubMed]

S. Buddhiraju, P. Santhanam, and S. Fan, “Thermodynamic Limits of Energy Harvesting from Outgoing Thermal Radiation,” Proc. Natl. Acad. Sci. U.S.A. 115(16), E3609–E3615 (2018).
[Crossref] [PubMed]

D. A. B. Miller, L. Zhu, and S. Fan, “Universal modal radiation laws for all thermal emitters,” Proc. Natl. Acad. Sci. U.S.A. 114(17), 4336–4341 (2017).
[Crossref] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Enabling high-temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. U.S.A. 109(7), 2280–2285 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

B. Heeg, J.-B. Wang, S. R. Johnson, B. D. Buckner, and Y.-H. Zhang, “Thermally assisted electroluminescence: a viable means to generate electricity from solar or waste heat?” Proc. SPIE 6461, 64610K (2007).
[Crossref]

Sci. Adv. (1)

P.-C. Hsu, C. Liu, A. Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, C.-L. Wu, P. B. Catrysse, L. Cai, S. Zhai, A. Majumdar, S. Fan, and Y. Cui, “A dual-mode textile for human body radiative heating and cooling,” Sci. Adv. 3(11), e1700895 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

J. K. Tong, W.-C. Hsu, Y. Huang, S. V. Boriskina, and G. Chen, “Thin-film ‘Thermal Well’ Emitters and Absorbers for High-Efficiency Thermophotovoltaics,” Sci. Rep. 5(1), 10661 (2015).
[Crossref] [PubMed]

Science (8)

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

U. Guler, A. Boltasseva, and V. M. Shalaev, “Refractory plasmonics,” Science 344(6181), 263–264 (2014).
[Crossref] [PubMed]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

N. N. Shi, C. C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, “Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants,” Science 349(6245), 298–301 (2015).
[Crossref] [PubMed]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref] [PubMed]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

C. Xu, G. T. Stiubianu, and A. A. Gorodetsky, “Adaptive infrared-reflecting systems inspired by cephalopods,” Science 359(6383), 1495–1500 (2018).
[Crossref] [PubMed]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340(6133), 724–726 (2013).
[Crossref] [PubMed]

Semicond. Sci. Technol. (2)

N.-P. Harder and M. A. Green, “Thermophotonics,” Semicond. Sci. Technol. 18(5), S270–S278 (2003).
[Crossref]

N.-P. Harder and P. Wrfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[Crossref]

Sol. Energy (3)

S. Xu, Y. Shuai, J. Zhang, X. Huang, and H. Tan, “Performance optimization analysis of solar thermophotovoltaic energy conversion systems,” Sol. Energy 149, 44–53 (2017).
[Crossref]

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Sol. Energy 83(5), 614–624 (2009).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
[Crossref]

A. Datas and A. Martí, “Thermophotovoltaic energy in space applications: Review and future potential,” Sol. Energy Mater. Sol. Cells 161, 285–296 (2017).
[Crossref]

Other (11)

R. D. Matteo, “Method of and apparatus for improved thermophotonic generation of electricity,” US Pat. US20090188549 A1 (2009).

D. H. Otth and R. G. Ross, “Assessing photovoltaic module degradation and lifetime from long term environmental tests,” in 29th Annual Technical Meeting of the Institute of Environmental Sciences (1983), pp. 121–126.

O. Dupré, R. Vaillon, and M. A. Green, “Thermal Issues in Photovoltaics and Existing Solutions,” Therm. Behav. Photovolt. Devices 1–28 (2017).
[Crossref]

D. M. Bierman, A. Lenert, M. A. Kats, Y. Zhou, S. Zhang, M. De La Ossa, S. Ramanathan, F. Capasso, and E. N. Wang, “Radiative thermal runaway due to negative differential thermal emission across a solid-solid phase transition,” http://arxiv.org/abs/1801.00376 (2017).

P. J. Roney, A. Shahsafi, Z. Zhang, Y. Zhou, Y. Xiao, C. Wan, R. Wambold, J. Salman, S. Ramanathan, M. Kats, and M. Kats, “Zero-Differential Thermal Emission Using Thermochromic Samarium Nickelate,” in Conference on Lasers and Electro-Optics (OSA, 2017), paper FM4G.2.
[Crossref]

Z. M. Zhang, Nano/microscale Heat Transfer (McGraw-Hill, 2007).

J. R. Howell, R. Siegel, and M. Pinar Mengüc, Thermal Radiation Heat Transfer (CRC Press, 2011).

M. F. Modest, Radiative Heat Transfer (Elsevier, 2013).

C. Kittel and H. Kroemer, Thermal Physics (W.H. Freeman and Company, 1980).

D. L. C. Chan, M. Soljačić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 74, (2006).
[Crossref]

Q. H. Pan, J. R. Hong, S. D. Xu, Y. Shuai, and H. P. Tan, “Theoretical Analysis of a Hyperbolic Metamaterial for Harvesting Visible and Infrared Light,” Heat Transf. Eng.1–8 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Blackbody thermal radiation at temperatures of several important thermodynamic resources: sun at 6000 K, light bulb at 3000 K, human body at 310 K, and the universe at 3 K.
Fig. 2
Fig. 2 Nanophotonics for thermal radiation control. (a) Conventional thermal radiation is incoherent, broadband, un-polarized and near-isotropic in its directionality. (b)-(f) Nanophotonic structures could exhibit thermal radiation properties that are drastically different from conventional thermal emitters. (b) Nanophotonic structures could have control on coherence, bandwidth, polarization and directionality of thermal radiation. (c) Enhanced far field thermal radiation by thermal extraction. (d) Violation of Kirchhoff’s Law by breaking reciprocity. (e) Dynamic control of thermal radiation with nanophotonic structures. (f) Non-equilibrium and non-linear thermal radiation.
Fig. 3
Fig. 3 Nanophotonic structures for achieving narrowband thermal radiation. Each figure shows the emissivity/absorptivity spectrum for the structure shown in the inset. (a) A dielectric photonic crystal (orange region), separated by a vacuum spacing from a flat Tungsten surface (gray region), for the generation of narrowband thermal radiation, taken from [19]. As the size of the spacing increases, the system tunes through the critical coupling regime (blue curves) where the peak emissivity approaches unity. (b) Narrowband thermal emission generated from photonic crystal coupled with multiple quantum well structures, taken from [17]. (c) Gold antenna structures for the generation of narrowband thermal radiation, top: Experimental absorptivity of the single band metamaterial absorber. Bottom: Experimental absorptivity of the dual-band metamaterial absorber. Inset displays SEM images of one unit cell for the fabricated single and dual-band absorbers, taken from [8].
Fig. 4
Fig. 4 Nanophotonic structures for achieving broadband enhancement and suppression of thermal radiation. Each figure shows the emissivity/absorptivity spectrum for the structure shown in the inset. (a) A sawtooth anisotropic metamaterial structure for achieving broadband absorption response, taken from [30]. (b) Metamaterial absorber with multiple resonance for achieving broadband absorption response, taken from [33]. (c) Periodic array of air holes in a Tungsten layer for broadband suppression of thermal radiation, taken from [42]. (d) Suppressing and enhancing thermal emission in different wavelength ranges with multi-layer metamaterial, taken from [28].
Fig. 5
Fig. 5 Nanophotonic structures for polarization control of thermal radiation. (a) Linearly polarized thermal emission from SiC antenna, taken from [48]. (b) Thermal radiation signal from a rectangular shape Platinum nanoantenna as a function of polarizer rotating angle. The thermal radiation signal exhibits a dipole like behavior. If the antenna is rotated by 90 degrees the polarization pattern is shifted accordingly. The insets show scanning thermal microscope images of the nanoantenna, taken from [49]. (c) Circularly polarized thermal emission from photonic crystal structures. Thermal emission intensity (T = 300 K) of left-handed (LH) (black solid line) and right-handed (RH) (red dashed line) circularly polarized light at the normal direction, for the layer-by-layer photonic crystal structure (inset) placed on a thick tungsten plate. The blue dashed-dotted line indicates the emission from a blackbody at 300 K, taken from [52]. (d) Estimated degree of circular polarization of thermal infrared radiation emitted by an infrared-absorbing slab capped by the 2D chiral metasurface shown in the insets, taken from [53]. (e) Emission spectrum of a rod array measured at angle of 10 degrees, with a right-handed circular polarizer (red line), and with a left-handed circular polarizer (blue line). Inset displays SEM images of the rod array and a single rod. The orientation of the rods rotates in the array, taken from [54]. (f) Space-variant polarization manipulation of thermal emission: (i) SEM image of spiral sub-wavelength elements with polarization order numbers m = 1, 2, 3, and 4. Thermal emission images emerging from the SiO2 spiral elements captured through a polarizer (ii) and without a polarizer (iii), for m = 1,2,3,4. The elements were uniformly heated to a temperature of 353 K. The lines indicate the local transverse-magnetic polarization orientation measured in the near-field, taken from [55].
Fig. 6
Fig. 6 Beaming of thermal radiation: direction control and thermal focusing. (a) Directional thermal radiation from SiC grating, taken from [6]. (b) Angle dependent thermal emission from a plasmonic metasurface: Direct measurement of the emissivity at 600 °C as a function of the frequency and the angle of the W/SiN/Pt metasurface. The emissivity peak is located at ω = 2353 cm−1 and between 0° and 26°, taken from [61]. (c) Directional thermal emission from bull’s eye structure, taken from [63]. (d) Focusing of thermal radiation from a nanostructured SiC metasurface, taken from [68].
Fig. 7
Fig. 7 Beyond Planck’s Law and Kirchhoff’s Law: thermal extraction and non-reciprocal thermal radiation. (a)-(b) Enhancing far-field thermal radiation by thermal extraction. (a) Far field thermal radiation of a macroscopic thermal emitter cannot exceed the blackbody thermal emission with the same emitter area. (b) With thermal extraction, far field thermal radiation of a macroscopic thermal emitter can significantly exceed the blackbody thermal emission with the same emitter area. The thermal radiation of (a) is plotted as dashed line for reference. (c),(d) Non-reciprocal thermal radiation. Energy flow diagram of (c) a reciprocal thermal emitter, and (d) a non-reciprocal thermal emitter. The thermal emitter interacts with two blackbodies A and B, respectively. The emitter and the blackbodies are at the same temperature T.
Fig. 8
Fig. 8 Dynamic modulation of thermal emission. (a) Tunable thermal emission by electrical modulation of carrier density in an array of graphene resonators, taken from [81]. (b) Tunable narrowband thermal emission by electrical modulation of carrier density in a photonic crystal slab incorporating GaAs/n-AlGaAs quantum wells, taken from [82]. (c) Tunable thermal emission from a MEMS metamaterial perfect absorber structure. The modulation is achieved by changing the gap distance between the top resonators and the bottom metal plane, taken from [84]. (d) Negative differential thermal emission, realized by using phase change material VO2. As the temperature increases, the material undergoes a phase change, resulting in the decrease of the spectral radiance. Taken from [85]. (e) Super-Stephan-Boltzman increase of thermal emission using phase change materials GST, taken from [86].
Fig. 9
Fig. 9 Non-equilibrium and non-linear thermal emission. (a) A schematic energy diagram for electrons in a semiconductor. The separation of quasi-Fermi levels for electrons ηc and holes ηv, result in emission of photons carrying positive chemical potential μγ = ηc - ηv. (b) Modification of Planck spectra (blue) upon positive (red) and negative (black) chemical potential for a blackbody at a temperature of 300 K. (c) Peak emissivity εmax of a cavity coupled to an external bath, both at temperature T, as a function of nonlinear coupling |ζ| = |α|kBe/γ2, for different ratios of the linear dissipation γe and external coupling γd rates. The inset shows the emissivity ε(ω) for γe = γd, corresponding to a cavity with perfect linear emissivity, for multiple values of ζ, taken from [104]. (d) Peak (on-resonance) spectral transfer function ΦmaxΦ(ω0) normalized by the blackbody ΦBB as a function of nonlinear coupling |ζ| = |α|kBe/γ2, for a system consisting of a cavity at temperature Td coupled to an external bath at Te = 0, for multiple configurations of γe/γd and Re α/Im α at T = Td. The inset shows a cavity design supporting a mode at λ ≈2.09 μm with lifetime Q ≈108 and modal volume V ≈0.8(λ/n)3, along with its corresponding Hz and Ey field profiles, taken from [104].
Fig. 10
Fig. 10 Daytime radiative cooling (a) Major thermodynamic resources around the earth. (b) To achieve daytime radiative cooling, one needs to create a structure that achieves broadband reflection of sunlight and strong thermal emission in the transparency window of the atmosphere. (c) A multi-layer structure made of HfO2 and SiO2 deposited a silver mirror on top of a silicon wafer. The structure has a strong solar reflection and selective thermal emission in 8-13 μm, and functions as a daytime radiative cooler. (d) Roof-top measurement setup. (e) The blue curve shows the temperature of the radiative cooler structure as shown in (c), when placed in the setup as shown in (d). The cooler reaches a temperature of 5 °C below the ambient air, under direct peak sunlight, taken from [11].
Fig. 11
Fig. 11 Nanophotonic structures for daytime radiative cooling (a) Metal–dielectric conical metamaterial pillars with alternating layers of aluminum and germanium for selective emission in 8-13 μm, taken from [113]. (b) Schematic (left) and photo (right) of photonic radiative cooler made of 500 μm fused silica wafer with a 100 μm thick polydimethylsiloxane (PDMS) film on top and 120 nm thick silver film as a back reflector, taken from [114]. (c) Photo (top) and schematic (bottom) of large scale photonic radiative cooler containing micrometer-sized SiO2 spheres randomly distributed in the matrix material of polymethylpentene, taken from [115]. (d) Radiative cooling photonic structures from silver ants, taken from [116].
Fig. 12
Fig. 12 Packaging system for daytime radiative cooling. (a),(b) Schematic and photos of a vacuum system for reaching deep sub-freezing temperatures by minimizing non-radiative heat loss, taken from [118]. (c)-(e) Schematics and photo of fluid cooling panel system for sub-ambient non-evaporative fluid cooling, taken from [119].
Fig. 13
Fig. 13 Radiative cooling of solar cells. (a) Three design considerations for a cooling layer placed on top of a solar cell: In solar wavelength range, perfect transmission above solar cell bandgap, perfect reflection below bandgap, and perfect thermal emission in the thermal wavelength, taken from [121]. (b) A photonic crystal structure made of silica, which is transparent in the solar wavelength range, and has near-unity thermal emissivity in the thermal wavelength rage, taken from [122]. (c) Experimental demonstration of cooling effect when the structure in b is placed on top of a silicon solar absorbers, taken from [122].
Fig. 14
Fig. 14 Nanophotonic thermal textile for personal thermal management. (a) Schematic of heat dissipation pathways from a clothed human body to the ambient environment. Thermal radiation contributes to a significant part of total heat dissipation, in addition to heat conduction, and heat convection, taken from [127]. (b) Ideal spectrum for thermal textile for cooling (top) and heating (bottom) purposes. (c) Measured infrared transmittance of nanoporous polyethylene, normal polyethylene, and cotton. The nanoporous polyethylene is as transparent as normal polyethylene. Cotton, on the other hand, is completely opaque, taken from [13]. (d) Measured infrared reflectance of the metallic coating side of nano-Ag/PE, compared with existing textile materials including cotton, Mylar blanket and Omni-Heat, taken from [131].
Fig. 15
Fig. 15 Solar thermophotovolatic systems. (a) A schematic shows the general concept of STPV system. Between the sun and the photovoltaic cell, an intermediate material absorbs the sunlight, heats up and generates narrowband thermal radiation that matches the band gap of photovoltaic cell, taken from [25]. (b) A nanophotonic narrowband thermal emitter made of a tungsten slab with Si/SiO2 multilayer stack. The black curve is the emissivity of the emitter structure at normal incidence (θ = 0). The dashed black curve is the emissivity at normal incidence of a tungsten crossed grating structure. The red curve is the scaled spectral radiance of a 2000 K blackbody, taken from [25]. (c) Experimental realization of a solar thermophotovoltaic system. The system consists of broadband absorber, narrowband emitter and a InGaAsSb cell, taken from [10]. (d) Top panel: Internal quantum efficiency (IQE) spectrum of the InGaAsSb photovoltaic cell and the emissivity spectrum of the emitter. Bottom panel: structure of the photonic crystal emitter, taken from [10]. (e) Conversion efficiency ηtηtpv as a function of solar irradiance Hs. Contributions to ηtηtpv relative to a greybody absorber–emitter: MWNT–1D PhC absorber–emitter (twofold improvement) and area ratio optimization (additional twofold improvement). Efficiencies approaching 20% were predicted with a scaled-up (10 × 10 cm2) STPV system utilizing a high-quality 0.55 eV photovoltaic module with a sub-bandgap reflector, taken from [10].
Fig. 16
Fig. 16 TPX system for power generation and cooling. (a) A schematic showing the concept of TPX system, taken from [108]. An emitter diode with an applied external bias is on the heat source side. And a PV cell is on the heat sink side. The electroluminescence from the LED is absorbed by the PV cell for generating electricity. (b),(c) Theoretically calculated efficiency and power generation of TPX system as a function of bias/bandgap ratio, at an emitter temperature of 600K, taken from [152]. (d) A TPX system works as a solid-state refrigerator, taken from [156]. In this case, the GaAs LED is on the cold side for cooling purpose. The generated electricity from Si PV cell is resupplied to drive the LED. (e), (f) Cooling power density and coefficient of performance (COP) of the device shown in (d), taken from [156].

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

α( ω, n ^ , p ^ )=e( ω, n ^ , p ^ * )
α( ω )=e( ω )= 4 γ e γ i ( ω ω 0 ) 2 + ( γ e + γ i ) 2
γ e = γ i
P=e( ω, n ^ ) P 0 P 0 =A ω 2 4 π 2 c 2 ω e ω/ K B T 1
α A + r AB =1
e A + r BA =1
e A α A = r AB r BA = α B e B
ε r ˜ ( ω )= ε r ˜ ( )+ N q 2 ε 0 m e m=1 M f m ω 0,m 2 ω 2 +jω Γ m
ρ( ω )= ω 2 π 2 c 3 ω e ( ω μ γ )/ K B T 1

Metrics